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GLOBAL ATTRACTOR OF THE WEAKLY DAMPED WAVE

EQUATION WITH NONLINEAR BOUNDARY CONDITIONS

Chaosheng Zhu

Abstract. In this paper, the main purpose is to study existence of the
global attractors for the weakly damped wave equation with nonlinear
boundary conditions. To this end, we first show that the existence of

a bounded absorbing set by the perturbed energy method. Secondly, we
utilize the decomposition of the solution operator to verify the asymptotic
compactness.

1. Introduction

The main purpose of this work is to study existence of the global attractors
for the weakly damped wave equation with nonlinear boundary conditions. To
formalize this problem let us take Ω an open bounded set of Rn with smooth
boundary Γ and assume that Γ can be divided into two non-null parts

Γ = Γ0 ∪ Γ1, Γ0 ∩ Γ1 = ϕ.

Denote by ν(x) the unit normal vector at x ∈ Γ outside of Ω and let us consider
the following initial boundary value problems

utt −∆u+ ut = f(x) in Ω× (0,∞),(1.1)

u = 0 on Γ0 × (0,∞),(1.2)

∂u

∂ν
+ ut +H(u) = 0 on Γ1 × (0,∞),(1.3)

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,(1.4)

here, u = u(x, t) is unknown function and ∆u =
∑n

i=1
∂2u
∂x2

i
.

The asymptotic behavior of solutions to the wave equations with boundary
damping has been studied by many authors (see [3, 5, 4, 6, 7, 8, 10] and further
therein), mainly in the framework of the problem of stabilizability arising in
control theory. The first stabilizability result for nonlinear equations in an
arbitrary domain was obtained by Tataru in [10] using estimates of Carleman
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type. He also uses this approach to establish the existence of a locally compact
global attractor for some semilinear problems. In [5], author establish the
existence of a compactness global attractor for the following semilinear wave
equation with boundary damping

utt −∆u+ f(u) = 0 on R+ × Ω,(1.5)

ut + ν · ∇u = 0 on R+ × ∂Ω,(1.6)

u = ϕ, ut = ψ on {0} × Ω.(1.7)

In [2], authors study the long time behavior of solutions of weakly coupled
reaction diffusion systems with dispersion of the form

ut −Div(a(x)∇u) +
N∑
j=1

Bj(x)
∂u

∂xj
+ λu+ f(u) = 0 in Ω,(1.8)

∂u

∂na
+ g(u) = 0 on ∂Ω,(1.9)

u(x, 0) = u0(x) in Ω.(1.10)

They obtain the existence of a compact attractor in the fractional power spaces.
In [1], author studies the asymptotic behavior of solutions of the following

reaction diffusion equation with nonlinear boundary conditions

ut − d∆u+ f(u) = 0 in Ω,(1.11)

d
∂u

∂n
+ g(u) = 0 on ∂Ω,(1.12)

u(x, 0) = u0(x) in Ω.(1.13)

He gives the proper conditions on the nonlinear terms such that problems
(1.11)–(1.13) is globally well posed and moreover has a global compact attrac-
tor.

Motivated by the paper cited above, in this paper, we investigate the long
time behavior of solutions to problems (1.1)–(1.4) and show that the existence
of the global attractors. Our problems (1.1)–(1.4) consist of weakly damped in
domain and nonlinear conditions on boundary, and the problems (1.1)–(1.4) are
differ from problems (1.5)–(1.7). Because of this, our methods are differ from
in [5]. That is, we shall firstly show that the existence of a bounded absorbing
set by the perturbed energy method. Secondly, we utilize the decomposition of
the solution operator to verify the asymptotic compactness.

Now let us state precise assumptions on the function H(u).
The function H ∈ C1(R) satisfies

H(0) = 0,(1.14)

Ĥ(u) ≥ 0,H(u)u ≥ (1 + δ)Ĥ(u) for some δ > 0,(1.15)
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|H(x)−H(y)| ≤ λH(1 + |x|ρ + |y|ρ)|x− y|, ∀x, y ∈ R,(1.16)

where Ĥ(u) =
∫ u

0
H(s)ds and λH > 0 are some constant, and

0 < ρ ≤ 1

n− 2
, if n ≥ 3; or ρ > 0, if n = 1, 2.

Next let us introduce the functional space. Let

V := {u ∈ H1(Ω); u = 0 on Γ0},

which is a Hilbert subspace of H1(Ω) equipped with the topology given by the
norm ∥∇ · ∥L2(Ω). We denote

(u, v) :=

∫
Ω

uvdx, ∥u∥2 =

∫
Ω

|u|2dx,

(u, v)Γ1 :=

∫
Γ1

uvdΓ, ∥u∥pp,Γ1
=

∫
Γ1

|u|pdΓ, ∥u∥2Γ1
= ∥u∥22,Γ1

,

and let

H0 = V × L2(Ω), ∥(u, ut)∥H0 = ∥∇u∥2 + ∥ut∥2.

In what follows we will often use the next inequality: for every u ∈ H1(Ω) and
ε > 0, there exists a positive constant Cε such that∫

Γ

u2dΓ ≤ ε

∫
Ω

|∇u|2dx+ Cε

∫
Ω

u2dx.

Let λΩ > 0 and λΓ1
> 0 be two constants such that for ∀v ∈ V ,

∥v∥ ≤ λΩ∥∇v∥, ∥v∥Γ1 ≤ λΓ1∥∇v∥.(1.17)

Here, the first-order energy of system (1.1)–(1.4) is given by

E(t) =
1

2
∥ut∥2 +

1

2
∥∇u∥2 +

∫
Γ1

Ĥ(u)dΓ.(1.18)

In order to obtain the global attractor for the problems (1.1)–(1.4), we need
the following theorem of existence, uniqueness of solution.

Lemma 1.1. Assume that conditions (1.14)–(1.16) hold, and f(x) ∈ L2(Ω),
(u0, u1) ∈ H0. Then, problems (1.1)–(1.4) possesses a unique solution in the
class

u ∈ C(0,∞;V ), ut ∈ C1(0,∞;L2(Ω)).

Remark 1.2. Applying the almost same argument as that in [3, 4] we can prove
Lemma 1.1.

Now we are in position to state our main result.

Theorem 1.3. Under the hypotheses of Lemma 1.1, the semigroup St associ-
ated with problems (1.1)–(1.4) possesses a global attractor A in H0.
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It is well known that a compact global attractor exists if the continuous
semigroup has a bounded absorbing set and is asymptotically compact [11].
The first difficulty is nonlinear boundary conditions when proving existence of
bounded absorbing set. In order to overcome this difficulty, we shall combine
the perturbed energy method used in [4, 12] with techniques from [9]. Secondly,
for the proof of asymptotically compact, one usually decompose the solution
operator into a compact part and an asymptotically small part. We shall utilize
the decomposition for solution operator to verify the asymptotic compactness.

Our paper is organized as follows. In Section 2, we shall show that the
existence of absorbing set inH0. In Section 3, we shall show that the asymptotic
compactness for problems (1.1)–(1.4).

2. Absorbing set in H0

In this section, we shall show that the semigroup St has a bounded absorbing
set, i.e., a bounded set B ⊂ H0 satisfying the following condition: for any
bounded A ⊂ H0 there exists t(A) > 0 such that StA ⊂ B for all t ≥ t(A).

To obtain a bounded absorbing set, we used the perturbed energy method,
see Zuazua [4, 12], combined with techniques from Munoz Revera [9]. The
derivative of the energy defined in (1.18) is given by

(2.1)

d

dt
E(t) = − ∥ut∥2 − ∥ut∥2Γ1

+

∫
Ω

futdx

≤ − ∥ut∥2Γ1
+ (ε− 1)∥ut∥2 +

1

4ε
∥f(x)∥2

for all ε > 0. We define the perturbed energy by

Eε(t) = E(t) + εψ(t),(2.2)

where

ψ(t) =

∫
Ω

uutdx.(2.3)

From (2.3) we have

|ψ(t)| ≤ λΩ∥∇u∥∥ut∥

≤ λΩ

(1
2
∥ut∥2 +

1

2
∥∇u∥2

)
≤ λΩE(t).

We can write

|Eε(t)− E(t)| ≤ ελΩE(t).(2.4)

Lemma 2.1. There exist C1, C2 = C2(ε), C(λH) and ε1 positive constants
such that

(2.5)
d

dt
Eε(t) ≤ −εC1E(t) + C2∥f∥2 + C(λH), ∀t ≥ 0, ∀ε ∈ (0, ε1].
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Proof. Taking the derivative of ψ(t) and using (1.1), it follows that

d

dt
ψ(t) = (∆u, u)− (ut, u) + (f(x), u) + ∥ut∥2.

From the generalized Green’s formula and taking (1.3) into account we obtain

(2.6)

d

dt
ψ(t) = − ∥∇u∥2 − (ut, u) + ∥ut∥2

+ (f(x), u)− (ut, u)Γ1 − (H(u), u)Γ1 .

Subtracting and adding the term ∥∇u∥2 in the equality (2.6) and taking (1.18)
into account we get

(2.7)

d

dt
ψ(t) ≤ − 2E(t)− (ut, u) + 2∥ut∥2 +

∫
Γ1

Ĥ(u)dΓ

+ (f(x), u)− (ut, u)Γ1 − (H(u), u)Γ1 .

Now, since V ↪→ L2ρ+2(Γ1) then, by (1.17) and (1.18) we have

−(ut, u) ≤ λΩ∥∇u∥∥ut∥ ≤ 1

8
∥∇u∥2 + 2λ2Ω∥ut∥2,

(f, u) ≤ λΩ∥∇u∥∥f∥ ≤ 1

8
∥∇u∥2 + 2λ2Ω∥f∥2,

−(ut, u)Γ1 ≤ λΓ1∥∇u∥∥ut∥Γ1 ≤ 1

8
∥∇u∥2 + 2λ2Γ1

∥ut∥2Γ1
,∫

Γ1

Ĥ(u)dΓ− (H(u), u)Γ1
≤

∫
Γ1

2λH(1 + |u|ρ)|u|2dΓ

≤ 7

8
E(t) + C(λH).

Now, by above inequalities and (2.7) we obtain

(2.8)

d

dt
ψ(t) ≤ − 3

8
E(t) + 2(1 + λ2Ω)∥ut∥2 + 2λ2Ω∥f∥2

+ 2λ2Γ1
∥ut∥2Γ1

+ C(λH).

Thus from (2.1), (2.2) and (2.8) we can write

(2.9)

d

dt
Eε(t) =

d

dt
E(t) + ε

d

dt
ψ(t)

≤ − 3ε

8
E(t) +

((
3 + 2λ2Ω

)
ε− 1

)
∥ut∥2 + C(λH)ε

+

(
1

4ε
+ 2λ2Ωε

)
∥f(x)∥2 +

(
2λ2Γ1

ε− 1
)
∥ut∥2Γ1

.

Defining ε1 = min{ 1
3+2λ2

Ω
, 1
2λ2

Γ1

} and considering ε ∈ (0, ε1] from (2.9) we

conclude the inequality (2.5). The proof of Lemma 2.1 is completed. □
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Proof of the existence for bounded absorbing set. Let

ε0 = min

{
1

2λΩ
, ε1

}
,

and let us consider ε ∈ (0, ε0]. From (2.4) we have

(1− λΩε)E(t) ≤ Eε(t) ≤ (1 + λΩε)E(t).(2.10)

Since ε ≤ 1
2λΩ

, then

1

2
E(t) ≤ Eε(t) ≤

3

2
E(t) ≤ 2E(t), ∀t ≥ 0,(2.11)

and therefore

−εC1E(t) ≤ −ε
2
C1Eε(t).(2.12)

Hence, from (2.12) and considering Lemma 2.1 we obtain

d

dt
Eε(t) ≤ −ε

2
C1Eε(t) + C2∥f(x)∥2 + C(λH).

Thus by Gronwall’s inequality and (2.11) we obtain
(2.13)
1

2
E(t) ≤ Eε(t)

≤ Eε(0) exp(−
ε

2
C1t) +

2C2∥f(x)∥2 + 2C(λH)

εC2

(
1− exp

(
−ε
2
C1t

))
.

For any bounded subset B of H0, (u0, u1) ∈ B, M̂(∥∇u0∥2),
∫
Γ1
Ĥ(u0)dΓ and∫

Ω
u0u1dx are bounded, too. Hence

R = R(B) = sup
(u0,u1)∈B

Eε(0)

= sup
(u0,u1)∈B

{
∥u1∥2 + ∥∇u0∥2 +

∫
Γ1

Ĥ(u0)dΓ + ε

∫
Ω

u0u1dx

}
<∞

and

lim
t→∞

sup
(u0,u1)∈B

E(t) ≤ 4C2∥f(x)∥2 + 4C(λH)

εC1
≡ µ2

0.(2.14)

Let µ1 > µ0 be fixed, and

t0 = t0(R,µ1) =
1

α
ln

R

µ2
1 − µ2

0

for any t ≥ t0, then we have E(t) ≤ µ2
1 and

∥∇u(t)∥2 + ∥ut(t)∥2 ≤ µ2
1 for t ≥ t0.(2.15)

Thus we obtain a bounded absorbing set in H0. □
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3. Asymptotic compactness

In this section, we show the asymptotic compactness for the semigroup St.
By definition, the semigroup St is asymptotically compact if for any bounded
A ⊂ H0 and any ε > 0 there exist a precompact set K ⊂ H0 and a time t such
that dist(StA,K) < ε. To establish the asymptotic compactness of the semi-
group St generated by problems (1.1)–(1.4), we shall utilize a decomposition
for solution operator. The idea is to decompose the solution operator into two
parts

St(u0, u1) = Vt(u0, u1) +Wt(u0, u1),

where Vt is a contraction in the sense that Vt(u0, u1) → 0 as t→ +∞ uniformly
in (u0, u1) ∈ A, and Wt is a compact mapping for all t. Then choosing t
sufficiently large so that ∥Vt(u0, u1)∥H0 < ε for all (u0, u1) ∈ A, we have
dist(StA,WtA) < ε, which proves the asymptotic compactness.

The proof of the asymptotic compactness consists of two parts, i.e., Lemmas
3.1 and 3.2 below. Firstly, let us define Vt as the solution operator of the
following problems

vtt −∆v + vt = 0 in Ω× (0,∞),(3.1)

v = 0 on Γ0 × (0,∞),(3.2)

∂v

∂ν
+ vt = 0 on Γ1 × (0,∞),(3.3)

v(x, 0) = u0(x), vt(x, 0) = u1(x) in x ∈ Ω.(3.4)

Lemma 3.1. Assume that (u0, u1) ∈ H0, then the problems (3.1)–(3.4) admits
a unique global solution v satisfying

v ∈ L∞(0,+∞;V ), vt ∈ L∞(0,+∞;L2(Ω)).

Moreover, for each bounded A ⊂ H0,

sup
(u0,u1)∈A

∥Vt(u0, u1)∥H0 → 0 as t→ +∞.(3.5)

Proof. For

θ ∈ (0, θ0], θ0 = min{η > 0|η ≤ 1

2
, η(η + 1)2λ2Ω ≤ 2},(3.6)

it is easy to obtain

(vt + θv)t −∆v + (1− θ)(vt + θv) + (θ2 − θ)v = 0.

Then

(3.7)

1

2

d

dt

{
∥vt + θv∥2 + ∥∇v∥2

}
+ θ∥∇v∥2 + ∥vt∥2Γ1

+ (1− θ)∥vt + θv∥2 + (θ2 − θ)(v, vt + θv) = 0.
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We note that

(3.8)

θ∥∇v∥2 + (1− θ)∥vt + θv∥2 + (θ2 − θ)(v, vt + θv)

≥ θ∥∇v∥2 + (1− θ)∥vt + θv∥2 − λΩ(θ
2 + θ)∥∇v∥∥vt + θv∥

≥ (
1

2
− θ)∥vt + θv∥2 + (θ − 1

2
λ2Ω(θ

2 + θ)2)∥∇v∥2.

By (3.6)–(3.8), there is a α > 0 such that

d

dt
{∥vt + θv∥2 + ∥∇v∥2}+ α{∥vt + θv∥2 + ∥∇v∥2} ≤ 0.(3.9)

By Gronwall’s inequality we can get

(3.10) ∥vt(t) + θv(t)∥2 + ∥∇v(t)∥2 ≤ (∥u1 + θu0∥2 + ∥∇u0∥2)e−αt.

On the other hand, we have

(3.11)

∥vt(t)∥2 = ∥vt(t) + θv(t)− θv(t)∥2

≤ ∥vt(t) + θv(t)∥2 + θ2∥v(t)∥2

≤ ∥vt(t) + θv(t)∥2 + θ2λ2Ω∥∇v(t)∥2.

From (3.10)–(3.11) we get, for some C > 0

(3.12) ∥vt(t)∥2 + ∥∇v(t)∥2 ≤ C(∥u1 + θu0∥2 + ∥∇u0∥2)e−αt.

The proof of Lemma 3.1 is completed. □

Secondly, we pass to the proof of the compactness of mapping Wt = St−Vt.
Clearly, if w is the first component of Wt(u0, u1), then its second component
is wt and the function w satisfies the following problems

wtt −∆w + wt = f(x) in Ω× (0,∞),(3.13)

w = 0 on Γ0 × (0,∞),(3.14)

∂w

∂ν
+ wt +H(u) = 0 on Γ1 × (0,∞),(3.15)

w(x, 0) = 0, wt(x, 0) = 0 in Ω.(3.16)

Lemma 3.2. For each t ∈ R+ the mapping Wt: H0 → H0 is compact.

Proof. We consider the difference w̃ = w − w of two solutions w, w of the
problems (3.13)–(3.16). Then w̃ satisfies

w̃tt −∆w̃ + w̃t = 0 in Ω× (0,∞),(3.17)

w̃ = 0 on Γ0 × (0,∞),(3.18)

∂w̃

∂ν
+ w̃t +H(u)−H(u) = 0 on Γ1 × (0,∞),(3.19)

w̃(x, 0) = 0, w̃t(x, 0) = 0 in Ω.(3.20)
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Multiplying equation (3.17) by w̃t, we get

1

2

d

dt
(∥w̃t∥2 + ∥w̃∥2) + ∥∇w̃t∥2 = −∥w̃t∥2Γ1

+

∫
Γ1

(H(u)−H(u)) w̃tdΓ.

Using Young’s inequality, we obtain

d

dt
(∥w̃t∥2 + ∥∇w̃∥2) ≤

∫
Γ1

∣∣∣H(u)−H(u)
∣∣∣2dΓ.(3.21)

Integrating (3.21) over (0, t), t ∈ (0, T ) and taking (3.20) into account, we
obtain

(3.22) ∥w̃t(t)∥2 + ∥∇w̃(t)∥2 ≤
∫ t

0

∫
Γ1

|H(u(s))−H(u(s))|2 dΓds.

Fix an arbitrary bounded sequence (uk0 , u
k
1) ∈ H0. Let uk(x, t), vk(x, t),

wk(x, t) denote the first components of St(u
k
0 , u

k
1), Vt(u

k
0 , u

k
1), and Wt(u

k
0 , u

k
1)

respectively. Then applying the inequality (3.22) we have

(3.23)

∥Wt(u
ki
0 , u

ki
1 )−Wt(u

kj

0 , u
kj

1 )∥2H0

≤
∫ t

0

∫
Γ1

∣∣∣H(u(s))−H(u(s))
∣∣∣2dΓds

→ 0 as i, j → ∞.

Thus the sequence Wt(u
k
0 , u

k
1) contains a convergent subsequence, which com-

pletes the proof of Lemma 3.2. □
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