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Abstract. For any nonzero elements x, y in a normed space X, the angular and

skew-angular distance is respectively defined by α[x, y] =
∥∥∥ x
‖x‖ −

y
‖y‖

∥∥∥ and β[x, y] =∥∥∥ x
‖y‖ −

y
‖x‖

∥∥∥. Also inequality α ≤ β characterizes inner product spaces. Operator ver-

sion of α has been studied by Pečarić, Rajić, and Saito, Tominaga, and Zou et al.

In this paper, we study the operator version of β by using Douglas’ lemma. We also prove

that the operator version of inequality α ≤ β holds for commutating normal operators.

Some examples are presented to show essentiality of these conditions.

1. Introduction

Let B(H) be the algebra of all bounded linear operators acting on a complex
Hilbert space H. For T ∈ B(H), we denote by |T | the absolute value operator

of T , that is, |T | = (T ∗T )
1
2 , where T ∗ stands for the adjoint operator of T . A

self-adjoint operator T ∈ B(H) is said to be positive if (Tx, x) ≥ 0 for all x ∈ H.
For self-adjoint operators A and B in B(H), we write A ≤ B if B −A is positive.

For A,B ∈ B(H), let A = U |A| and B = V |B| be polar decompositions of A
and B, respectively. By using a simple method Zou et al. [9, Theorem 2.1] obtained
an inequality for absolute value operators as follows:

|(U − V )|A||2 ≤ |A−B|2 + (|A| − |B|)2 − (T + T ∗),(1.1)
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where T = (|A| − |B|)V ∗(A−B). For p, q > 1 with 1
p + 1

q = 1, it is a refinement of

the following inequality due to Saito and Tominaga [8, Theorem 2.3]:

|(U − V )|A||2 ≤ p|A−B|2 + q(|A| − |B|)2.(1.2)

Inequality (1.2) is a generalization of the following inequality without invertibility
condition on |A| and |B|:∣∣A|A|−1 −B|B|−1∣∣2 ≤ |A|−1 (p|A−B|2 + q(|A| − |B|)2

)
|A|−1.(1.3)

To illustrate the problem we need to mention several lines about the origin of the
above inequalities.

Let α[x, y] =
∥∥∥ x
‖x‖ −

y
‖y‖

∥∥∥ be the angular distance between two nonzero elements

x and y in a normed linear space X, which introduced by Clarkson in [1]. Over the
years, the following interesting estimations of α[x, y] have been obtained:

α[x, y] ≤ ‖x− y‖+ | ‖x‖ − ‖y‖ |
max{‖x‖, ‖y‖}

≤
√

2‖x− y‖2 + 2(‖x‖ − ‖y‖)2
max{‖x‖, ‖y‖}

(1.4)

≤ 2‖x− y‖
max{‖x‖, ‖y‖}

≤ 4‖x− y‖
‖x‖+ ‖y‖

.(1.5)

The first and second bound in (1.4), obtained respectively by Maligranda [5] and
Pečarić and Rajić [7], are refinements of the Massera-Schaffer inequality (first bound
in (1.5)) proved in 1958 [6], which is stronger than the Dunkl-Williams inequality (
second bound in (1.5)) proved in [4].

In fact, inequality (1.3) for p = q = 2 is operator version of the second bound
in (1.4).

On the other hand, Dehghan [2] introduced the concept of skew-angular distance

β[x, y] =
∥∥∥ x
‖y‖ −

y
‖x‖

∥∥∥ and proved that α[x, y] 6 β[x, y] if and only if X is an inner

product space. Moreover, he obtained the following inequalities:

β[x, y] ≤ ‖x− y‖
max{‖x‖, ‖y‖}

+
| ‖x‖ − ‖y‖ |

min{‖x‖, ‖y‖}
(1.6)

≤

√
2‖x− y‖2

max2{‖x‖, ‖y‖}
+

2(‖x‖ − ‖y‖)2

min2{‖x‖, ‖y‖}
.(1.7)

The main aim of this paper is to compare the operator version of α[x, y]
and β[x, y]. To proceed in this direction we first generalize inequality (1.7) to
the operator case by using Douglas’ lemma [3]. Next, we prove that inequality
α[A,B] ≤ β[A,B] holds for commutating normal operators. By some examples we
show that the mentioned conditions are essential.
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2. Main Results

We begin with the following lemma which plays a basic role in the sequel.

Lemma 2.1.(Douglas’ lemma [3, Theorem 1]) If A and B are bounded operators
on a Hilbert space H such that A∗A ≤ λ2B∗B for some λ ≥ 0, then there exists a
unique operator C ∈ B(H) so that A = CB, ker(A∗) = ker(C∗), im(C∗) ⊆ im(B)
and ‖C‖2 = inf{µ : A∗A ≤ µB∗B}.

Let A,B ∈ B(H), and

A = U |A| and B = V |B|(2.1)

be polar decompositions of A and B, respectively. One may obtain this from
Douglas’ lemma by considering A∗A = |A||A| and B∗B = |B||B|. Moreover, if
A∗A ≤ λ2B∗B and B∗B ≤ µ2A∗A for some λ, µ ≥ 0, then there exist C,D ∈ B(H)
such that

A = C|B| and B = D|A|.(2.2)

The following theorem is our first main result. Note that invertibility of |A| and
|B| is not needed.

Theorem 2.2. Let A,B ∈ B(H) be as in (2.1) and (2.2), and let p, q > 1 with
1
p + 1

q = 1. Then

|(C −D)|A||2 ≤ |(C − V )|A||2 + (|B| − |A|)2 − (T + T ∗)(2.3)

≤ p|(C − V )|A||2 + q(|B| − |A|)2(2.4)

where T = (|B| − |A|)V ∗(C − V )|A|.
Proof. Let I be the identity operator on H. Since V ∗V ≤ I, we observe that

|V (|B| − |A|)|2 = (|B| − |A|)V ∗V (|B| − |A|) ≤ (|B| − |A|)2.(2.5)

Hence

|(C −D)|A||2 = |C|A| − V |B||2 = |C|A| − V |A|+ V |A| − V |B||2

= |(C − V )|A| − V (|B| − |A|)|2

= |(C − V )|A||2 + |V (|B| − |A|)|2 − (T + T ∗)

≤ |(C − V )|A||2 + (|B| − |A|)2 − (T + T ∗),

which is inequality (2.3). To prove (2.4), we first note that (p− 1)(q− 1) = 1. This
together with (2.5) implies that

p |(C − V )|A||2 + q(|B| − |A|)2 −
(
|(C − V )|A||2 + (|B| − |A|)2 − (T + T ∗)

)
= (p− 1)|(C − V )|A||2 + (q − 1)(|B| − |A|)2 + T + T ∗

≥ (p− 1)|(C − V )|A||2 + (q − 1)|V (|B| − |A|)|2 + T + T ∗

=
∣∣∣√p− 1(C − V )|A|+

√
q − 1V (|B| − |A|)

∣∣∣2
≥ 0,
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which completes the proof. 2

Remark 2.3. By the proof above, we see that the equality in (2.3) holds if and
only if |V (|B| − |A|)| = ||B| − |A||, and the equality in (2.4) holds if and only if
|V (|B| − |A|)| = ||B| − |A|| and p(C − V )|A| = qV (|A| − |B|).

From now on we shall use the notations

α[A,B] =
∣∣A|A|−1 −B|B|−1∣∣ and β[A,B] =

∣∣A|B|−1 −B|A|−1∣∣ ,
where A and B are operators in B(H) with invertible absolute values.

Corollary 2.4. Let A,B ∈ B(H) be operators where |A| and |B| are invertible,
and let p, q > 1 with 1

p + 1
q = 1. Then

β2[A,B] 6 p|B|−1 |A−B|2 |B|−1 + q|A|−1 (|A| − |B|)2 |A|−1.(2.6)

The equality in (2.6) holds if and only if p(A−B)|B|−1 = qB(|A|−1 − |B|−1).

Proof. Since |A| and |B| are invertible, it is easy to verify that |A| ≥ mI and
|B| ≥ nI for some m,n > 0. Thus A∗A ≤ λ2B∗B and B∗B ≤ µ2A∗A for some
λ, µ > 0. By Douglas’ lemma there exist operators C,D ∈ B(H) such thatA = C|B|
and B = D|A|. Then C = A|B|−1 and D = B|A|−1. We also have V = B|B|−1.
These together with Theorem 2.2 imply that

β2[A,B] =
∣∣A|B|−1 −B|A|−1∣∣2 = |C −D|2

= |A|−1|A||C −D|2|A||A|−1

= |A|−1|(C −D)|A||2|A|−1

≤ |A|−1
(
p|(C − V )|A||2 + q(|B| − |A|)2

)
|A|−1

= p
∣∣(A−B)|B|−1

∣∣2 + q|A|−1(|A| − |B|)2|A|−1

= p|B|−1 |A−B|2 |B|−1 + q|A|−1(|A| − |B|)2|A|−1,

which is the desired inequality. Considering Remark 2.3, the equality in (2.6) holds
if and only if p(C − V )|A| = qV (|B| − |A|). Substituting C = A|B|−1 and V =
B|B|−1 we have p(A − B)|B|−1|A| = qB|B|−1(|B| − |A|) which is equivalent with
p(A−B)|B|−1 = qB(|A|−1 − |B|−1). 2

Remark 2.5. Interchanging the operators A and B in (2.6) we also have

β2[A,B] 6 p|A|−1 |A−B|2 |A|−1 + q|B|−1 (|A| − |B|)2 |B|−1(2.7)

where the equality holds if and only if p(A−B)|A|−1 = qA(|A|−1 − |B|−1).

Putting p = q = 2 in (2.6) and (2.7) and taking the square root of each side of
it, we get the following inequalities which are operator-valued versions of inequality
(1.7).
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Corollary 2.6. Let A and B be operators in B(H) such that |A| and |B| are
invertible. Then

β[A,B] 6
(

2|B|−1 |A−B|2 |B|−1 + 2|A|−1 (|A| − |B|)2 |A|−1
) 1

2

(2.8)

and

β[A,B] 6
(

2|A|−1 |A−B|2 |A|−1 + 2|B|−1 (|A| − |B|)2 |B|−1
) 1

2

.(2.9)

Above mentioned results may motivate one to expect the following extension of
inequality (1.6) to the operator valued case:

β[A,B] 6 |A|− 1
2 |A−B| |A|− 1

2 + |B|− 1
2 (|A| − |B|) |B|− 1

2(2.10)

where A and B are operators in B(H) such that |A| and |B| are invertible and
|B| ≤ |A|. However, the following example shows that (2.10) need not hold.

Example 2.7. Let H be a two-dimensional Hilbert space, and

A =

[
1 0
0 1

]
, B =

[
0 1
1
2 0

]
be matrix representations of two operators A and B with respect to some fixed
orthonormal basis of H. Using the software MAPLE 16 we see that |B| ≤ |A|,

∣∣A|B|−1 −B|A|−1∣∣ =
1√
37

[
23
2 −5
−5 7

]
and

|A|− 1
2 |A−B| |A|− 1

2 + |B|− 1
2 (|A| − |B|) |B|− 1

2 =
1√
17

[
7
2 +
√

17 −3
−3 5

]
.

Since eigenvalues of the difference of above two matrices have different signs, in-
equality (2.10) does not hold in general.

Next, we provide sufficient and essential conditions for inequality α[A,B] ≤
β[A,B].

Theorem 2.8. Let A and B be normal operators such that AB = BA, and |A| and
|B| are invertible. Then

α[A,B] ≤ β[A,B].(2.11)

The equality holds if and only if |A| = |B|.
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Proof. By the Löwner-Heinz inequality, it is sufficient to prove that α2[A,B] ≤
β2[A,B]. First, we note that

β2[A,B]− α2[A,B] =
∣∣A|B|−1 −B|A|−1

∣∣2 − ∣∣A|A|−1 −B|B|−1
∣∣2

=
(
|B|−1A∗ − |A|−1B∗

) (
A|B|−1 −B|A|−1)

−
(
|A|−1A∗ − |B|−1B∗

) (
A|A|−1 −B|B|−1)

= |B|−1|A|2|B|−1 + |A|−1|B|2|A|−1 − |B|−1A∗B|A|−1 − |A|−1B∗A|B|−1

−
(
|A|−1|A|2|A|−1 + |B|−1|B|2|B|−1 − |A|−1A∗B|B|−1 − |B|−1B∗A|A|−1)

= |B|−1|A|2|B|−1 + |A|−1|B|2|A|−1 − 2I

+ |B|−1(B∗A−A∗B)|A|−1 − |A|−1(B∗A−A∗B)|B|−1.(2.12)

Let C(A) be the C∗-algebra generated by A and I. Since A is normal, then C(A) is
a commutative C∗-algebra. Moreover, by the Fuglede-Putnam theorem, A and B
are double commuting operators. Double commutativity of A and B implies that A
and A∗ commute with B ( and B∗) and so all elements of C(A) especially |A| and
|A|−1 commute with B ( and B∗). Until now, we know that the operators A,A∗, |A|
and |A|−1 commute with B and B∗. Therefore, they commute with all elements of
C(B) especially |B| and |B|−1. Thus

|B|−1|A|2|B|−1 + |A|−1|B|2|A|−1 − 2I = (|B|−1|A| − |A|−1|B|)2

and
|B|−1(B∗A−A∗B)|A|−1 = |A|−1(B∗A−A∗B)|B|−1.

These together with (2.12) imply that

β2[A,B]− α2[A,B] = (|B|−1|A| − |A|−1|B|)2 ≥ 0,

and the proof is complete. 2

The following examples show that all the hypotheses of Theorem 2.8 are essen-
tial, i.e., if any one omitted, inequality (2.11) no longer holds.

Example 2.9. Let

A =

[
1 3
0 3

]
, B =

[
1 0
0 1

]
be matrix representations of two operators A and B on a two-dimensional Hilbert
space with respect to some fixed orthonormal basis. It is clear that A is not normal
but AB = BA. Using the software MAPLE 16 we observe that

∣∣A|B|−1 −B|A|−1∣∣ =
1√

4810

[
29 −11
−11 163

]
,

∣∣A|A|−1 −B|B|−1∣∣ =

√
2

5

[
1 0
0 1

]
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and the matrix β[A,B]−α[A,B] has two eigenvalues with different signs. Hence it
is not positive and so inequality (2.11) does not hold.

Example 2.10. Let

A =

[
0 1
1 0

]
, B =

[
2 0
0 1

]
be matrix representations of two operators A and B on a two-dimensional Hilbert
space with respect to some fixed orthonormal basis. It is clear that A and B are
normal but A does not commute with B. Again, using the software MAPLE 16 we
observe that ∣∣A|B|−1 −B|A|−1∣∣ =

1√
37

[
23
2 −5
−5 4

]
,

∣∣A|A|−1 −B|B|−1∣∣ =

[
1 −1
−1 1

]
and the matrix

∣∣A|B|−1 −B|A|−1∣∣ − ∣∣A|A|−1 −B|B|−1∣∣ has two eigenvalues with
different signs. Hence it is not positive and so inequality (2.11) does not hold.
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