References
- D. N. Arnold, An interior penalty nite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), no. 4, 724-760.
- D. N. Arnold, J. Jr. Douglas, and V. Thomee, Superconvergence of a nite approximation to the solution of a Sobolev equation in a single space variable, Math. Comp. 36 (1981), 53-63. https://doi.org/10.1090/S0025-5718-1981-0595041-4
- I. Babuska and M. Suri, The h-p version of the nite element method with quasi-uniform meshes, RAIRO Model. Math. Anal. Numer. 21 (1987), no. 2, 199-238. https://doi.org/10.1051/m2an/1987210201991
- I. Babuska and M. Suri, The optimal convergence rates of the p-version of the nite element method, SIAM J. Numer. Anal. 24 (1987), no. 4, 750-776. https://doi.org/10.1137/0724049
- G. I. Barenblatt, I. P. Zheltov, and I. N. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in ssured rocks, J. Appl. Math. Mech. 23 (1960), 1286-1303.
- R. W. Carroll and R. E. Showalter, Singular and Degenerate Cauchy Problems, Math-ematics in Sciences and Engineering, Vol. 127, Academic Press, New York, 1976.
- P. J. Chen and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew Math. Phys. (1968), 614-627.
- P. L. Davis, A quasilinear parabolic and a related third order problem, J. Math. Anal. Appl. 40 (1972), 327-335. https://doi.org/10.1016/0022-247X(72)90054-6
- R. E. Ewing, The approximation of certain parabolic equations backward in time by Sobolev equations, SIAM J. Math. Anal. 6 (1975), 283-294. https://doi.org/10.1137/0506029
- R. E. Ewing, Time-stepping Galerkin methods for nonlinear Sobolev partial differential equa- tions, SIAM J. Numer. Anal. 15 (1978), no. 6, 1125-1150. https://doi.org/10.1137/0715075
- W. H. Ford and T. W. Ting, Stability and convergence of difference approximations to pseudo-parabolic partial differential equations, Math. Comput. 27 (1973), 737-743. https://doi.org/10.1090/S0025-5718-1973-0366052-4
- W. H. Ford and T. W. Ting, Uniform error estimates for difference approximations to nonlinear pseudo- parabolic partial differential equations, SIAM J. Numer. Anal. 11 (1974), 155-169. https://doi.org/10.1137/0711016
- Y. Lin, Galerkin methods for nonlinear Sobolev equations, Aequationes Math. 40 (1990), no. 1, 54-66. https://doi.org/10.1007/BF02112280
- Y. Lin and T. Zhang, Finite element methods for nonlinear Sobolev equations with nonlinear boundary conditions, J. Math. Anal. Appl. 165 (1992), no. 1, 180-191. https://doi.org/10.1016/0022-247X(92)90074-N
- M. T. Nakao, Error estimates of a Galerkin method for some nonlinear Sobolev equa- tions in one space dimension, Numer. Math. 47 (1985), no. 1, 139-157. https://doi.org/10.1007/BF01389881
- M. R. Ohm, H. Y. Lee, and J. Y. Shin, Error estimates for discontinuous Galerkin method for nonlinear parabolic equations, J. Math. Anal. Appl. 315 (2006), no. 1, 132- 143. https://doi.org/10.1016/j.jmaa.2005.07.027
-
M. R. Ohm, H. Y. Lee, and J. Y. Shin,
$L^2$ -error analysis of discontinuous Galerkin approximations for nonlinear Sobolev equations, submitted. - T. Sun and D. Yang, A priori error estimates for interior penalty discontinuous Galerkin method applied to nonlinear Sobolev equations, Appl. Math. Comput. 200 (2008), no. 1, 147-159. https://doi.org/10.1016/j.amc.2007.10.053
- T. Sun and D. Yang, Error estimates for a discontinuous Galerkin method with interior penalties applied to nonlinear Sobolev equations, Numer. Methods Partial Differential Equations 24 (2008), no. 3, 879-896. https://doi.org/10.1002/num.20294
- T. W. Ting, A cooling process according to two-temperature theory of heat conduction, J. Math. Anal. Appl. 45 (1974), 289-303.
-
M. F. Wheeler, A priori
$L_2$ error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal. 10 (1973), 723-759. https://doi.org/10.1137/0710062
Cited by
- A SPLIT LEAST-SQUARES CHARACTERISTIC MIXED FINITE ELEMENT METHOD FOR THE CONVECTION DOMINATED SOBOLEV EQUATIONS vol.34, pp.1_2, 2016, https://doi.org/10.14317/jami.2016.019
- A CRANK-NICOLSON CHARACTERISTIC FINITE ELEMENT METHOD FOR SOBOLEV EQUATIONS vol.32, pp.5, 2016, https://doi.org/10.7858/eamj.2016.051
- Fully discrete approximation of general nonlinear Sobolev equations pp.2190-7668, 2019, https://doi.org/10.1007/s13370-018-0626-9
- Two-grid finite element methods combined with Crank-Nicolson scheme for nonlinear Sobolev equations pp.1572-9044, 2018, https://doi.org/10.1007/s10444-018-9628-2