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GLOBAL SOLUTIONS FOR A CLASS OF NONLINEAR

SIXTH-ORDER WAVE EQUATION

Ying Wang

Abstract. In this paper, we consider the Cauchy problem for a class of

nonlinear sixth-order wave equation. The global existence and the finite
time blow-up for the problem are proved by the potential well method at

both low and critical initial energy levels. Furthermore, we present some
sufficient conditions on initial data such that the weak solution exists

globally at supercritical initial energy level by introducing a new stable

set.

1. Introduction

This paper is concerned with the Cauchy problem for the following nonlinear
sixth-order wave equation

utt − uxxtt − uxx + uxxxx + uxxxxtt = f(ux)x,(1.1)

u(x, 0) = φ(x), ut(x, 0) = ψ(x),(1.2)

where x ∈ R, u(x, t) is the unknown function, f(s) is a given nonlinear function.
In order to investigate the water wave problem with surface tension, Schnei-

der and Wayne [12] considered a class of Boussinesq equation which models the
water wave problem with surface tension as follows

utt = uxx + uxxtt + µuxxxx − uxxxxtt + (u2)xx,(1.3)

where x, t, µ ∈ R and u(t, x) ∈ R. The model can also be formally derived
from the 2D water wave problem. Eq. (1.3) with µ > 0 is known as the “good”
Boussinesq equation because of its linear instability. For a degenerate case,
they have proved that the long wave limit can be described approximately by
two decoupled Kawahara-equations. The authors included the term with the
sixth-order derivatives since they were interested precisely in the case when the
coefficient in front of the term with the fourth-order derivative is small, i.e.,
1 + µ = ε2ν, with ν ∈ R fixed [12]. The lowest order nonlinear terms in the
water wave problem remain unchanged from the classical equation because they
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are independent of surface tension. Wang [20,21] studied the well-posedness of
the local and global solution, the blow-up of solutions and nonlinear scattering
for small amplitude solutions to Eq. (1.3) in R and Rn. The global existence
and finite time blow-up of the solutions for Eq. (1.3) are established by the
potential well method [17]. Eq. (1.1) is similar to the generalized Boussinesq
equation and various generalized of the Boussinesq equations have been studied
from many aspects [5, 6, 8–10,13–15].

Wang and Xu [16] considered the Cauchy problem for the following Rosenau
equation

utt + uxxxx + uxxxxtt − ruxx = f(u)xx.(1.4)

Under some conditions, the well-posedness of the solution and the nonexistence
of global solution to the problem are proved with the aid of the potential well
method. The authors [23] studied the following nonlinear wave equation

utt + uxxxx + uxxxxtt − ruxx = φ(ux)x.(1.5)

The existence and nonexistence of global solutions to Eq. (1.5) are obtained
by the potential well method. Most of the authors proved the global existence
and finite time blow-up of the solution at the sub-critical initial energy level
(E(0) < d) and critical initial energy level (E(0) = d) by the potential well-
method (the definitions of E(t) and d will be given later). In particular, to our
knowledge, there have only been a few results up to now on the global existence
of a solution to the Cauchy problem (1.1) and (1.2) at the high initial energy
level (E(0) > 0).

Hatice et al. [18, 19] considered the following Rosenau equation

(1.6) utt − uxx + uxxxx + uxxxxtt = (f(u))xx, x ∈ R, t > 0,

where f(u) = γ|u|p, γ > 0. By defining new functionals and using potential well
method, they established the existence of global weak solutions for Eq. (1.6)
with supercritical initial energy (E(0) > 0). Furthermore, the authors general-
ized the results from one dimension to n-dimensional spaces. Then, Kutev et
al. [4] considered the Cauchy problem for the Boussinesq paradigm equation

(1.7) utt −∆u− β1∆utt + β2∆2u = ∆f(u), (x, t) ∈ Rn × (0,+∞),

where f(u) = α|u|p, α > 0, β1 ≥ 0, β2 > 0, and ∆ denotes the Laplace operator
in Rn. They introduced some new functionals and gave the existence of global
weak solution with supercritical initial energy E(0) > 0. But the method in
[4,18,19] is not valid for the nonlinear term f(u) = β|u|pu, β < 0 at arbitrarily
positive initial energy level E(0) > 0.

Wang and Mu [21] considered the following Boussinesq equation

(1.8) utt −∆utt + ∆2utt −∆u+ ∆2u = ∆f(u), (x, t) ∈ Rn × (0,+∞).

They obtained the existence and the uniqueness of the global solution and blow-
up of the solution under some restrictions on the nonlinear source term f(u).
When f(u) = ±β|u|p or −β|u|p−1u, β > 0, Xu et al. [24] considered the Cauchy
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problem of Eq. (1.8) at three different initial energy levels. They established the
global existence and blow-up solutions at low and critical initial energy levels,
and also proved the global existence of the weak solution at supercritical initial
energy level. In this paper, we apply the potential well method ([7, 22, 24])
to study the global existence and nonexistence of the solution to the problem
(1.1) and (1.2) at the sub-critical initial energy level, the critical initial energy
level and the high initial energy level.

In the present paper, using the contraction mapping principle, the well-
posedness for problem (1.1) and (1.2) was established in Section 2. Under
some conditions of f(u), we also prove the existence and uniqueness of the
global solution for the problem (1.1) and (1.2) in Section 2. In sections 3 and
4, we fix the nonlinear terms to be f(u) = r|u|p, r 6= 0 to classify the initial
data for the global existence and non-global existence. Following the main idea
of potential well method introduced in [7, 22, 24], we will construct the stable
and unstable sets and study the global existence and non-existence of the weak
solutions for problem (1.1) and (1.2) at three different initial energy levels:
E(0) < d, E(0) = d and E(0) > 0, where d is the potential well depth, and the
three cases will be respectively dealt with different methods.

Throughout this paper, Lp denotes the usual space of all Lp(R)-functions
with norm ‖ · ‖p and ‖u‖ = ‖u‖2, Hs denotes the Sobolev space Hs(R) with
norm ‖·‖Hs and H1

0 (R) denotes the closure of C∞c (R) in H1(R). If not specified
throughout this paper, we denote C as a generic constant varying line by line
and depending only on the norms of initial data and absolute constant.

At first, by using the contraction mapping theorem, we obtain the following
existence and uniqueness of the local solution to problem (1.1) and (1.2).

Theorem 1.1. Suppose that s > 1
2 , φ, ψ ∈ Hs and f ∈ CN (R), then there

exists a maximal time T0 which depends on φ and ψ such that for each T < T0,
the Cauchy problem (1.1) and (1.2) has a unique solution u ∈ C1([0, T ], Hs).
Moreover, if

sup
t∈[0,T0)

[‖u(·, t)‖Hs + ‖ut(·, t)‖Hs ] <∞,

then T0 =∞.

Theorem 1.2. Suppose that s ≥ 1, φ, ψ ∈ Hs, F (u) =
∫ u

0
f(z)dz, F (φx) ∈ L1

and T0 > 0 is the maximal existence time of corresponding solution u(t) ∈
C1([0, T0), Hs) to the Cauchy problem (1.1) and (1.2). Then the equality

E(t) =
1

2
[‖ut‖2 + ‖uxt‖2 + ‖ux‖2 + ‖uxx‖2 + ‖uxxt‖2] +

∫
R
F (ux)dx

= E(0),∀t ∈ (0, T0),(1.9)

holds.

Under some assumptions, the well-posedness of the global solution for the
Cauchy problem (1.1) and (1.2) is established.
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Theorem 1.3. Suppose that the assumptions of Theorem 1.1 hold, and T0 > 0
is the maximal existence time of the corresponding solution u(t) ∈ C2([0, T0],
Hs) to the problem (1.1) and (1.2). Then T0 <∞ if and only if

lim
t→T0

sup ‖ux(t)‖L∞ =∞.

For the case f(s) = r|u|p, r 6= 0, we firstly introduce the potential energy
functional

(1.10) J(u) =
1

2
(‖ux‖2 + ‖uxx‖2) +

r

p+ 1

∫
R
|ux|puxdx

and the Nehari functional

(1.11) I(u) = (‖ux‖2 + ‖uxx‖2) + r

∫
R
|ux|puxdx.

We define the stable set

(1.12) K1 = {u ∈ H2 | I(u) > 0} ∪ {0},

the unstable set

(1.13) K2 = {u ∈ H2 | I(u) < 0}

and the depth of potential well as

d = inf
u∈NE

J(u),

where the Nehari manifold NE = {u ∈ H2 \ {0} | I(u) = 0}. And for the
function u(x, t) satisfying u ∈ C1((0, T ), H2), ut ∈ C((0, T ), H2), we define a
new functional space

YT := {u|I(u(t)) > ‖ut‖2 + ‖uxt‖2 + ‖uxxt‖2} ∪ {0},

which will be used in Section 4.
For the low initial energy case and the critical energy case, we prove the

global existence and finite-time blow-up for the problem (1.1) and (1.2) by the
potential well method.

Theorem 1.4. Suppose that 2 ≤ s < p + 1 and φ, ψ ∈ Hs. If E(0) ≤ d
and φ ∈ K1 ∪ ∂K1, then problem (1.1) and (1.2) has a unique solution u ∈
C1([0,∞);Hs) and u(t) ∈ K1 ∪ ∂K1 for t ∈ [0,∞).

Theorem 1.5. Suppose that 2 ≤ s < p+1 and φ, ψ ∈ Hs. If E(0) < d, φ ∈ K2

and (φ, ψ) + (φx, ψx) + (φxx, ψxx) ≥ 0 when E(0) = d, then the solution u(x, t)
of problem (1.1) and (1.2) ceases to exist in finite time.

For the supercritical initial energy case, by utilizing the method of [4,24], we
obtain the global existence of weak solution for problem (1.1) and (1.2) under
some sufficient conditions on the initial data.
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Theorem 1.6. Suppose that 2 ≤ s < p+ 1 and φ ∈ H2 ∩H1
0 , ψ ∈ H2 ∩H1

0 . If

E(0) > 0,(1.14)

I(φ) > ‖ψ‖2 + ‖ψx‖2 + ‖ψxx‖2,(1.15)

2(φ, ψ) + 2(φx, ψx) + 2(φxx, ψxx)

+ ‖φ‖2 + ‖φx‖2 + ‖φxx‖2 +
2(p+ 1)

p+ 3
E(0) < 0,(1.16)

then the solution u(x, t) of problem (1.1) and (1.2) exists globally.

2. Well-posedness of solutions

In this section, we study the local and global well-posedness of solutions
to the problem (1.1) and (1.2). We first consider the following linear wave
equation

utt − uxxtt − uxx + uxxxx + uxxxxtt = q(x, t),(2.1)

with initial value (1.2). By the Fourier transform and Duhamel’s principle, the
solution u(x, t) of problem (2.1) and (1.2) can be written as

(2.2) u(x, t) = (∂tS(t)φ)(x) + (S(t)ψ)(x) +

∫ t

0

Γ(t− τ)q(u(τ))dτ.

Here Γ(t) = S(t)(1− ∂2
x + ∂4

x)−1 and

(∂tS(t)φ)(x) =
1

2π

∫
R
eixξ cos(

|ξ|
√

1 + ξ2t√
1 + ξ2 + ξ4

) ˆφ(ξ))dξ,

(S(t)ψ)(x) =
1

2π

∫
R
eixξ sin(

|ξ|
√

1 + ξ2t√
1 + ξ2 + ξ4

)

√
1 + ξ2 + ξ4

|ξ|
√

1 + ξ2

ˆψ(ξ))dξ,

where ˆφ(ξ) = F (φ)(ξ) =
∫
R e
−ixξφ(x)dx is the Fourier transform of φ(x).

Lemma 2.1. For the operators ∂tS(t), S(t) and Γ(t), we have the following
estimates

‖∂tS(t)φ‖Hs ≤ ‖φ‖Hs ,∀φ ∈ Hs,(2.3)

‖S(t)ψ‖Hs ≤ 2(1 + t)‖ψ‖Hs ,∀ψ ∈ Hs,(2.4)

‖∂ttS(t)φ‖Hs−2 ≤
√

2‖φ‖Hs ,∀φ ∈ Hs,(2.5)

‖Γ(t)q‖Hs ≤
√

2‖q‖Hs−4 ,∀q ∈ Hs−4,(2.6)

‖∂tΓ(t)q‖Hs−2 ≤ ‖q‖Hs−4 ,∀q ∈ Hs−4.(2.7)

Proof. We only prove (2.4) and (2.6), the proof of other inequalities are similar.
By Plancherel’s theorem, we obtain

‖S(t)ψ‖2Hs =

∫
R

(1 + ξ2)s
1 + ξ2 + ξ4

ξ2(1 + ξ2)
sin2(

t|ξ|
√

1 + ξ2√
1 + ξ2 + ξ4

)|ψ̂(ξ)|2dξ
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≤
∫
|ξ|≤1

(1 + ξ2)st2|ψ̂|2dξ +

∫
|ξ|>1

(1 + ξ2)s
(1 + ξ2 + ξ4)

ξ2(1 + ξ2)
|ψ̂(ξ)|2dξ

≤ t2
∫
|ξ|≤1

(1 + ξ2)s|ψ̂(ξ)|2dξ + 4

∫
|ξ|>1

(1 + ξ2)s|ψ̂(ξ)|2dξ

≤ 4(1 + t)2‖ψ‖2Hs ,

‖Γ(t)q‖2Hs =

∫
R

(1 + ξ2)s sin2(
t|ξ|
√

1+ξ2√
1+ξ2+ξ4

)
1 + ξ2 + ξ4

ξ2(1 + ξ2)

1

(1 + ξ2 + ξ4)2
|q̂(ξ)|2dξ

≤ 2

∫
R

(1 + ξ2)s−4|q̂(ξ)|2dξ = 2‖q‖2Hs−4 .

Therefore (2.4) and (2.6) hold. This completes the proof of the lemma. �

Lemma 2.2 ([1]). Suppose that g(u) ∈ CN (R) is a function vanishing at
zero, where N ≥ 0 is an integer. Then for any s with 0 ≤ s ≤ N and any
u, v ∈ Hs ∩ L∞, we have

‖g(u)‖Hs ≤ G(‖u‖L∞)‖u‖Hs ,

‖g(u)− g(v)‖Hs ≤ Ḡ(‖u‖L∞ , ‖v‖L∞)‖u− v‖Hs ,

where G : [0,∞)→ R and Ḡ : [0,∞)× [0,∞)→ R are continuous functions.

Lemma 2.3 (Sobolev Lemma [2]). If s > n
2 + k, where k is a nonnegative

integer, then

Hs(Rn) ⊂ Ck(Rn) ∩ L∞,
where the inclusion is continuous. In fact,

Σ|β|≤k‖∂βxu‖L∞ ≤ C‖u‖Hs ,

where C is dependent on s, independent of u.

Lemma 2.4 ([11]). Assume u ∈ Hs ∩ L∞, 0 < s < p. Then there exists a
constant C such that

‖|u|p‖Hs ≤ C‖u‖p−1
L∞ ‖u‖Hs .

Lemma 2.5 ([3]). If s > 0, then Hs ∩ L∞ is an algebra. Moreover,

‖uv‖Hs ≤ C(‖u‖L∞‖v‖Hs + ‖v‖L∞‖u‖Hs).

Lemma 2.6. The operator P = (1− ∂2
x + ∂4

x)−1 is bounded from Hs−4 to Hs,
i.e.,

‖Pu‖Hs ≤ C‖u‖Hs−4 .

Proof.

‖Pu‖Hs = ‖(1 + ξ2)
s
2

1

1 + ξ2 + ξ4
û‖

≤ C‖(1 + ξ2)
s−4
2 û‖ = C‖u‖Hs−4 . �
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Proof of Theorem 1.1. Now we are going to prove the existence and uniqueness
of local solutions for problem (1.1) and (1.2) by contraction mapping argumen-
tation. For this purpose, we define the function space X(T ) = C1([0, T ];Hs)
with s > 1

2 , equipped with the norm defined by

‖u‖X(T ) = max
t∈[0,T ]

[‖u(·, t)‖Hs + ‖ut(·, t)‖Hs ].

Since Hs ↪→ L∞ for s > 1
2 , we have u ∈ L∞ if u ∈ X(T ). Let BR(T ) be the

ball of radius R centered at the origin in X(T ), i.e.,

BR(T ) = {u ∈ X(T ) : ‖u‖X(T ) ≤ R}.
For φ ∈ Hs, ψ ∈ Hs, u ∈ X(T ), we define the map

(2.8) Θ(u(t)) = ∂tS(t)φ+ S(t)ψ +

∫ t

0

S(t− τ)(I − ∂2
x + ∂4

x)−1f(ux)x(τ)dτ.

It will be shown that Θ : BR(T ) → BR(T ) is contractive if R and T are well
chosen.

Let ‖φ‖Hs + ‖ψ‖Hs ≤ ρ, u, v ∈ BR(T ). Using the estimates in Lemmas
2.1-2.5, we have

‖Θ(u)‖Hs ≤ ‖φ‖Hs + 2(1 + T )‖ψ‖Hs−2 +
√

2

∫ T

0

‖f(ux))‖Hs−3dτ

≤ 2ρ+ (2ρ+
√

2G(R))RT(2.9)

and
(2.10)

‖Θ(u)−Θ(v)‖Hs ≤
√

2

∫ T

0

‖f(ux)x − f(vx)x‖Hsdτ ≤
√

2G̃T‖u− v‖X(T ),

where G̃(R) = Ḡ(R,R). Differentiating with respect to t, we see that

(2.11) ut(x, t) = (∂ttS(t)φ)(x) + (∂tS(t)ψ)(x) +

∫ T

0

∂tΘ(t− τ)f(ux)xdτ.

Using the estimates in Lemmas 2.1 and 2.2, we have

‖Θ(u)t‖Hs ≤ 2‖φ‖Hs + ‖ψ‖Hs−2 +

∫ T

0

‖f(ux)x‖Hs−4dτ

≤ 2(ρ+G(R)RT )(2.12)

and

‖Θ(u)t −Θ(v)t‖Hs ≤
∫ T

0

‖f(ux)x − f(vx)x‖Hs−4dτ

≤ G(R)T‖u− v‖X(T ).(2.13)

From (2.9)-(2.13), we have

‖Θ(u)‖X(T ) ≤ 4ρ+ (2ρ+ 2
√

3G(R)R)T,

‖Θ(u)−Θ(v)‖X(T ) ≤ 3Ḡ(R)T‖u− v‖X(T ).



1168 Y. WANG

Choosing R = 8ρ and fixing T so small enough such that

T < min
(

2ρ

ρ+
√

3G(R)R
, 1

4Ḡ(R)

)
,(2.14)

therefore, Θ is a contraction map on BR(T ). It follows from the contrac-
tion mapping theorem that problem (2.1) and (1.2) has a unique solution
u ∈ BR(T ). Similar to that of [20], we can prove uniqueness and local Lipschitz
dependence with respect to the initial data in the space BR(T ). Using unique-
ness we can extend the result in the space C([0, T0];Hs(R)) by a standard
technique. �

Proof of Theorem 1.2. It follows from (1.1) that

d

dt
E(t) = (utt, ut) + (ux, uxt)

+ (uxx, uxxt) + (uxtt, uxt) + (uxxtt, uxxt) + (f(ux), uxt)

= 〈(utt − uxxtt + uxxxxtt − uxx + uxxxx − f(ux)x, ut〉X∗X = 0,

where (·, ·) denotes the inner product of L2-space and 〈·, ·〉X∗X means the usual
duality of X and X with X = H2. Integrating the above equality with respect
to t, we have (1.9). Theorem 1.2 is proved. �

Next we study the existence of global solutions to the problem (1.1) and
(1.2).

Proof of Theorem 1.3. One implication is obvious in view of Theorem 1.1. Let
us prove that if

(2.15) lim
t∈[0,T0)

sup ‖ux(·, t)‖L∞ = M <∞,

then T0 =∞. (1.1) can be written as follows:

utt + u = Pu+ Pf(ux)x,

where P = (1− ∂2
x + ∂4

x)−1.
So, it follows from Hölder inequality that for t ∈ (0, T ),

1

2

d

dt
(‖u‖2Hs + ‖ut‖2Hs)

= ((I − ∂2
x)

s
2utt, (I − ∂2

x)
s
2ut) + ((I − ∂2

x)
s
2u, (I − ∂2

x)
s
2ut)

= ((I − ∂2
x)sutt + (I − ∂2

x)su, ut)

= ((I − ∂2
x)s(utt + u), ut)

= ((I − ∂2
x)

s
2 (Pu+ P (∂xf(ux))), (I − ∂2

x)
s
2ut)

≤ ‖(I − ∂2
x)

s
2 (Pu+ P (∂xf(ux)))‖Hs‖ut‖Hs

≤ (‖(I − ∂2
x)

s
2Pu‖Hs + ‖(I − ∂2

x)
s
2P (∂xf(ux))‖Hs)‖ut‖Hs .

From Lemma 2.4, Lemma 2.6 and (3.1), we obtain

(‖(I − ∂2
x)

s
2Pu‖Hs + ‖(I − ∂2

x)
s
2P (∂xf(ux))‖Hs) ≤ (G(R) + C)‖u‖Hs .
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It follows from the Cauchy inequality that

1

2

d

dt
(‖u‖2Hs + ‖ut‖2Hs) ≤ (G(R)2 + C)(‖u‖2Hs + ‖ut‖2Hs), t ∈ (0, T ).

Then previous relation shows by Gronwall’ inequality that ‖u(t)‖2Hs +‖ut(t)‖2Hs

do not blow-up in finite time. Then T = ∞ by Theorem 1.1. The theorem is
proved. �

3. Existence and nonexistence of global solutions for f(u) = r|u|p

In this section, we discuss the existence and nonexistence of global solution
for the low initial energy case and the critical energy case when f(s) = r|u|p, r 6=
0. We start with the following elementary statement.

Lemma 3.1. The depth of potential well d = p−1
2(p+1) (|r|Sp+1

∗ )−
2

p−1 , where S∗
is the optimal Sobolev constant, i.e.,

(3.1) S∗ = sup
u∈H2\{0}

‖ux‖p+1

(‖ux‖2 + ‖uxx‖2)
1
2

.

Proof. From the definition of d, we obtain u ∈ NE, i.e., I(u) = 0, which yields

‖ux‖2 + ‖uxx‖2 = −r‖ux‖p+1
p+1 ≤ |r|Sp+1

∗ (‖ux‖2 + ‖uxx‖2)
p−1
2 (‖ux‖2 + ‖uxx‖2).

From (3.1), we get

‖ux‖2 + ‖uxx‖2 ≥ (|r|Sp+1
∗ )−

2
p−1 .(3.2)

On the other hand, from (1.11), (1.12), (3.2) and I(u) = 0, we obtain

J(u) = (
1

2
− 1

p+ 1
)(‖ux‖2 + ‖uxx‖2)

≥ p− 1

2(p+ 1)
(|r|Sp+1

∗ )−
2

p−1 ,(3.3)

which completes the proof. �

Lemma 3.2. Let φ, ψ ∈ H2, and u ∈ C1([0, T0);H2) is the unique solution of
the Cauchy problem (1.1) and (1.2), where T0 is the maximal existence time of
u(t). Assume that E(0) < d, then for all t ∈ [0, T0),

(i) u(t) ∈ K1 and ‖ux(t)‖2 + ‖uxx(t)‖2 < 2(p+1)
p−1 d if φ ∈ K1;

(ii) u(t) ∈ K2 and ‖ux(t)‖2 + ‖uxx(t)‖2 > 2(p+1)
p−1 d if φ ∈ K2.

Proof. Since the proof of (i) and (ii) are similar, we only prove (ii). Let u(t) be
any local weak solution of problem (1.1) and (1.2) with E(0) < d, φ ∈ K2 and T0

be the maximum existence time of u(t). Then, it follows from Theorem 1.2 that
E(u(t)) = E(0) < d. Thus, it suffices to show that I(u(t)) < 0 for 0 < t < T0.
Arguing by contradiction, we suppose that there exists a t1 ∈ (0, T0) such that
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I(u(t1)) ≥ 0. From the continuity of I(u(t)) in time, there exists a t∗ ∈ (0, T0)
such that I(u(t∗)) = 0. Then, from the definition of d, we get

d ≤ J(u(t∗)) ≤ E(u(t∗)) = E(0) < d,

which is a contradiction, that is ‖ux‖2+‖uxx‖2 < −r‖ux‖p+1
p+1 for any t ∈ [0, T0).

From (3.1), we arrive at

1

S2
∗
≤ ‖ux‖

2 + ‖uxx‖2

‖ux‖2p+1

<
−r‖ux‖p+1

p+1

‖ux‖2p+1

≤ |r|‖ux‖p−1
p+1.(3.4)

Then, from Lemma 3.1 and (3.4), yields

d =
p− 1

2(p+ 1)
|r|−

2
p−1S−2

∗ S
− 4

p−1
∗

<
p− 1

2(p+ 1)

‖ux‖2 + ‖uxx‖2

‖ux‖2p+1

(‖ux‖p−1
p+1)

2
p−1

=
p− 1

2(p+ 1)
(‖ux‖2 + ‖uxx‖2),

which means

‖ux‖2 + ‖uxx‖2 >
2(p+ 1)

p− 1
d.

In fact, for (i), from the definition of I(t) and E(t), we get

E(t) =
1

2
[‖ut‖2 + ‖uxt‖2 + ‖ux‖2 + ‖uxx‖2 + ‖uxxt‖2] +

r

p+ 1

∫
R
|ux|puxdx

=
1

2
(‖ut‖2 + ‖uxt‖2 + ‖uxxt‖2) +

p− 1

2(p+ 1)
(‖ux‖2 + ‖uxx‖2) +

1

p+ 1
I(t).

If I(u(t)) > 0, we obtain

p− 1

2(p+ 1)
(‖ux‖2 + ‖uxx‖2) < E(t) = E(0) < d.

So,

‖ux‖2 + ‖uxx‖2 <
2(p+ 1)

p− 1
d.

This completes the proof of Lemma 3.2. �

Lemma 3.3. Let φ, ψ ∈ H2, and u ∈ C1([0, T0);H2) is the unique solution of
the Cauchy problem (1.1) and (1.2), where T0 is the maximal existence time of
u(t). Assume that E(0) = d and (φxx, ψxx) + (φx, ψx) + (φ, ψ) ≥ 0, then for
all t ∈ [0, T0), u(t) ∈ K2 if u(0) ∈ K2.

Proof. If the result is false, there would exist a t0 ∈ (0, T0) such that I(t0) = 0
from the continuity of I(t). Hence we have J(u(t0)) ≥ d, which together with
E(t0) = E(0) = d gives J(u(t0)) = d and

‖ut(t0)‖+ ‖uxt(t0)‖+ ‖uxxt(t0)‖ = 0.(3.5)
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On the other hand, let

L(t) = ‖u(t)‖2 + ‖ux(t)‖2 + ‖uxx(t)‖2.(3.6)

Then

L′(t) = 2(u, ut) + 2(ux, uxt) + 2(uxx, uxxt),(3.7)

with L′(0) ≥ 0. From (1.1) and (1.8), we get

L
′′
(t) = 2〈utt − uxxtt + uxxxxtt, u〉X∗X + 2‖ut‖2 + 2‖uxt‖2 + 2‖uxxt‖2

= −2‖ux‖2−2‖uxx‖2−2r

∫
R

|ux|puxdx+ 2‖ut‖2 + 2‖uxt‖2 + 2‖uxxt‖2

= 2‖ut‖2 + 2‖uxt‖2 + 2‖uxxt‖2 − 2I(u)

> 0,∀t ∈ (0, t0).(3.8)

Hence L′(t) is strictly increasing on [0, t0], and L′(t0) > 0 which contradicts
(3.5). The Lemma is proved. �

Lemma 3.4. Let φ ∈ Hs, ψ ∈ Hs, 2 ≤ s ≤ p+ 1. Assume that E(0) < d, then
when φ ∈ K1, problem (1.1) and (1.2) has a unique solution u ∈ C1([0,∞);Hs)
and u ∈ K1 for 0 ≤ t <∞.

Proof. From Lemma 3.2, we can obtain

‖ux(t)‖2 + ‖uxx(t)‖2 < 2(p+ 1)d

p− 1
.

It follows from above inequality and the Sobolev imbedding theorem that

sup
t∈[0,T0)

‖ux(·, t)‖2L∞ < C
2(p+ 1)d

p− 1
.

Therefore, problem (1.1) and (1.2) has a unique global solution u ∈ C1([0,∞);
Hs) by Theorem 1.3. �

Proof of Theorem 1.4. First, it follows from Theorem 1.3 that problem (1.1)
and (1.2) has a unique local solution u ∈ C1([0, T0), Hs), where T0 is the
maximal existence time of u(t). Next we prove T0 =∞.

It follows from φ ∈ K1 ∪ ∂K1, E(0) ≤ d and the proof of Lemma 3.2 that

‖φx‖p+1
p+1 ≤ Sp+1

∗ (‖φx‖2 + ‖φxx‖2)
p+1
2

≤ Sp+1
∗ (‖φx‖2 + ‖φxx‖2)(

2(p+ 1)d

p− 1
)

p−1
2

= |r|−1(‖φx‖2 + ‖φxx‖2).

Therefore for any λ > 0, we obtain

J(λu) =
λ2

2
[‖ux‖2 + ‖uxx‖2] +

rλp+1

p+ 1

∫
R
|ux|puxdx
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and
d

dλ
J(λφ) = λ(‖φx‖2 + ‖φxx‖2) + rλp

∫
R
|φx|pφxdx

≥ λ(‖φx‖2 + ‖φxx‖2)− |r|λp‖φx‖p+1
p+1

≥ λ(1− λ)(‖φx‖2 + ‖φxx‖2) ≥ 0,∀λ ∈ (0, 1).

Take a sequence {λm} such that 0 < λm < 1,m = 1, 2, . . . and λm → 1 as
m → ∞. Let φm = λmφ, ψm = λmψ. Consider the problem (1.1) with the
initial conditions

u(x, 0) = φm(x), ut(x, 0) = ψm(x).(3.9)

Then

‖φmx‖2 + ‖φmxx‖2 = λ2
m[‖φmx‖2 + ‖φmxx‖2] <

2(p+ 1)d

p− 1

and

Em(0) =
1

2
[‖ψm‖2 + ‖ψmx‖2 + ‖ψmxx‖2

+ ‖φmx‖2 + ‖φmxx‖2] +
r

p+ 1

∫
R
|φmx|pφmxdx,

=
1

2
[‖ψm‖2 + ‖ψmx‖2 + ‖ψmxx‖2] + J(λmφ).

If ψ = 0 and φ = 0, then Em(0) = 0 < d. If ψ 6= 0 and φ 6= 0, then

Em(0) <
1

2
[‖ψm‖2 + ‖ψmx‖2 + ‖ψmxx‖2] + J(φ) = E(0) ≤ d.

It follows from Lemma 3.4 that for each m, problem (1.1) and (3.9) has a
unique global solution um ∈ C2([0,∞);Hs) and it satisfies

(umt, v) + (umxt, vx) + (umxxt, vxx)

+

∫ t

0

[(umx, vx) + (umxx, vxx) + (r|umx|p, vx)]dτ

= (ψm, v) + (ψmx, vx) + (ψmxx, vx), ∀v ∈ H2, t ∈ [0,∞)(3.10)

and
1

2
[‖umt‖2 + ‖umxt‖2 + |umxxt‖2] + J(um) = Em(0) < d,(3.11)

I(um) > 0,(3.12)

‖umx‖2 + ‖umxx‖2 <
2(p+ 1)

p− 1
d.(3.13)

By using (3.11)-(3.13), we get

‖umx‖p+1
p+1 ≤ Sp+1

∗ (‖umx‖2 + ‖umxx‖2)
p+1
2 ≤ |r|−1(‖umx‖2 + ‖umxx‖2),

J(um) ≥ 1

2
[‖umx‖2 + ‖umxx‖2]− |r|

p+ 1

∫
R
|umx|p+1dx
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≥ p− 1

2(p+ 1)
[‖umx‖2 + ‖umxx‖2] ≥ 0.

Because of the above inequalities, we have

‖umt‖2 + ‖umxt‖2 + ‖umxxt‖2 ≤ 2d,(3.14)

‖um‖p+1
p+1 ≤ |r|−1 2(p+ 1)

p− 1
d.(3.15)

It follows from (3.11), (3.12), (3.14) and (3.15) that there exist a ū ∈ K̄1 and a
subsequence {uk} such that as k →∞, ukx → ūx in L∞(0,∞;H1) weakly star
and a.e in R× [0,∞), ukt → ūt in L∞(0,∞;L2) weakly star, |ukx|p → |ūx|p in

L∞(0,∞;L
p+1
p ) weakly star.

In equality (3.10), letting m = k →∞, we obtain

(ūt, v) + (ūxt, vx) + (ūxxt, vxx) +

∫ t

0

[(ūx, vx) + ūxx, vxx) + (r|ūx|p, vx)]dτ

= (ψ, v) + (ψx, vx) + (ψxx, vxx),∀t ∈ [0,∞),

for any v ∈ H2, which implies that ū satisfies (1.1). Furthermore, we can get

ū(x, 0) = φ(x), ūt(x, 0) = ψ(x).

Thus ū is a global solution of the Cauchy problem (1.1) and (1.2). From the
uniqueness of the solution of problem (1.1) and (1.2), we get ū = u on R×[0, T0),
and I(u) = I(ū) ≥ 0. We obtain T0 =∞ and u ∈ C2([0,∞);Hs). The theorem
is proved. �

Proof of Theorem 1.5. Theorem 1.1 gives the existence of a local weak solution
u ∈ C1([0, T0);Hs) satisfying (1.9), where T0 is the maximal existence time of
u. We prove T0 <∞. We assume that the result is not true, then T0 =∞. Let

L(t) = ‖u(t)‖2 + ‖ux‖2 + ‖uxx(t)‖2,(3.16)

then

L′(t) = 2(u, ut) + 2(ux, uxt) + 2(uxx, uxxt).

Using the Schwartz inequality, we have

L′(t)2 ≤ 4L(t)[‖ut‖2 + ‖uxt‖2 + ‖uxxt‖2].(3.17)

Similarly to (3.8), from Lemmas 3.2 and 3.3, we obtain

(3.18)

L
′′
(t) = (p+ 3)[‖ut‖2 + ‖uxt‖2 + ‖uxxt‖2] + (p− 1)[‖ux‖2 + ‖uxx‖2]

− 2(p+ 1)E(0)

> (p+ 3)[‖ut‖2 + ‖uxt‖2 + ‖uxxt‖2] + 2(p+ 1)[d− E(0)]

≥ 0, ∀t ∈ (0,∞).

It follows that

L′(t) > L′(0) + 2(p+ 1)[d− E(0)]t, ∀t ∈ (0,∞).



1174 Y. WANG

This implies that there is t1 > 0 such that for any t ∈ [t1,∞), L′(t) > 0.
Consequently, L(t) never vanishes on [t1,∞). On the other hand, it follows
from (3.16)-(3.18) that

L(t)L′′(t)− (1 +
p− 1

4
)L′(t)2 > 0.

Set N(t) = (L(t))−
p−1
4 . Then we get

N ′′(t) = −p− 1

4
(L(t))−

p+7
4 [L(t)L′′(t)− (1 +

p− 1

4
)L′(t)2] < 0,∀t ∈ [t1,∞)

as well as N(t1) > 0 and N ′(t1) < 0. Thus N(t) ≤ N(t1) + (t− t1)N ′(t1).

So there is a T1 ∈ (t1, t1 + 4L(t1)
(p−1)L′(t1) ) such that

lim
t→T−1

L(t) =∞,

which contradicts T0 =∞. The theorem is proved. �

4. Global existence for E(0) > 0

For the arbitrary initial energy E(0) > 0, using the technique of [4, 24], we
derive a sufficient condition on the initial data such that the corresponding
local solution of problem (1.1) and (1.2) exists globally.

Lemma 4.1. Let 2 ≤ s < p + 1, φ ∈ Hs ∩ H1
0 , ψ ∈ Hs and u(x, t) be the

solution of the Cauchy problem (1.1) and (1.2). Assume that the initial data
satisfy (1.14) and (1.16). Then, the map

{t→ ‖u‖2 + ‖ux‖2 + ‖uxx‖2}

is strictly decreasing as long as u(x, t) ∈ YT .

Proof. From (3.6), (3.7) and (3.8), we have

L
′′
(t) = 2‖ut‖2 + 2‖uxt‖2 + 2‖uxxt‖2 − 2I(t).(4.1)

Furthermore, from u(t) ∈ YT , we get L
′′
(t) < 0 for t ∈ [0, T ). Using (1.16), we

obtain

2(φ, ψ) + 2(φx, ψx) + 2(φxx, ψxx) < 0,

which implies L′(0) < 0. So it is easy to see that L′(t) < L′(0) < 0, namely
L′(t) < 0. Therefore, we get the result of the lemma. �

Lemma 4.2. Let 2 ≤ s < p + 1, φ ∈ Hs ∩ H1
0 , ψ ∈ Hs and u(x, t) be the

weak solution of the Cauchy problem (1.1) and (1.2) with maximal existence
time interval [0, T ) such that u ∈ C1((0, T ), Hs ∩H1

0 ) and ut ∈ C((0, T ), Hs),
here T ≤ +∞. Assume that the initial data satisfy (1.14), (1.15) and (1.16),
then u ∈ YT .
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Proof. Arguing by contradiction, we suppose that there exists a first time t2 ∈
[0, T ) such that

I(u(t2)) = ‖ut(t2)‖2 + ‖uxt(t2)‖2 + ‖uxxt(t2)‖2(4.2)

and

I(u(t)) > ‖ut(t)‖2 + ‖uxt(t)‖2 + ‖uxxt(t)‖2, ∀t ∈ [0, t2).

From the (3.6)-(3.8) and Lemma 4.1, we obtain that L(t) and L′(t) are both
strictly decreasing on the interval [0, t2). And by (1.16), for all t ∈ (0, t2), we
get

L(u(t)) < ‖φ‖2 + ‖φx‖2 + ‖φxx‖2

< −2(φ, ψ)− 2(φx, ψx)− 2(φxx, ψxx)− 2(p+ 1)

p+ 3
E(0).

Moreover, from the continuity of ‖u‖2 + ‖ux‖2 + ‖uxx‖2 in t, we obtain

(4.3) L(u(t2)) < −2(φ, ψ)− 2(φx, ψx)− 2(φxx, ψxx)− 2(p+ 1)

p+ 3
E(0).

On the other hand, by Theorem 1.2, (1.10) and (1.11), we get

E(0) = E(t2) =
1

2
(‖ut(t2)‖2 + ‖uxt(t2)‖2 + ‖uxxt(t2)‖2) + J(u(t2))

=
1

2
(‖ut(t2)‖2 + ‖uxt(t2)‖2 + ‖uxxt(t2)‖2)

+
p− 1

2(p+ 1)
(‖ux(t2)‖2 + ‖uxx(t2)‖2) +

1

p+ 1
I(u(t2)).

Using (4.2), we obtain

E(0) = (
1

2
+

1

p+ 1
)(‖ut(t2)‖2 + ‖uxt(t2)‖2 + ‖uxxt(t2)‖2)

+ (
1

2
− 1

p+ 1
)(‖ux(t2)‖2 + ‖uxx(t2)‖2)

≥ p+ 3

2(p+ 1)
(‖ut(t2)‖2 + ‖uxt(t2)‖2 + ‖uxxt(t2)‖2).(4.4)

Then from the following equalities

‖ut(t2)‖2 = ‖ut(t2) + u(t2)‖2 − ‖u(t2)‖2 − 2(u(t2), ut(t2)),

‖uxt(t2)‖2 = ‖uxt(t2) + ux(t2)‖2 − ‖ux(t2)‖2 − 2(ux(t2), uxt(t2)),

‖uxxt(t2)‖2 = ‖uxxt(t2) + uxx(t2)‖2 − ‖uxx(t2)‖2 − 2(uxx(t2), uxxt(t2))

and Lemma 4.1, we get

E(0) ≥ p+ 3

2(p+ 1)
(‖ut(t2) + u(t2)‖2 + ‖uxt(t2) + ux(t2)‖2

+ ‖uxxt(t2) + uxx(t2)‖2)
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− p+ 3

2(p+ 1)
(‖u(t2)‖2 + ‖ux(t2)‖2 + ‖uxx(t2)‖2)

− 2
p+ 3

2(p+ 1)
((u(t2), ut(t2)) + (ux(t2), uxt(t2)) + (uxx(t2), utxx(t2)))

≥ − p+ 3

2(p+ 1)
(‖u(t2)‖2 + ‖ux(t2)‖2 + ‖uxx(t2)‖2)

− 2
p+ 3

2(p+ 1)
((φ(t2), ψ(t2)) + (φx(t2), ψx(t2)) + (φxx(t2), ψxx(t2))).(4.5)

So,
(4.6)

L(t2) ≥ −2((φ(t2), ψ(t2))+(φx(t2), ψx(t2))+(φxx(t2), ψxx(t2)))−2(p+ 1)

p+ 3
E(0).

It is obvious that (4.6) contradicts (4.3). This completes the proof. �

Proof of Theorem 1.6. From Theorem 1.1, there exists a unique local solution
of problem (1.1) and (1.2) defined on a maximal time interval [0, T ), T <
+∞. Let u(t) be the weak solution of problem (1.1) and (1.2) such that
u ∈ C1((0, T ), H1 ∩H1

0 ) and ut ∈ C((0, T ), H1) with (1.14), (1.15) and (1.16).
Then from Lemma 4.2, we have u(x, t) ∈ YT , namely for t ∈ [0, T ),

I(u(t)) > ‖ut(t)‖2 + ‖uxt(t)‖2 + ‖uxxt‖2.(4.7)

Therefore from Theorem 1.2, (1.10), (1.11) and (4.7), we obtain

E(0) = E(t) =
1

2
(‖ut(t)‖2 + ‖uxt(t)‖2 + ‖uxxt(t)‖2) + J(u)

=
1

2
(‖ut(t)‖2 + ‖uxt(t)‖2 + ‖uxxt(t)‖2)

+
p− 1

2(p+ 1)
(‖ux(t)‖2 + ‖uxx(t)‖2) +

1

p+ 1
I(u(t))

>
p+ 3

2(p+ 1)
(‖ut(t)‖2 + ‖uxt(t)‖2 + ‖uxxt(t)‖2)

+
p− 1

2(p+ 1)
(‖ux(t)‖2 + ‖uxx(t)‖2).

From the Poincaré inequality, that is ‖v‖2 ≤ C0‖vx‖2, ∀v ∈ H1
0 , where C0 is

a positive constant, it follows that u(x, t) is bounded in C1((0, T ), H2 ∩ H1
0 ),

ut(x, t) is bounded in C1((0, T ), H2). Hence from Theorem 1.1, it follows that
T =∞ and the solution of problem (1.1) and (1.2) exists globally. �
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