Browse > Article
http://dx.doi.org/10.22771/nfaa.2022.27.01.08

HALPERN TSENG'S EXTRAGRADIENT METHODS FOR SOLVING VARIATIONAL INEQUALITIES INVOLVING SEMISTRICTLY QUASIMONOTONE OPERATOR  

Wairojjana, Nopparat (Applied Mathematics Program, Faculty of Science and Technology Valaya Alongkorn Rajabhat University under the Royal Patronage (VRU))
Pakkaranang, Nuttapol (Mathematics and Computing Science Program, Faculty of Science and Technology Phetchabun Rajabhat University)
Publication Information
Nonlinear Functional Analysis and Applications / v.27, no.1, 2022 , pp. 121-140 More about this Journal
Abstract
In this paper, we study the strong convergence of new methods for solving classical variational inequalities problems involving semistrictly quasimonotone and Lipschitz-continuous operators in a real Hilbert space. Three proposed methods are based on Tseng's extragradient method and use a simple self-adaptive step size rule that is independent of the Lipschitz constant. The step size rule is built around two techniques: the monotone and the non-monotone step size rule. We establish strong convergence theorems for the proposed methods that do not require any additional projections or knowledge of an involved operator's Lipschitz constant. Finally, we present some numerical experiments that demonstrate the efficiency and advantages of the proposed methods.
Keywords
Variational Inequalities; Halpern Tseng's extragradient method; strong convergence theorems; semistrictly quasimonotone operator; Lipschitz continuous;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 J. Abubakar, P. Kumam, A.H. Ibrahim, and A. Padcharoen, Relaxed inertial Tseng's type method for solving the inclusion problem with application to image restoration, Mathematics, 8(5) (2020), Article ID 818.
2 A.S. Antipin, On a method for convex programs using a symmetrical modification of the Lagrange function, Economika i Matem. Metody., 12 (1976), 1164-1173.
3 H.H. Bauschke and P.L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, Springer, New York, 2011.
4 Y. Censor, A. Gibali and S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., 148(2) (2010), 318-335.   DOI
5 Y. Censor, A. Gibali and S. Reich, Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space, Optim. Methods Softw., 26(4-5) (2011), 827-845.   DOI
6 P. Cholamjiak, D.V. Hieu and Y.J. Cho, Relaxed Forward-Backward Splitting Methods for Solving Variational Inclusions and Applications, J. Sci. Comput., 88 (2021). https://doi.org/10.1007/s10915-021-01608-7.   DOI
7 A. Daniilidis and N. Hadjisavvas, Characterization of nonsmooth semistrictly quasiconvex and strictly quasiconvex functions, J. Optim. Theory Appl., 102(3) (1999), 525-536.   DOI
8 N. Hadjisavvas and S. Schaible, On strong pseudomonotonicity and (semi)strict quasimonotonicity, J. Optim. Theory Appl., 79(1) (1993), 139-155.   DOI
9 B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., 73 (1967), 957-961.   DOI
10 N. Pakkaranang, H. ur Rehman, and W. Kumam, Two strongly convergent self-adaptive iterative schemes for solving pseudo-monotone equilibrium problems with applications, Demonstr. Math., 54(1) (2021), 280-298.   DOI
11 S. Reich, D.V. Thong, P. Cholamjiak and L.V. Long, Inertial projection-type methods for solving pseudomonotone variational inequality problems in Hilbert space, Numer. Algorithms, 88(2) (2021), 813-835.   DOI
12 J.K. Kim and Salahuddin, Extragradient methods for generalized mixed equilibrium problems and fixed point problem in Hilbert spaces, Nonlinear Funct. Anal. Appl., 22(4) (2017), 693-709.   DOI
13 L. Zhang, C. Fang and S. Chen, An inertial subgradient-type method for solving singlevalued variational inequalities and fixed point problems, Numer. Algo., 79 (2018), 941-956.   DOI
14 C.M. Elliott, Variational and quasivariational inequalities: applications to free-boundary problems (Claudio Baiocchi and ant'onio Capelo), SIAM Rev., 29(2) (1987), 314-315.   DOI
15 A.N. Iusem and B.F. Svaiter, A variant of Korpelevich's method for variational inequalities with a new search strategy, Optimization, 42(4) (1997), 309-321.   DOI
16 G. Kassay, J. Kolumban and Z. Pales, On Nash stationary points, Publ. Math. Debrecen, 54(3-4) (1999), 267-279.   DOI
17 G. Kassay, J. Kolumban and Z. Pales, Factorization of minty and stampacchia variational inequality systems, European J. Oper. Res., 143(2) (2002), 377-389.   DOI
18 D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications, Classic in Applied Mathematics, Society for Industrial and Applied Mathematics, (SIAM), Philadelphia, PA, 2000.
19 I. Konnov, Equilibrium models and variational inequalities, 210, Elsevier, 2007.
20 G. Korpelevich, The extragradient method for finding saddle points and other problems, Ekonom. i Mat. Metody, 12(4) (1976), 747-756.
21 H. ur Rehman, P. Kumam, A. Gibali, and W. Kumam, Convergence analysis of a general inertial projection-type method for solving pseudomonotone equilibrium problems with applications, J. Inequal. Appl., 2021 (2021), Article ID 63. https://doi.org/10.1186/s13660-021-02591-1.   DOI
22 H. ur Rehman, P. Kumam, I.K. Argyros, W. Deebani and W. Kumam, Inertial extragradient method for solving a family of strongly pseudomonotone equilibrium problems in real hilbert spaces with application in variational inequality problem, Symmetry, 12(4) (2020), Article ID 503. https://doi.org/10.3390/sym12040503.   DOI
23 H. ur Rehman, P. Kumam, Y.J. Cho, Y.I. Suleiman and W. Kumam, Modified Popov's explicit iterative algorithms for solving pseudomonotone equilibrium problems, Optim. Methods Softw., 36(1) (2021), 82-113.   DOI
24 H. ur Rehman, P. Kumam, Y.J. Cho and P. Yordsorn, Weak convergence of explicit extragradient algorithms for solving equilibirum problems, J. Inequal. Appl., 2019 (2019), Article ID 282. https://doi.org/10.1186/s13660-019-2233-1.   DOI
25 H. ur Rehman, P. Kumam, W. Kumam, M. Shutaywi and W. Jirakitpuwapat, The inertial sub-gradient extra-gradient method for a class of pseudo-monotone equilibrium problems, Symmetry, 12(3) (2020), Article ID 463. https://doi.org/10.3390/sym12030463.   DOI
26 G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris, 258 (1964), 4413-4416.
27 A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., 241(1) (2000), 46-55.   DOI
28 D.V. Hieu and P. Cholamjiak, Modified extragradient method with Bregman distance for variational inequalities, Appl. Anal., (2020), Accepted. https://doi.org/10.1080/00036811.2020.1757078.   DOI
29 P.-E. Mainge, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16(7-8) (2008), 899-912.   DOI
30 Y.V. Malitsky and V.V. Semenov, An extragradient algorithm for monotone variational inequalities, Cybernet. Systems Anal., 50(2) (2014), 271-277.   DOI
31 K. Muangchoo, A Viscosity type projection method for solving pseudomonotone variational inequalities, Nonlinear Funct. Anal. Appl., 26(2) (2021), 347-371.   DOI
32 M.A. Noor, Some iterative methods for nonconvex variational inequalities, Comput. Math. Model., 21(1) (2010), 97-108.   DOI
33 A. Padcharoen, D. Kitkuan, W. Kumam and P. Kumam, Tseng methods with inertial for solving inclusion problems and application to image deblurring and image recovery problems, Comput. Math. Meth., 3 (2020), e1088. https://doi.org/10.1002/cmm4.1088.   DOI
34 H. ur Rehman, N. Pakkaranang, A. Hussain and N. Wairojjana, A modied extra-gradient method for a family of strongly pseudomonotone equilibrium problems in real Hilbert spaces, J. Math. Comput. Sci., 22(1) (2021), 38-48.   DOI
35 P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., 38(2) (2000), 431-446.   DOI
36 N. Wairojjana, H. ur Rehman, M.D. la Sen and N. Pakkaranang, A general inertial projection-type algorithm for solving equilibrium problem in Hilbert spaces with applications in fixed-point problems, Axioms 9(3) (2020), Article ID 101. https://doi.org/10.3390/axioms9030101.   DOI
37 H.-K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Austral. Math. Soc., 65(1) (2002), 109-113.   DOI