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A NOTE ON SOME INEQUALITIES FOR THE

b-NUMERICAL RADIUS AND b-NORM IN 2-HILBERT

SPACE OPERATORS

Akram Babri Bajmaeh and Mohsen Erfanian Omidvar

Abstract. In this paper, the definition b-numerical radius and b-
norm is introduced and we present several b-numerical radius in-
equalities. Some applications of these inequalities are considered as
well.

1. Introduction and preliminaries

Let B(H) denote the C∗-algebra of all bounded linear operators on H
with inner product 〈·, ·〉. The numerical radius of T ∈ B (H), denoted
by ω (T ), is given by

ω(T ) = sup
‖x‖=1

|〈Tx, x〉|.

It is well-known that ω (·) defines a norm on B (H) which is equivalent
to the usual operator norm ‖T‖ = sup

‖x‖=1

‖Tx‖. In fact for T ∈ B (H) we

have
1

2
‖T‖ ≤ ω(T ) ≤ ‖T‖.

Several numerical radius inequalities that provide alternative lower and
upper bounds for ω (T ) have received much attention from many authors.
We refer the readers to [3] for the history and significance, and [4] for
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recent developments in this area. Kittaneh in [6] proved that for T ∈
B (H),

1

4
‖T ∗T + TT ∗‖ ≤ ω2(T ) ≤ 1

2
‖T ∗T + TT ∗‖.

Let X be a linear space of dimension greater than 1 over the field K = R
of real numbers or the field K = C of complex numbers. Suppose that
〈· , · |· 〉 is a K−valued function defined on X × X × X satisfying the
following condition:

(2I1) 〈x, x|z〉 > 0 and 〈x, x|z〉 = 0 if and only if x, z are linearly depen-
dent,

(2I2) 〈x, x|z〉 = 〈z, z|x〉,
(2I3) 〈x, y|z〉 = 〈y, x|z〉,
(2I4) 〈αx, y|z〉 = α〈x, y|z〉 for any scaler α ∈ K,
(2I5) 〈x+ x́, y|z〉 = 〈x, y|z〉+ 〈x́, y|z〉.
〈· , · |· 〉 is called a 2-inner product on X and (X , 〈· , · |· 〉) is called a 2-
inner product space (or 2-pre-Hilbert space). Some basic properties of
2-inner product spaces can be immediately obtained as follows [1]:
(i) If K = R, then (2I3) reduces to

〈y, x|z〉 = 〈x, y|z〉,

(ii) From (2I3) and (2I4), we have

〈0, y|z〉 = 0, 〈x, 0|z〉 = 0

and also

〈x, α|z〉 = ᾱy〈x, y|z〉. (1.1)

(iii) Using (2I2)− (2I5), we have

〈z, z|x± y〉 = 〈x± y, x± y|z〉 = 〈x, x|z〉+ 〈y, y|z〉 ± 2Re〈x, y|z〉,

and

Re〈x, y|z〉 =
1

4

[
〈z, z|x+ y〉 − 〈z, z|x− y〉

]
. (1.2)

In the real case K = R, we have

〈x, y|z〉 =
1

4

[
〈z, z|x+ y〉 − 〈z, z|x− y〉

]
(1.3)

and, using this formula, it is easy to see that, for any α ∈ R

〈x, y|αz〉 = α2〈x, y|z〉. (1.4)
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In the complex case, using (1.1) and (1.2), we have

Im〈x, y|z〉 =
1

4
[〈z, z|x+ iy〉 − 〈z, z|x− iy〉],

which, in combination with (1.2), yields

〈x, y|z〉 =
1

4
[〈z, z|x+ y〉 − 〈z, z|x− y〉] +

i

4
[〈z, z|x+ iy〉 − 〈z, z|x− iy〉].

(1.5)
Using the above formula and (1.1), we have, for any α ∈ C,

〈x, y|αz〉 = |α|2〈x, y|z〉. (1.6)

However, for α ∈ R (1.6) reduces to (1.4). Also, from (1.6) it follows
that

〈x, y|0〉 = 0.

(iv) For any three given vectors x, y, z ∈ X , consider the vector u =
〈y, y|z〉x−〈x, y|z〉y. By (2I1), we know that 〈u, u|z〉 ≥ 0 with the equality
if and only if u and z are linearly dependent. The inequality 〈u, u|z〉 ≥ 0
can be rewritten as,

〈y, y|z〉
[
〈x, x|z〉〈y, y|z〉 − |〈x, y|z〉|2

]
≥ 0. (1.7)

For x = z, (1.7) becomes

−〈y, y|z〉|〈z, y|z〉|2 ≥ 0,

which implies that
〈z, y|z〉 = 〈y, z|z〉 = 0 (1.8)

provided y and z are linearly independent. Obviously, when y and z are
linearly dependent, (1.8) holds too. Thus (1.8) is true for any two vectors
y, z ∈ X. Now, if y and z are linearly independent, then 〈y, y|z〉 > 0
and, from (1.7), it follows that

|〈x, y|z〉|2 ≤ 〈x, x|z〉〈y, y|z〉. (1.9)

In any given 2-inner product space (X , 〈· , · |· 〉) we can define a function
‖· |· ‖ on X × X

‖x|z‖ =
√
〈x, x|z〉 (1.10)

for all x, z ∈ X . It is easy to see that this function satisfies the following
condition:

(2N1) ‖x|z‖ ≥ 0 and ‖x|z‖ = 0 if and only if x and z are linearly depen-
dent,
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(2N2) ‖x|z‖ = ‖z|x‖,
(2N3) ‖αx|z‖ = |α|‖z|x‖, for any scaler α ∈ C,
(2N4) ‖x+ x́|z‖ ≤ ‖x|z‖+ ‖x́|z‖.
Any function ‖· |· ‖ defined on X × X and satisfying the conditions
(2N1) − (2N4) is called a 2-norm on X and (X , ‖· |· ‖) is called a lin-
ear 2-normed space [2]. Whenever a 2-inner product space (X , 〈· , · |· 〉)
is given, we consider it as an inner 2-normed space (X , ‖· |· ‖) with the
2-norm defined by (1.10).

2. Main results

Let (X , 〈· , · |· 〉) be a 2-inner product space and b ∈ X , then the
operator T : X −→ X is said to be b-bounded if there exists M ≥ 0 such
that for all x ∈ X

‖Tx|b‖ ≤M‖x|b‖.

Definition 2.1. Let b ∈ X . Then b, T are called linearly dependent
if for all x ∈ X , there exists λx ∈ C such that

Tx = λxb.

Definition 2.2. Let Bb(X ) be the set of all b-bounded linear opera-
tors on space X and b ∈ X , then the map ‖· |b‖ : Bb(X ) −→ R+ is called
b-norm, if

(i) ‖T |b‖ = 0 if and only if T and b are linearly dependent,
(ii) ‖λT |b‖ = |λ|‖T |b‖,
(iii) ‖T1 + T2|b‖ ≤ ‖T1|b‖+ ‖T2|b‖.

Remark 2.3. Let b ∈ X , then the map

‖· |b‖ : Bb(X ) −→ R+, ‖T |b‖ = sup
‖x|b‖=1

‖Tx|b‖,

is a b-norm.

Theorem 2.4. Let T ∈ Bb(X ), then

‖T |b‖ = sup
‖x|b‖=‖y|b‖=1

|〈Tx, y|b〉|.

Proof. For x, y ∈ X , by (1.9), we have

|〈Tx, y|b〉| ≤ ‖Tx|b‖‖y|b‖.
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Thus
sup

‖x|b‖=‖y|b‖=1

|〈Tx, y|b〉| ≤ ‖T |b‖.

On the other hand, we have

sup
‖x|b‖=‖y|b‖=1

|〈Tx, y|b〉| ≥ sup
‖x|b‖=1

|〈Tx, Tx

‖Tx|b‖
|b〉|,

therefore
sup

‖x|b‖=‖y|b‖=1

|〈Tx, y|b〉| ≥ ‖T |b‖.

Let T be a b-bounded linear operator on the 2-inner product space X .
According to Riesz theorem in 2-inner product spaces which was proved
in [5], for constant y ∈ X , there exists a unique b-bounded operator T ∗

such that for all x, y ∈ X we have 〈Tx, y|b〉 = 〈x, T ∗y|b〉.
Definition 2.5. Let T ∈ Bb(X ), the operator T ∗ : X −→ X defined

by
〈Tx, y|b〉 = 〈x, T ∗y|b〉,

is called the adjoint operator of T . And T is called self-adjoint if

〈Tx, y|b〉 = 〈x, Ty|b〉.
Definition 2.6. An operator T in 2-inner product space is called

positive if it is self-adjoint and 〈Tx, x|b〉 ≥ 0 for all x ∈ X .
Theorem 2.7. Let T, S ∈ Bb(X ) and b ∈ X , then

(i) ‖T |b‖ = ‖T ∗|b‖,
(ii) ‖T ∗T |b‖ = ‖T |b‖2,
(iii) If T is self-adjoint, then ‖T |b‖n = ‖T n|b‖,
(iv) ‖TS|b‖ ≤ ‖T |b‖‖S|b‖.
Proof. These properties can be easily deduced by using the definition

of ‖T |b‖.
Definition 2.8. Let T ∈ Bb(X ) and b ∈ X , then b-numerical radius

is defined by
ω(T |b) = sup

‖x|b‖=1

|〈Tx, x|b〉|.

The next results represent some of the basic properties and sharp lower
bound for the b-numerical radius. The following general result for the
product of two operators holds:
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Theorem 2.9. For any T, S ∈ Bb(X ), the b-numerical radius ω(· |b) :
Bb(X ) −→ R+ satisfies the following properties:

(i) If ω(T |b) = 0, then T and b are linearly depended,
(ii) ω(λT |b) = |λ|ω(T |b),
(iii) 1

2
‖T |b‖ ≤ ω(T |b) ≤ ‖T |b‖,

(iv) ω(TS|b) ≤ 4 ω(T |b) ω(S|b).

Proof. (i) If ω(T |b) = 0 for all x ∈ X , then 〈Tx, x|b〉 = 0, and by
choosing x = x+ y ⇒ 〈Tx, x|b〉+ 〈Tx, y|b〉+ 〈Ty, x|b〉+ 〈Ty, y|b〉 = 0,

x = x+ iy ⇒ 〈Tx, x|b〉 − i〈Tx, y|b〉+ i〈Ty, x|b〉+ 〈Ty, y|b〉 = 0.

Therefore  〈Tx, y|b〉+ 〈Ty, x|b〉 = 0,

〈Tx, y|b〉 − 〈Ty, x|b〉 = 0.

Thus
〈Tx, y|b〉 = 0.

By choosing y = Tx, we have

〈Tx, Tx|b〉 = 0 =⇒ Tx = λxb.

(ii) This property can be easily deduced using the definition of ω(T |b).
(iii) For the first inequality, for any x ∈ X , we have

|〈Tx, x|b〉|≤ ω(T |b)‖x|b‖2,
and by (1.5), we have

4〈Tx, y|b〉 = 〈T (x+ y), (x+ y)|b〉 − 〈T (x− y), (x− y)|b〉
+ i〈T (x+ iy), (x+ iy)|b〉 − i〈T (x− iy), (x− iy)|b〉,

for all x, y ∈ X . Hence

4〈Tx, y|b〉 ≤ ω(T |b)
(
‖(x+ y)|b‖+ ‖(x− y)|b‖

+ ‖(x+ iy)|b‖+ ‖(x− iy)|b‖
)
.

Choosing ‖x|b‖ = ‖y|b‖ = 1, we have

4|〈Tx, y|b〉| ≤ 8 ω(T |b),
which implies

‖T |b‖ ≤ 2 ω(T |b).
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The second inequality can be easily deduced by using the definition of
ω(T |b) and the inequality (1.9).
(iv) It follows from Theorem 2.7 (iv) that

ω(TS|b) ≤ ‖TS|b‖ ≤ ‖T |b‖‖S|b‖ ≤ 4ω(T |b)ω(S|b).

Theorem 2.10. If T ∈ Bb(X ), then

1

4
‖T ∗T + TT ∗|b‖ ≤ ω2(T |b) ≤ 1

2
‖T ∗T + TT ∗|b‖. (2.1)

Proof. Let T = C + iD be the Cartesian decomposition of T . Then
C and D are self-adjoint, and T ∗T + TT ∗ = 2(C2 + D2). Let x be any
vector in X . Then by the convexity of the function f(t) = t2, we have

|〈Tx, x|b〉|2 = 〈Cx, x|b〉2 + 〈Dx, x|b〉2

≥ 1

2
(|〈Cx, x|b〉|+ |〈Dx, x|b〉|)2

≥ 1

2
|〈(C ±D)x, x|b〉|2,

and so we have

ω2(T |b) = sup
‖x|b‖=1

|〈Tx, x|b〉|2

≥ 1

2
sup
‖x|b‖=1

|〈(C ±D)x, x|b〉|2

=
1

2
‖C ±D|b‖2 =

1

2
‖(C ±D)2|b‖.

Thus

2ω2(T |b) ≥ 1

2
‖T ∗T + TT ∗|b‖.

This proves the first inequality.
To prove the second inequality, note that for every unit vector x ∈ X ,
by (1.9), we have

|〈Tx, x|b〉|2 = 〈Cx, x|b〉2 + 〈Dx, x|b〉2

≤ ‖Cx|b‖2 + ‖Dx|b‖2 = 〈C2x, x|b〉+ 〈D2x, x|b〉
= 〈(C2 +D2)x, x|b〉.
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Thus
ω2(T |b) = sup

‖x|b‖=1

|〈Tx, x|b〉|2

≤ sup
‖x|b‖=1

〈(C2 +D2)x, x|b〉

= ‖C2 +D2|b‖ =
1

2
‖T ∗T + TT ∗|b‖.

This proves the second inequality, and completes the proof of the theo-
rem.

Theorem 2.11. Let T, S : X −→ X be two b-bounded linear opera-
tors on the 2-inner product space (X , 〈· , · |b〉), if r ≥ 0 and

‖T − S|b‖ ≤ r, (2.2)

then ∥∥∥∥T ∗T + S∗S

2
|b
∥∥∥∥ ≤ ω(S∗T |b) +

1

2
r2. (2.3)

Proof. For any x ∈ X , ‖x|b‖ = 1, we have from (2.2) that

‖Tx|b‖2 + ‖Sx|b‖2 ≤ 2Re〈Tx, Sx|b〉+ r2, (2.4)

however
‖Tx|b‖2 + ‖Sx|b‖2 = 〈(T ∗T + S∗S)x, x|b〉,

and by (2.4) we obtain

〈(T ∗T + S∗S)x, x|b〉 ≤ 2|〈S∗Tx, x|b〉|+ r2.

By taking the supremum we get

ω(T ∗T + S∗S|b) ≤ 2ω(S∗T |b) + r2 (2.5)

and since the operator T ∗T+S∗S is self-adjoint, hence ω(T ∗T+S∗S|b) =
‖T ∗T + S∗S|b‖ and by (2.5) we deduce the desired inequality (2.3).
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