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AN ITERATIVE METHOD FOR NONLINEAR MIXED
IMPLICIT VARIATIONAL INEQUALITIES

JAE UG JEONG

Abstract. In this paper, we develop an iterative algorithm for
solving a class of nonlinear mixed implicit variational inequalities
in Hilbert spaces. The resolvent operator technique is used to es-
tablish the equivalence between variational inequalities and fixed
point problems. This equivalence is used to study the existence of
a solution of nonlinear mixed implicit variational inequalities and
to suggest an iterative algorithm for solving variational inequali-
ties. In our results, we do not assume that the mapping is strongly

monotone.

1. Introduction

In recent years, variational inequalities have been extended and gener-
alized in different directions using novel and innovative techniques both
for its own sake and for its applications. A useful and important gener-
alization of variational inequality is a mixed variational inequality con-
taining the nonlinear term. Due to the presence of the nonlinear term,
the projection method cannot be used to study the existence of a so-
lution of the mixed variational inequalities. These facts motivated us
to develop another technique. This technique is related to the resolvent

of the maximal monotone operator. Hassouni and Moudafi{2] modified
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and extended this technique for a class of general mixed variational in-
equalities.

In this paper, we develop an iterative algorithm for solving a class
of nonlinear mixed implicit variational inequalities in Hilbert spaces.
The resolvent operator technique is used to establish the equivalence
between variational inequalities and fixed point problems. This equiv-
alence is used to study the existence of a solution of nonlinear mixed
implicit variational inequalities and to suggest an iterative algorithm for
solving variational inequalities. In our results, we do not assume that

the mapping is strongly monotone.
2. Preliminaries

Let H be a real Hilbert space endowed with a norm || - | and an
inner product < -,- >. Let ¢ : H — H be a nonlinear operator with
g(H)(domd¢ # ¢, where 0¢ denotes the subdifferential of a proper,
convex and lower semicontinuous function ¢ : H — R|J{+oo}. We
consider the following nonlinear mixed implicit variational inequality
problem:

Find u € H such that

(2.1) <u,v—g(u) >> ¢(g(u) — o(v), “ve H.

If the function ¢ is the indicator function of the closed convex set K in
H, that is,

, 0 ifue kK,

o(u) = Ix(u) =

+oc  otherwise,

then problem (2.1) is equivalent to finding v € H. g(u) € K such that
(2.2) <wrv—glu)>>0, "vekK.

which is called the implicit variatinal inequality problem.
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Definition 2.1{1]. Let H be a Hilbert space and let G : H — 2
be a maximal monotone mapping. For any fixed p > 0, the mapping
JS : H — H defined by

JC) = (I+ pG)"*(u), "u€H,

p

is said to be the resolvent operator of G where I is the identity mapping
on H.

Lemma 2.1[3]. Let X be a reflexive Banach space endowed with a
strictly convex norm and ¢ : X — R|J{+oo} be a proper convex lower

semicontinuous function. Then 8¢ : X — 2X" is a maximal monotone

mapping.

Lemma 2.2[1]. For a given u € H, u € H satisfies the inequality
<u—z,v—u>+pp(v) —pp(u) >0, YveH,
if and only if
u=J%2),

where J;?d’ = (I + pO¢)~! is the resolvent operator and p > 0 is a
constant.

O - . .
Furthermore, J,;‘b is a nonexpansive operator, that is,

1722 (w) — J2()|| < u—vll, Yu,ve H.

Definition 2.2. A mapping g : H — H is said to be

(i) monotone if

< g(u) = g(v),u—v>>0, 7

u,v € H;
(ii) &-Lipschitz continuous if there exists a constant § > 0 such that

lg(u) = g(v)|| < dlju—vli.
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Remark 2.1. It is well known that J;?o = Pgx if ¢ = Ig, where Pg

denotes the projection mapping.
3. Main Results

In this section, we shall suggest an iterative algorithm for finding
approximate solutions of the problem (2.1). Then we show that the se-
quence of approximate solutions strongly converges to the exact solution
of the problem (2.1).

Lemma 3.1. u* is a solution of the problem (2.1) if and only if u*

satisfies the relation

(3.1) g(u) = J)?(g(u) - pu).

Proof. Let u* satisfy the relation (3.1), that is
g(u™) = J(g(u") — pu*).
The equality holds if and only if
" € 00(g(u")),
by the definition of Jf,)o. The relation holds if and only if
o(v) — d(g(u”)) =< —u" v —g(u") >, “vel,
by the definition of the subdifferential d¢. Hence u* is the solution of

<ut,v—g(u”) >> o(g(u”)) — é(v), Yve H.

Remark 3.1. From Theorem 3.1. we see that the nonlinear mixed im-

plicit variational inequality (2.1) is equivalent to the problem (3.1).

Let p > 0 be a constant. g : H — H a single-valued opcerator and ¢ :

H — R|J{+oc} a proper. convex and lower semicontinuous functions.
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Set
H(u, p) = %<g<u> — % (g(w) - p),
(3.2) D(u, p) = g(u— H(u,p)) - J%(g(u) — pu),
H(u,p) = -;(g(u) ~ Pr(g(u) - p)),
and
(3.3) D(u, p) = g(u — H(u, p)) — Px(g(x) — pu).

Remark 2.1 and 3.1 imply that u € H is a solution of the problem (2.1)
if and only if H(u,p) =0 and u € H is a solution of the probelm (2.2)
if and only if H(u,p) = 0. This facts enables us to suggest the following

algorithms.
Algorithm 3.1. For any given ug € H, the iterative sequence {u;} is
defined by
1
(3.4) Uk+1 — Uk — ;D(uk,p), k:0,1,2,--- .
If ¢ is the indicator function of K in H, then Algorithm 3.1 reduces to

the following algorithm.

Algorithm 3.2. For any given ug € H, the iterative sequence {uy} is
defined by

1 -
(35) Uk+1 = Uk — ;D(Uk,p), k:031727"' B

Theorem 3.1. Let the single-valued operator g : H — H be monotone
and Lipschitz continuous with constant § > 0. If p > max{2v/1 + 62, (V2+
1)d}, then the nonlinear mixed implicit variational inequality (2.1) has

a solution u € H.
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Proof. From Lemma 3.1, it follows that the nonlinear mixed implicit

variational inequality (2.1) is equivalent to the fixed point problem
(3.6) u=Flu)=u-gu)+ J/‘?"“’(g(u) —~ pu).

In order to prove the existence of a solution of (2.1), it is sufficient to
show that the problem (3.6) has a fixed point. Thus, for all u1,uy € H,

uj # ug, we have
BDIF () — Flup)l < llur —ua = (gur) — glu2))]
+HII5? (9(w) = pur) = JZ?(g(uz) — pus)|
us))||
+Hig(u) — gluz) — plur — ug)|
< 2lur —ug — (g(u1) — g(u2) |l + (1 = p)flur — 2.

< fluy = ug = (g(ur) = g(

Since g : H — H is monotone and Lipschitz continuous,

(3.8)  flur —ug — (9(w1) — g(u2))|*
= Jlur — u2||® = 2 < g(w1) — gluz), w1 — uz > +|g(u1) — g(uz)|]?
< (1+6%)[ur — upf®.

From (3.7) and (3.8), we have

IF(u1) = Flug)|l < [2V1+ 6%+ (1 = p)lflur — uall

= Bllu; — uzl,

where § = 2v/1 4+ 062+ 1 — p. From p > 2v1 + 42, it follows that 6 < 1.
So, the map F(u) defined by (3.6) has a fixed point v € H satisfying

the nonlinear mixed implicit variational inequality (2.1).

Theorem 3.2. Let ¢ : H — H be a monotone mapping and o :
H — RJ{+oc} be a proper, convex and lower semicontinuous func-

tions. Then for any solution u* € H of the problem (2.1), the following
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inequality holds:

(3.9) <u—u*,D(u,p) >>< H(u,p),D(u,p) >, “ue H.

Proof. Let u* be a solution of the problem (2.1). It follows that
(3.10)
<u”, J9%(g(u) - pu) — g(u") >> 6(g(w")) = $(J7?(9(u) — pu)), "u € H.
By Lemma 2.2, we have

< I (g(u) — pu) — (g(w) — pu), g(w”) = J3? (g(u) — pu) >

> po(J;% (9(u) = pu) = po(g(w’)), Vu € H,
that is,
(3.11) < H(u, p) —u, J7?(g(u) — pu) — g(u*) >
> 6(J(9(u) = pu) = #(g(u7), “u e H.
Combining (3.10) and (3.11), we get
(3.12) < H(u,p) = (u—u"), J)?(g(u) = pu) = g(u”) >> 0.
Since g is monotone, we have
(3.13) <u —(u—H(u,p)),gu") —glu— H(u,p)) >>0,"uec H.
It folows from (3.12) and (3.13) that
<u—u*,D(u.p) >>< H(u,p),D(u,p) >, “ueH.

This completes the proof.

Theorem 3.3. Let the single-valued operator g : H — H be monotone
and Lipschitz continuous with constant ¢ > 0 and {uy} be the iterative
sequence generated by Algorithm 2.1. If p > max{2v/T + 02. (v2+ 1)4}.

then {ux} converges to a solution @ € H of the problem (2.1).
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Proof. By Theorem 3.1, the nonlinear mixed implicit variational in-
equality (2.1) has a solution u* € H. From (3.4) we obtain
(3.14)

ki =2 = g =2 + D P~ = < = 7, D) >

Since g is monotone and Lipschitz continuous, we have

B1) Dk, pIIP = Ng(ur — H(ux, p)) — gur) — (up — pH (ug, p) — up)|f?
= Nglux — H(uk, p)) = g(ur) > + p°|| H (u, p)||*

—2p < g(uk — H(uk, p)) — g(ur), (ux — H(ug, p) — up >

< (0% + ) H (ur, ).

By Theorem 3.2, we get

(3.16) < u —u', D{ug, p) >>< H(ug, p), D(ug, p) > .

Further, we have

(3.17) < H(ug, p), D(uy, p) >

< H(ug, p), g(uy — H(uk, p)) — g(ux) + pH(ug, p) >

= plH(uk, p)II* = < (up — H(ug, p)) = ug, 9w, — H(ug. p)) — glug) >

v

Pl H (w p)II” = luw — H(ug, p) — willllg(ur — H (g, p)) — glup)|l
(p — O H (ug, p)|I.

It follows from (3.14)-(3.17) that

Y

s = ™

2

. 1 f 2
< lugp =+ F(éz + ) H (up, p) > = < H (ug, p), D(uy, p) >

I's

. r . , 5 2 . A
< g = uT|? + p—Q(Oz + P H (ur.p) ||~ ;(r) — )| H (ux. p)?

1, - ;
(p° = 2p0 — 6 H (uy. )|

— . — * Qv—
”“k u H pQ

Suce p > (V2 + 1)0 we know that {ur} is bounded. Therefore, there

exists a subsequence {uy } C {uy} and a point & € H such that u, — @
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as j — oo. A simple induction leads to ux — @ as k — oo. Now by
using the continuity of the operator g, D, H, J§¢ and Algorithm 3.1, we
have H(u, p) = 0, that is, g(u) = J,?¢(g(ﬂ) — pu) € H. By Lemma 3.1,
it follows that @ € H which satisfies the inequality (2.1) and uy — @
strongly in H. This completes the proof.

For ¢ = I, Theorem 3.3 reduces to the following Corollary 3.1.

Corollary 3.1. Let the single-valued operator g : H — H be monotone
and Lipschitz continuous with constant § > 0 and {uy} be the iterative
sequence generated by Algorithm 3.2. If p > max{2v/1 + 62, (v/2+1)d},
then {ux} converges to a solution @ € H of the problem (2.2).
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