Browse > Article
http://dx.doi.org/10.4134/CKMS.2007.22.3.453

THREE-DIMENSIONAL NUMERICAL SIMULATIONS OF A PHASE-FIELD MODEL FOR ANISOTROPIC INTERFACIAL ENERGY  

Kim, Jun-Seok (DEPARTMENT OF MATHEMATICS DONGGUK UNIVERSITY)
Publication Information
Communications of the Korean Mathematical Society / v.22, no.3, 2007 , pp. 453-464 More about this Journal
Abstract
A computationally efficient numerical scheme is presented for the phase-field model of two-phase systems for anisotropic interfacial energy. The scheme is solved by using a nonlinear multigrid method. When the coefficient for the anisotropic interfacial energy is sufficiently high, the interface of the system shows corners or missing crystallographic orientations. Numerical simulations with high and low anisotropic coefficients show excellent agreement with exact equilibrium shapes. We also present spinodal decomposition, which shows the robustness of the pro-posed scheme.
Keywords
phase-field model; anisotropy; interfacial energy; Cahn-Hilliard equation; nonlinear multigrid method;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 W. K. Burton, N. Cabrera, and F. C. Frank, The growth of crystals and the equilibrium structure of their surfaces, Trans. R. Soc. Lond. A 243 (1951), 299-358   DOI
2 D. J. Eyre, An unconditionally stable one-step scheme for gradient systems, Preprint, University of Utah, Salt Lake City, 1997
3 W. W. Mullins, Proof that the two dimensional shape of minimum surface free energy is convex, J. Math. Phys. 3 (1962), 754-759   DOI
4 J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys. 28 (1958), 258-267   DOI
5 J. J. Eggleston, G. B. McFadden, and P. W. Voorhees, A phase-field model for highly anisotropic interfacial energy, Physica D 150 (2001), 91-103   DOI   ScienceOn
6 F. C. Frank, Metal Surfaces, ASM, Cleveland, OH, 1963
7 D. W. Hoffman and J. W. Cahn, A vector thermodynamics for anisotropic surfaces. I. Fundamentals and application to plane surface junctions, Surf. Sci. 31 (1972), 368-388   DOI   ScienceOn
8 J. S. Kim, A continuous surface tension force formulation for diffuse-interface models, J. Comput. Phys. 204 (2005), 784-804   DOI   ScienceOn
9 J. S. Kim and J. Sur, A hybrid method for higher-order nonlinear diffusion equations, Commun. Korean Math. Soc. 20 (2005), no. 1,179-193   과학기술학회마을   DOI   ScienceOn
10 A. A. Wheeler, W. J. Boettinger, and G. B. McFadden, Phase-field model for isothermal phase transitions in binary alloys, Phys. Rev. A 45 (1992), 7424-7439   DOI   ScienceOn
11 Y. Wang, L. Q. Chen, and A. G. Khachaturyan, Kinetics of strain-induced morphological transformation in cubic alloys with a miscibility gap, Acta Metall. 41 (1993), 279-296   DOI   ScienceOn
12 A. A. Wheeler and G. B. McFadden, On the notion of a $\xi$-vector and a stress tensor for a general class of anisotropic diffuse interface models, Proc. R. Soc. Land. A 453 (1997), 1611-1630   DOI   ScienceOn
13 U. Trottenberg, C. Oosterlee, and A. Schuller, MULTIGRID, Academic Press, 2001
14 B. P. Vollmayr-Lee and A. D. Rutenberg, Fast and accurate coarsening simulation with an unconditionally stable time step, Phys Rev E, 68 (2003), 1-13   DOI
15 M. Siegel, M. J. Miksis, and P. W. Voorhees, Evolution of material voids for highly anisotropic surface energy, J. Mech. Phys. Solids 52 (2004), 1319-1353   DOI   ScienceOn
16 T. Takaki, T. Hasebe, and Y. Tomita, Two-dimensional phase-field simulation of selfassembled quantum dot formation, J. Crystal Growth 287 (2006), 495-499   DOI   ScienceOn
17 Y. W. Zhang, Self-organization, shape transition, and stability of epitaxially strained islands, Phys. Rev. B 61 (2000), 388-392   DOI   ScienceOn