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PERTURBED PROXIMAL POINT
ALGORITHMS FOR GENERALIZED
MIXED VARIATIONAL INEQUALITIES

JAE UG JEONG

ABSTRACT. In this paper, we study a class of variational inequalities,
which 15 called the generalized set-valued mixed variational inequality
By using the properties of the resolvent operator associated with a
maximal monotone mapping i Hilbert spaces, we have established
an existence theorem of solutions for generalized set-valued mixed
variational inequalities, suggesting a new ijterative aigorithm and a
perturbed proximal pomnt algorithm for finding approximate solutions

which strongly converge to the exact solution of the generalized set-
valued mixed variational inequalities

1. Introduction

Variational inequality theory introduced by Stampacchia[11] has en-
joyed vigorous for the last thirty years. Variational inequality theory
described a broad spectrum of interesting and important developments
involving a link among various fields of mathematics, physics, econom-
ics, and engineering sciences[1,5]. Variational inequalities have been
extended and generalized in differential directions using novel and in-
novative techniques both for their own sake and for applications. A
useful and an important generalization of variational inequality is a
mixed variational inequality containing the nonlinear term. For the
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applications of the mixed variational inequalities, see [1,2]. Due to the
presence of the nonlinear term, the projection method cannot be used
to study the existence of a solution of the mixed variational inequali-
ties. It is clear that one cannot develop the projection type algorithms
for solving the mixed variational inequalities. These facts motivated us
to develop another technique. This technique is related to the resolvent
of the maximal monotone operator. Hassouni and Moudafi[4] modified
and extended this technique for a class of general mixed variational
inequalities.

In this paper, we shall study a class of variational inequalities, which
is called the generalized set valued mixed variational inequality. This
class is the most general and includes the previously studied classes of
variational inequalities as special cases By applying the properties of
the resolvent operator associated with a maximal monotone mapping
in Hilber{ spaces, it is shown that the generalized set valued mixed
variational inequalities are equivalent to thefixedpoint probiems. A
new iterative algorithm and a perturbed proximal point algorithm for
finding approximate solutions which strongly converges to the exact
solution of the generalized set valued mixed variational inequalities are
proposed and analyzed. The main results proved in this paper repre-

sent a refinement and improvement of the previously known results in
this field.

2. Preliminaries

Let H be a Hilbert space endowed with a norm || - |} and a inner
product < -,- >. Let N : H x H — H be a nonlinear operator,
T,A: H — 27 be set valued mappings, ¢ : H — H be a single valued
mapping and ¢ : H x H —» RU{+o00} be such that for each fixed y € H,
$(,y) : H - RU {+oo} is a proper convex lower semicontinuous
function on H and ¢(H) N domd¢(-,y) # ¢. Then the problem of
finding z € H, u € T(z), and v € A(z) such that

(2.1) < N{u,v),y — g(z) >> ¢(g(z),7) — ¢(y,2), “y € H,

is called the generalized set valued mixed variational inequality (GSVMIP
(N,T,A,9,9)).
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Special cases

(1) If ¢(z,y) = ¢(x) for all y € H, then the problem (2.1) reduces
to the generalized multivalued mixed variational inequality, which is
mainly due to Noor et al [7].

(2) If K is a given closed convex subset of H and ¢ = Ik is the
indicator function of K,

0, ifz € K,
+00, if otherwise,

Inc(z) = {

then the problem (2.1) is equivalent to finding z € H, u € T(x), and
v € A{z) such that g(z) € H and

< N(u,v),y —g(z) >>0, "yeK,

a problem considered and studied by Noor[6].

(3) If K : H — 27 is a set valued mapping such that each K(z) is
a closed convex subset of H (or K(z) = m(z) + K, where m : H - H
and K is a closed convex subset of H) and for each fixed y € H,
(-, y) = I (+) is the indicator function of K (y),

0, if z € K(y),

400, otherwise,

(@) = {

then the problem (2.1) is equivalent to finding z € H, u € T(z), and
v € A(z) such that g(z) € K(z) and

< N(u,v),y —g(x) >>0, “ye K(z).

(4) For N{u,v) = u — v, then problem (2.1) is equivalent to finding
z € H,u € T(u), and v € A(x) such that

<u-—wv,y-g(z) >> ¢(g(z),z) - ¢(,2), “weH,

a problem studied by X. P. Ding|3].

In order to prove our main theorem, we need the following concepts
and results; see Pascali and Sburlan [9).
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DEFINITION 2.1. Let H be a Hilbert space and let G : H — 27

be a maximal monotone mapping. For any fixed p > 0, the mapping
JE : H — H defined by

JS(z) = (I+pG) (), Ve e H,
is said to be the resolvent operator of G where I is the identity mapping
on H.

LEMMA 2.1. Let X be a reflerive Banach space endowed with a
strictly conver norm and ¢ : X — RU {+oo} be a proper convex lower
semicontinuous function. Then 8¢ : X — 2% is a mazimal monotone
mapping.

LEMMA 2.2. Let G : H — 2% be a mamvmal monotone mapping.
Then the resolvent operator Jf : H = H of G is nonexpanswe, i.e.,

foralz,ye€ H,
195 (@) = IS (Il < |l — yll.

DEFINITION 2.2. For all z;,z, € H, the operator N(-,-) is said to
be a-strongly monotone and B-Lipschitz continuous with respect to the
first argument if there exist constants o > 0, 8 > 0 such that

< N(uy,) — N(ug,-), 21 ~ 12 >2 afjz1 — $2i|2,
| N (21, -} — N{ug, )l < Bllur — uz|

for all uy € T{zy), uz € T(zg).

In a similar way, we can define the strong monotonicity and Lipschitz
continuity of the operator N{-,-) with respect to the second argument.

DEFINITION 2.3. The set valued operator T : H — 2¥ is said to be
§-Lipschitz continuous if there exists a constant § > 0 such that

M(T(2),T(y)) < 8l|lz - yll, "=y € H,

where M(A, B) = sup{|la—b]| : a € A,be B}, VA, B € 21.
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DEFINITION 2.4. A mapping g : H — H is said to be A-strongly
monotone and o-Lipschitz continuous if there exists constants A > 0,
o > 0 such that

< g(z) — g(y),z —y >> Az — yll?,

lig(z) — gl < allz —yll,
for all x,y € H.

3. Main Results

In this section, we shall prove an existence theorem of solutions for
GSVMIP(N,T, A, g,$)(2.1) and suggest a new iterative algorithm for
finding approximate solutions of the problem (2.1). And we show that
the sequence of approximate solutions strongly converges to the exact
solution of the problem (2.1).

THEOREM 3.1. (z*,u*,v*) 1s a solutron of the problem (2.1) 1f and
only of (x*,u*,v*) satisfies the relation

(3.1) §(z) = J20A) (g(z) ~ pN(u,v)), "z € H,

where p > 0 is a constant, JO* %) = (I + pd¢(-,x))~! 15 the resolvent
operator of 0¢(-,x), and I 1s the identity mapping on H.

PROOF. Let (z*,u*,v") satisfy the relation (3.1), that is,
9(a") = I (gla") ~ pN (', 07)).
The equality holds if and only if
—N(u”,v") € 9¢(,z7)(9(z"))
by the definition of J;? ¢0.=")  The relation holds if and only if
$(y,z*) — d(g(z*),2*) > < ~N(u",v"),y —g(z*) >, “yeH,

by the definition of the subdifferential d¢(-,z*). Hence (z*,u*,v*) is
the solution of

< N(u*,v*),y —g(z*) > > ¢lg(z*),z*) — ¢(y,z*), “ye€ H.
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REMARK 3.1. From Theorem 3.1, we see that the generalized set
valued mixed variational inequality (2.1) is equivalent to the fixed point
problem (3.1). Equation (3.1) can be written as

(3.2) z=z—g(x)+ Jf‘”( @Ng(x) — pN(u,v)].

This fixed point formulation enables us to suggest the following algo-
rithms.

Algorithm 3.1
For any given 2o € H, @ € T(z¢), and 09 € A(xp), let

yo = (1 — o)z + Bolzo — g(wa) + JJ*07) (g(z6) — pN (o, Bo)))-

Take any fixed ug € T(yo) and vg € A(yo), and let

zy = (1~ ag) + colye — 9(yo) + J2*0 %) (g(yo) — pN (v, v0))]-

Continuing this way, we can define sequences {Z,}% g, {¥n }30,{tn} 50>
and {v,}3, as

Tas1 = (1 = 0n)Tn + nftn — 9(yn) + J2°0¥) (g(yn) — BN (tn, va))],

(33) Yn = (1~,Bn)$n+,8n[$n —g(xn)+Jg¢( 'x")(g(xn)_PN(ana ﬁn,))]w

forn =0,1,2,--, where u, € T(yn), vn € A(yn), @n € T(zy,), and
9, € A(zn) can be chosen arbitrarily, 0 < @y, 8n < 1, Yoo o di-
verges, and p > 0 is a constant.

Using fixed point formulation (3.2), we have the following algorithm.

Algorithm 3.2
For any given zo € H, compute the sequence {z,}32 4, {un}ilo;
and {v,}5, by the iterative schemes

(3.4) Tnt1 = Tn — §(Tn) + J,?‘“ ’mn)(g(xn) — pN(un, vn)),
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forn =0,1,2,---, where u, € T(z,) and v, € A(z,) can be chosen
arbitrary and p > (0 is a constant.

To perturb the Algorithm 3.2, we first add, in the right-hand side of
(3.4}, an ervor e, to take into account a possible inexact computation of
the proximal point and we consider another perturbation by replacing
¢ in (3.4) by ¢, where each ¢, : H x H — R U {400} is such that
for each fixed y € H, ¢,{-,y) is a proper convex lower semicontinuous
function on H and the sequence {¢,} approximates ¢ on H x H. Then
we obtain the following perturbed proximal point algorithm.

Algorithm 3.3
For any given z¢ € H, computer the sequence {&5}5%, {tn}oq,
and {v,}5 , by the iterative schemes

(3.5)  Tner = Tn — qlzn) + JEP 0T g(2,) — pN(Un, vn)) + €,

where {e, }22 4 is an error sequence in H, u, € T(z,), and v, € A(zp)
can be chosen arbitrarily, and p > 0 is a constant.

Now we show the existence of solutions of the GSVMIP (N, T, A, g, ¢)
(2.1).

THEOREM 3.2. Let the operator N{(-,-) be a-strongly monotone and
B-Lipschaitz continuous with respect to the first argument. Let the oper-
ator N{(-,-) be y-Lipschitz continuous with respect to second argument.
Let T : H — 27 be §-Lipschatz continuous, A : H — 2% be n-Lipschatz
continuous, g : H — H be A-strongly monotone and o-Lipschitz con-

tinuous, and ¢ : H x H — RU {400} be such that for each fized

y € H, ¢{-,y) 15 a proper convex lower semicontinuous function on H,
g(H)YN domd¢(-,y) # ¢, and for each z,y,z € H,

72902 (2) — I ()| < pllz - yl)-
Suppose there exists a constant p > 0 such that
k=v+2V1-2x+02,

a> (1~ kyny + Vk(B20% — n?y?)(2 - k),
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a+ny(k-1)
- 3262 = 242
k—DI1° — k(B%8% — n2y2) (2 — k
pm<1l—k.

Then the GSVMIP(N,T, A,q,¢)(2.1) has a solution (x*,u*, v*).
Proor. By Theorem 3.1, it is sufficient to prove that there exist
z* € H, u* € T(z*), and v* € A(z*) such that (3.1) holds. Define a
set valued mapping F : H — 28 by
F(z) = Uuer(x) Yseaq) (£ — 9(z) + %0 (g(z) — pN(u,v))]-
For arbitrary z,y € H, a € F(z), and b € F(y), there exist u; € T(z),
vy € A(x}), uz € T{y}, and vy € A(y)-such that

a =g - g(z) + JP*07 (g(x) — pN(u1,v1)),

b=y —g(y) + JZ* ¥ (g(y) — pN(uz,v2)).
By the assumption of ¢ and Lemma 2.1 and 2.2, we have

lla — 8l < iz -y~ (9(z) — g(¥)l|
+ 17820 (g(z) — pN (uy, v1))
— J20D (g(y) ~ pN(uz, va))||
+ 7290 (g(y) — pN (2, v2))
= J2209) (g(y) — pN (uz, v2))|
<|lz -y — (g{z) — gx)ll
+ llg(z) - g(y) — p(N(u1,v1) — N(uz,v2))]
+ pllz ~ yll
<2z -y — (9(=) —g()ll
+llx —y — p(N{u1,v1) = N{ug,v1))|
(3.7) + plIN (u2,va) — N(uz, w1l + pllz - yli.
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Since g : H — H is A-strongly monotone and o-Lipschitz continuous,
lz — v — (9(z) — g(¥)I®
=z -yl - 2 < g(z) — g(y),z -y >
+[lg(z) — g()li®
<z~ ylf® - 2Mlz — ylf* + o*flz — y||®
(3.8) =1 =22+ Y|z -yl

Using the y-Lipschitz continuity of the operator N{-, ) with respect to
second argument and the n-Lipschitz continuity of A, we have

|V (uz, v2) — N{ug, v1)| < yllva — vi]
< YM(A(y), A(z))
(3.9) < ynllz — yil-

~o ATS

Since N{-,-} is a-strongly monotone and S-Lipschitz continuous with
respect to the first argument,
lz —y — p(N(u1,v1) ~ N(“Z,”l))”2
= llz — yll* — 2p < N(u1,v1) — N{ug,v1), 2 — y >
+ p?IN (w1, 01) = N(ug, v)||?

< llz = yll* - 2p0llz — yli* + P?A%|u1 — ual|®

< iz — yl* - 200z — y|* + P*B*M(T(2), T(y))?
(3.10) < (1= 2pa+ p* 526 ||z — ylI*.
Combining {3.7), (3.8), (3.9), and (3.10), we get

lle — bl] < {2V1 = 2\ + 02 + /1 — 2pa + p2 3262
+ pym+ phliz - -

It follows that
M(F(z), F(y)) < {2V/1 - 2A + 02 + /1 = 2pa + p? 262
+ pyn + pllz ~ ol

= [k +t(p) + pynlliz — ¥l
(3.11) = 0|z -yl
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where k = 21 —2X 4+ 02 + p, t(p) = /1 — 2pa + p?3252, and § =
k +t(p) + pyn. By the condition (3.6), we have 8 < 1. It follows from
the condition (3.11) and Theorem 3.1 of Siddiqi and Ansari[10] that F
has a fixed point z* € H. By the definition of F, there exist u* € T(z*)
and v* € A(z*) such that

g(a%) = I (g(a*) ~ pN(u",v")).
Therefore (z*,u*,v*) is a solution of the GSVMIP (N, T, A, g, ¢)(2.1).

THEOREM 3.3. Let H N, T, A, g, and ¢ sabisfy all conditrons n
Theorem 3.2. If the condition (3.6} is also satisfies, then the iteratwve
sequences {Tn}ors, {un}y, and {v,}X, defined in the Algorithm
3.1 strongly converge to x*, u*, and v*, respectwely, and (T*,u*,v*) 15
a solution of the GSVMIP(N,T, A, q,¢)(2.1).

PROOF. By the Theorem 3.2, the GSVMIP(N, T, A, g,¢)(2.1) has a
solution (z*,u*,v*) From Theorem 3.1 we have z* € H, u* € T(z*),
v* € A(z*), and for all n > 0,

z* = z* — g(z*) + J?CT N g(2*) — pN(u",v"))
= (1= an)z* + an{z" — g(z*) + J2*0 =) (g(z*) — pN(u*,v*))}
= (1 = Bn)z* + Bu{z* — g(z*) + J2*0" N (g(z*) — pN (", v*))}.

By the algorithm 3.1, using a similar argument as in the proof of The-
orem 3.2, we obtain

I2n — 2* = (g(zn) — 9@l < V1 - 2X + 02|z — ],
l[on — 2* = p(N (@in, v*) — N(u*,v"))]|
< V1 =2pa+ p2B262%||z, — z*,
[N (Gin, Bn) = N(@in, v*)ll < valizn — 2*[,
lgn — z* = (g(yn) — gD < V1 = 2X + 02|y — ="},
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|y — 2" — p(N (tn,v*) — N(u*,v*))||
< V1 -2pa+ p?B28% |y — 2|,
N (tn, v") = N(ug, va){| < y7llyn — 7]

Thus, by the Algorithm 3.1, the assumption of ¢, and Lemma 2.1 and
2.2, we have

lym — =*[i
S (= Ba)llzn — 2% + Bullzn - 27 — (g{zn) — gz
+ Ba HJ;?(M 'm")(g(xn) — pN(tn, )
— I3 (g(zn) — pN (8, )|
+ )Gn“'];?(p( ’m’)(g(xn) — pN(tin, ¥n))
— 2?07 (g(2*) — pN (", v")))|
< (1= Balllzn — 2*|| + 2Bnl@n — 2™ — (9(zn) — g(=z"))|l
+ Bnpllzn — 2| + Ballzn — 2% — p(N(Gn, Bn) — N{(u*,v7))||
< (1= Ballzn — z*{ + 2Bnllzn — = — (g(za) — g(z"))]
+ Bupllzr — 2™ + Balizn — 2 — p(N (@, v") — N(u*, v )
+ Bap|IN (tn, Bn) — N(tn, v*)||

<{(1-Bn)llzn—z'| +B2V1I-2A+02+ 1

+ V1 = 2pa + p2B282 + pynll|z, — =]
< (1 - ﬁn)“mn - :L‘*“ + ﬁnonxn - x*“

(3 12)
< “xn - :IZ*H

Similarly, we have

a1 — 7]
< (1 —an)lizn — || + anllyn — = ~ (9(yn) — 9(=™))I
+ o[ J2* ¥ (g(yn) — PN (tn, v5))
— 3P (g(z*) — pN(u®,v*))|
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< (1—an)llzn — 2| + anllyn — 2" = (9(yn) — g(="))l
+ anl| S22 (g(y,) — PN (tn, vn))
= J2*0 N g(yn) — PN (un, va))
+an |72 (g(yn) ~ PN (tn, vn))
— J2PU= ) (g(x*) — pN (", v*))]
< (1= anlllzn — 2| + 2anllyn — =% — (g{yn) — g(z*)||
+ anllyn — =% — p(N(un,v*) = N(u®,v"))||
+ 0 || N (tn, v™) = N(ua, va)|

< (1 —ap)llzn — 2" + aa[2V1 - 221 + 02

+ 1= 2pa + 28262 + pylllyn — |

(3.13)
< (1 - an)llza — 27| + anbilyn — z*|l.
It follows from (3.12) and (3.13) that
[Zn+1 = 2*[| < (1 = an}llzn — 2| + anbllzn — 27|
=[1- (1 - O)an]lizn - |
ST - (1 Balleo — =)l
Since 32 @, diverges and 1 -6 > 0, we have II%2,{1 — (1 -8)a,] = 0.
Hence the sequence {z,} strongly converges to z*. By (3.12), the

sequence {yn} also strongly converges to z*. Since up, € T(yn), u* €
T(z*), and T is §-Lipschitz continuous, we have

lun — w*l| £ M(T(yn), T(z™))
< lyn — 2"
— 0,

and hence the sequence {u,} strongly converges to u*. Similarly, we
can show that the sequence {v,} strongly converges to »*. This com-
pletes the proof.
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THEOREM 3.4. Let H, N, T, A, and g satisfy all conditions in Theo-
rem 3.2, and ¢, ¢, : Hx H - RU{+00}, n=10,1,2,---, be such that
for each fixed y € H, ¢(-,y) and each ¢,(-,y) are both proper convex

lower semicontinuous functions on H, g(HYNdomd¢(-,y) # ¢, and for
each ¢,y,z € H and for alln > 0,

17280 (2) — IR ()] < pllz — gl

Assume limy,_, oo |J27" 0¥ (2) — Jf¢("y)(z)1| = 0 for all y,z € H,

limy, 00 llenl] = 0, and there exists a constant p > 0 such that the con-
ditron (3.6} in Theorem 3.2 holds. Then the iterative sequences {Zn},
{un}, and {v,} defined n the Algorithm 3.9 strongly converge to z*

u*, and v*, respectively, end (z*,u*,v*) 18 a solution of the GS VMHé
(N.T, 4,9.4) (2.1).

PROOF. By Theorem 3.2, the GSVMIP(N, T, A, g, ¢)(2.1) has a so-
lution (z*,u*,v*) such that u* € T'(z*), v* € A(z*), and
zg* =z — g(z*) + I (g(z*) - pN(w*,v*)).

By setting h(z") = g(z*) — pN(u*,v*) and by using the Algorithm 3.3
and the assumption of ¢ and ¢, n =0,1,2,---, we obtain
ety — z*|]
< lzn — 2% ~ (g(zn) ~ g(=z™))|l
|72 (g(z,) — PN (i, vn))
— JB4aCmn) (g(z*) — pN(u', v*))]
+ [ 75#<Cm) (g(a*) — pN (u®, ")
— J29: 02 (g(z*) — pN(u*,0"))]
+ 179905 (g(z*) — pN (u*, v*))
— JH =) (g(z*) — pN (u,v™))|
+ [lenli
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< 2llen — z* ~ (g(zn) — g(=*))|
+ 1|z — 2* — p(N (tn, va) — N(u",v*))]|
+ pllzn — || 4 |28 C=) (h(z*)) — T2 (h(z*))||
+ ”enli
< 2)|zq — 2" — (g(za) — g(z))
+ lzn — 2% — p(N{(up, v*) — N{u*, o™)||
+ P||N (tn, vn) — N(tn,v")|| + pllzn — 2|
+ (|22 C= ) R(z)) — T2 (h(z*))]| + llenl|
< (k+t(p) + protllzn — 2"
+ (|72 0= (h(z™) — T2 ()| + llenl)
(3.14)
= O||zn ~ =*|| + €n,
where k = p + 2V1 ~2X + 02, t(p) = /1 - 2pa + p23262, 6 = k +
t{p) + pyn, and £y = |72 07 (h(z)) ~ I2PC7 (B(z*) + leall. By

the condition (3.6) in Theorem 3.2, we have ¢ < 1. It follows from
(3.14) that

n
|Zns1 — ") < 6™ lzg — 2| + Y B€nn.
1=0
Since £, — 0 by the assumption, it follows from Orgeta and Rheinboldt
(8, p.338] that

lim [lznyy —z*|| =0,
n—0
and hence the sequence {z,} strongly converges to z*. Since u, €
T(xn), vn € A(zyn), u* € T(z*), and v* € A(z*), we have
un — || € M(T{(zn),T(z")) < 8llzn — 27|,
lun — ™|l < M(A(zn), Alz™)) < nilzn — 27|

1t follows that the sequences {u,} and {v,} also strongly converge to
u* and v*, respectively. This completes the proof.
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