• 제목/요약/키워드: nonlinear mathematical method

검색결과 550건 처리시간 0.029초

L2-ERROR ANALYSIS OF FULLY DISCRETE DISCONTINUOUS GALERKIN APPROXIMATIONS FOR NONLINEAR SOBOLEV EQUATIONS

  • Ohm, Mi-Ray;Lee, Hyun-Young
    • 대한수학회보
    • /
    • 제48권5호
    • /
    • pp.897-915
    • /
    • 2011
  • In this paper, we develop a symmetric Galerkin method with interior penalty terms to construct fully discrete approximations of the solution for nonlinear Sobolev equations. To analyze the convergence of discontinuous Galerkin approximations, we introduce an appropriate projection and derive the optimal $L^2$ error estimates.

AN ITERATIVE METHOD FOR NONLINEAR MIXED IMPLICIT VARIATIONAL INEQUALITIES

  • JEONG, JAE UG
    • 호남수학학술지
    • /
    • 제26권4호
    • /
    • pp.391-399
    • /
    • 2004
  • In this paper, we develop an iterative algorithm for solving a class of nonlinear mixed implicit variational inequalities in Hilbert spaces. The resolvent operator technique is used to establish the equivalence between variational inequalities and fixed point problems. This equivalence is used to study the existence of a solution of nonlinear mixed implicit variational inequalities and to suggest an iterative algorithm for solving variational inequalities. In our results, we do not assume that the mapping is strongly monotone.

  • PDF

GLOBAL ATTRACTOR OF THE WEAKLY DAMPED WAVE EQUATION WITH NONLINEAR BOUNDARY CONDITIONS

  • Zhu, Chaosheng
    • 대한수학회논문집
    • /
    • 제27권1호
    • /
    • pp.97-106
    • /
    • 2012
  • In this paper, the main purpose is to study existence of the global attractors for the weakly damped wave equation with nonlinear boundary conditions. To this end, we first show that the existence o a bounded absorbing set by the perturbed energy method. Secondly, we utilize the decomposition of the solution operator to verify the asymptotic compactness.

SINGULARITY FORMATION FOR A NONLINEAR VARIATIONAL SINE-GORDON EQUATION IN A MULTIDIMENSIONAL SPACE

  • Fengmei Qin;Kyungwoo Song;Qin Wang
    • 대한수학회보
    • /
    • 제60권6호
    • /
    • pp.1697-1704
    • /
    • 2023
  • We study a multidimensional nonlinear variational sine-Gordon equation, which can be used to describe long waves on a dipole chain in the continuum limit. By using the method of characteristics, we show that a solution of a nonlinear variational sine-Gordon equation with certain initial data in a multidimensional space has a singularity in finite time.

Nonlinear Wave Interaction of Three Stokes' Waves in Deep Water: Banach Fixed Point Method

  • Jang, Taek-S.;Kwon, S.H.;Kim, Beom-J.
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1950-1960
    • /
    • 2006
  • Based on Banach fixed point theorem, a method to calculate nonlinear superposition for three interacting Stokes' waves is proposed in this paper. A mathematical formulation for the nonlinear superposition in deep water and some numerical solutions were investigated. The authors carried out the numerical study with three progressive linear potentials of different wave numbers and succeeded in solving the nonlinear wave profiles of their three wave-interaction, that is, using only linear wave potentials, it was possible to realize the corresponding nonlinear interacting wave profiles through iteration of the method. The stability of the method for the three interacting Stokes' waves was analyzed. The calculation results, together with Fourier transform, revealed that the iteration made it possible to predict higher-order nonlinear frequencies for three Stokes' waves' interaction. The proposed method has a very fast convergence rate.

The Role of S-Shape Mapping Functions in the SIMP Approach for Topology Optimization

  • Yoon, Gil-Ho;Kim, Yoon-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제17권10호
    • /
    • pp.1496-1506
    • /
    • 2003
  • The SIMP (solid isotropic material with penalization) approach is perhaps the most popular density variable relaxation method in topology optimization. This method has been very successful in many applications, but the optimization solution convergence can be improved when new variables, not the direct density variables, are used as the design variables. In this work, we newly propose S-shape functions mapping the original density variables nonlinearly to new design variables. The main role of S-shape function is to push intermediate densities to either lower or upper bounds. In particular, this method works well with nonlinear mathematical programming methods. A method of feasible directions is chosen as a nonlinear mathematical programming method in order to show the effects of the S-shape scaling function on the solution convergence.

THE VARIATIONAL HOMOTOPY PERTURBATION METHOD FOR ANALYTIC TREATMENT FOR LINEAR AND NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS

  • Matinfar, Mashallah;Mahdavi, M.;Raeisi, Z.
    • Journal of applied mathematics & informatics
    • /
    • 제28권3_4호
    • /
    • pp.845-862
    • /
    • 2010
  • In a recent paper, M.A. Noor et al. (Hindawi publishing corporation, Mathematical Problems in Engineering, Volume 2008, Article ID 696734, 11 pages, doi:10.1155/2008/696734) proposed the variational homotopy perturbation method (VHPM) for solving higher dimentional initial boundary value problems. In this paper, we consider the proposed method for analytic treatment of the linear and nonlinear ordinary differential equations, homogeneous or inhomogeneous. The results reveal that the proposed method is very effective and simple and can be applied for other linear and nonlinear problems in mathematical.

A METHOD USING PARAMETRIC APPROACH WITH QUASINEWTON METHOD FOR CONSTRAINED OPTIMIZATION

  • Ryang, Yong-Joon;Kim, Won-Serk
    • 대한수학회보
    • /
    • 제26권2호
    • /
    • pp.127-134
    • /
    • 1989
  • This paper proposes a deformation method for solving practical nonlinear programming problems. Utilizing the nonlinear parametric programming technique with Quasi-Newton method [6,7], the method solves the problem by imbedding it into a suitable one-parameter family of problems. The approach discussed in this paper was originally developed with the aim of solving a system of structural optimization problems with frequently appears in various kind of engineering design. It is assumed that we have to solve more than one structural problem of the same type. It an optimal solution of one of these problems is available, then the optimal solutions of thel other problems can be easily obtained by using this known problem and its optimal solution as the initial problem of our parametric method. The method of nonlinear programming does not generally converge to the optimal solution from an arbitrary starting point if the initial estimate is not sufficiently close to the solution. On the other hand, the deformation method described in this paper is advantageous in that it is likely to obtain the optimal solution every if the initial point is not necessarily in a small neighborhood of the solution. the Jacobian matrix of the iteration formula has the special structural features [2, 3]. Sectioon 2 describes nonlinear parametric programming problem imbeded into a one-parameter family of problems. In Section 3 the iteration formulas for one-parameter are developed. Section 4 discusses parametric approach for Quasi-Newton method and gives algorithm for finding the optimal solution.

  • PDF

GLOBAL SOLUTIONS FOR A CLASS OF NONLINEAR SIXTH-ORDER WAVE EQUATION

  • Wang, Ying
    • 대한수학회보
    • /
    • 제55권4호
    • /
    • pp.1161-1178
    • /
    • 2018
  • In this paper, we consider the Cauchy problem for a class of nonlinear sixth-order wave equation. The global existence and the finite time blow-up for the problem are proved by the potential well method at both low and critical initial energy levels. Furthermore, we present some sufficient conditions on initial data such that the weak solution exists globally at supercritical initial energy level by introducing a new stable set.

THREE-DIMENSIONAL NUMERICAL SIMULATIONS OF A PHASE-FIELD MODEL FOR ANISOTROPIC INTERFACIAL ENERGY

  • Kim, Jun-Seok
    • 대한수학회논문집
    • /
    • 제22권3호
    • /
    • pp.453-464
    • /
    • 2007
  • A computationally efficient numerical scheme is presented for the phase-field model of two-phase systems for anisotropic interfacial energy. The scheme is solved by using a nonlinear multigrid method. When the coefficient for the anisotropic interfacial energy is sufficiently high, the interface of the system shows corners or missing crystallographic orientations. Numerical simulations with high and low anisotropic coefficients show excellent agreement with exact equilibrium shapes. We also present spinodal decomposition, which shows the robustness of the pro-posed scheme.