• Title/Summary/Keyword: nano delivery system

Search Result 84, Processing Time 0.026 seconds

Drug localization by magnetic fluids of $Cu_xFe_{1-x}OFe_2O_3$

  • Park, S. I.;Y. Q. Huang;Kim, C. O.;Kim, J. H.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.88-89
    • /
    • 2002
  • Studies on drug delivery using nano-size particles of magnetic fluid and hyperthermia have been performed by some researchers [1] because interests in human health increased according to industry development. However, there are few studies on systems which can accurately control delivery of the magnetic fluids to a diseased part of body [2]. In this study, Cu-added magnetic ferrofluid was prepared and the external magnetic field system was designed for drug localization.

  • PDF

Manufacture and Physicochemical Properties of Chitosan Oligosaccharide/A2 β-Casein Nano-Delivery System Entrapped with Resveratrol

  • Kim, Mi Young;Ha, Ho-Kyung;Ayu, Istifiani Lola;Han, Kyoung-Sik;Lee, Won-Jae;Lee, Mee-Ryung
    • Food Science of Animal Resources
    • /
    • v.39 no.5
    • /
    • pp.831-843
    • /
    • 2019
  • The purposes of this research were to form chitosan oligosaccharide (CSO)/A2 ${\beta}$-casein nano-delivery systems (NDSs) and to investigate the effects of production variables, such as CSO concentration levels (0.1%, 0.2%, and 0.3%, w/v) and manufacturing temperature ($5^{\circ}C$, $20^{\circ}C$, and $35^{\circ}C$), on the production and physicochemical characteristics of CSO/A2 ${\beta}$-casein NDSs to carry resveratrol. The morphological characteristics of CSO/A2 ${\beta}$-casein NDSs were assessed by the use of transmission electron microscopy (TEM) and particle size analyzer. High-performance liquid chromatography (HPLC) was applied to determine the entrapment efficiency (EE) of resveratrol. In the TEM images, globular-shaped particles with a diameter from 126 to 266 nm were examined implying that NDSs was successfully formed. As CSO concentration level was increased, the size and zeta-potential values of NDSs were significantly (p<0.05) increased. An increase in manufacturing temperature from $5^{\circ}C$ to $35^{\circ}C$ resulted in a significant (p<0.05) increase in the size and polydispersity index of NDSs. Over 85% of resveratrol was favorably entrapped in CSO/A2 ${\beta}$-casein NDSs. The entrapment efficiency (EE) of resveratrol was significantly (p<0.05) enhanced with an increase in manufacturing temperature while CSO concentration level did not significantly affect EE of resveratrol. There were no significant (p<0.05) changes observed in the size and polydispersity index of NDSs during heat treatments and storage in model milk and yogurt indicating that CSO/A2 ${\beta}$-casein NDSs exhibited excellent physical stability. In conclusion, the CSO concentration level and manufacturing temperature were the crucial determinants affecting the physicochemical characteristics of CSO/A2 ${\beta}$-casein NDSs containing resveratrol.

Characterization of Biocompatible Lipid-Based Vesicles Contained with Medicinal Herb Extracts

  • Lee, Kyu-Jin;Park, Sun young;Park, Geuntae
    • Journal of Environmental Science International
    • /
    • v.27 no.10
    • /
    • pp.853-863
    • /
    • 2018
  • In order to increase the medicinal herbs efficiency of drug delivery, vesicles contained with medicinal herbs were prepared by phosphatidylcholines and surface active agent. Vesicles loaded with medicinal herbs were characterized by UV-spectroscopy, Zetasizer. The antioxidant activity of vesicles was measured by DPPH assay and ABTS radical scavenging assays. Also, an analysis was conducted to determine the effects of anti-inflammatory of vesicles contained medicinal herbs. In addition, the whitening effects of vesicles contained medicinal herbs extract were studied via tyrosinase inhibition assay. The results of vesicles were as follows. Vesicles appeared an average diameter of approximatively 164-599 nm. All studied vesicles contained with medicinal herbs showed antioxidant, anti-inflammatory and whitening effects in a dose-dependent manner. Therefore, this experiment achieves its purpose of synthesizing of vesicles. In conclusion, we recommended that the vesicles loaded with medicinal herbs have ability for anti-aging materials. Specifically, it will apply to cosmetic ingredients.

Efficient Delivery of Toxoid Antigens using Micro/Nano-carriers (마이크로/나노-운반체를 이용한 톡소이드 항원의 효과적인 전달 방법)

  • Park, Ga-Young;Ahn, Gna;Lee, Se Hee;Kim, Sang Bum;Kim, Yang-Hoon;Ahn, Ji-Young
    • Journal of Life Science
    • /
    • v.28 no.4
    • /
    • pp.496-507
    • /
    • 2018
  • Immunization has been performed for centuries and is generally accepted as a sustainable method of controlling bacteria, viruses, and mediated and infectious diseases. Despite many studies having been performed on animal subjects to demonstrate the importance of toxin immunity, the use of toxoid vaccines in humans and animals has been limited for a long time. Recently, the development of the toxoid antigen delivery system has been facilitated using novel nano-medicinal technology. The micro/nano-carrier has been used to improve vaccination coverage as well as reduce vaccine costs. A micro/nano-carrier is a micro/nano-sized material that delivers immune cargo, including recombinant or peptide toxoid antigens. These toxoid antigens are either encapsulated in the interior or displayed on the surface of micro/nano-carriers as a way to protect them from the cellular machinery. In particular, the combination of toxoid antigens and micro/nano-carriers can induce phagocytosis through the specific interactions between GCs and macrophages; thus, the toxoid antigens can be delivered easily into the macrophages. This paper reviews recent achievements of micro/nano-carriers in the field of vaccine delivery systems such as microbial ghost cells (GCs, Bacterial ghost cells and Yeast ghost cells), gene-manipulated outer membrane vesicles (OMVs) and biocompatible, polymer-based nanoparticles (NPs, NP-Carrier and NP-Cage). Finally, this review shows various aspects in terms of the hosts' immune responses.

Drug Delivery System Using Electrospun Nanofiber Mats (전기방사된 나노파이버 매트를 이용한 약물전달시스템에 관한 연구)

  • Yoon, Hyeon;Park, Yoon-Kyung;Kim, Geun-Hyung
    • Polymer(Korea)
    • /
    • v.33 no.3
    • /
    • pp.219-223
    • /
    • 2009
  • The nanofibers fabricated by using an electrohydrodynamic process has been used as various applications, such as nano-device, filtering system, protective clothes, wound dressing, and drug delivery system (DDS). Of these applications, the DDS should be needed to minimize side effects of drugs, maximize the properties of medicine, and efficiently deliver the required amount of drugs to the diseased area. In this paper, by using the electro spinning process, which is one of electrohydrodynamic processes, two different types, polycarprolactone and poly(ethylene oxide)/Rhodamine B, of electrospun mats were fabricated layer by layer and the release behavior of Rhodamine B was characterized with time. In addition, to show the feasibility of DDS of this type, we tested release behavior of a peptide of the nanofiber system, a PCL/(Peptide+PEO)/PCL nanofiber mat. The released peptide did not loss biological activities. From these results, we believe that the layered nanofiber mat as a DDS has enough function of a new drug delivery system.

Study on the Stability of Biotin-containing Nano-liposome (바이오틴 함유 나노리포좀의 안정성에 관한 연구)

  • Yang, Seong Jun;Kim, Tae Yang;Lee, Chun Mong;Lee, Kwang Sik;Yoon, Kyung-Sup
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.2
    • /
    • pp.133-145
    • /
    • 2020
  • This study utilized nano-liposomes for the purpose of stabilizing and increasing the solubility of biotin, a water-soluble active material with low solubility. The particle size, zeta potential, and polydispersity index were confirmed with a nano zetasizer. It was possible to manufacture nano liposomes at 100 to 250 nm of particle size and -80 to -30 mV of zeta potential. Dialysis membrane method (DMM) was used to measure the capsulation efficiency of biotin in biotin nano-liposomes, and results showed that pH increased biotin nano-liposomes had higher capsulation efficiency than normal biotin nano-liposome. Through this experiment, it was confirmed that the pH has a great influence on the stability of biotin nano-liposomes. In vitro franz diffusion cell method was used to measure in vitro skin absorption rate of biotin nano-liposomes. The shape of the formulation and biotin solubility in nano-liposome was observed by cryogenic transmission electron microscopy (cryo-TEM). Through this study, we confirmed that biotin, which is introduced as closely related to hair health, can be incorporated into a nano-liposome drug delivery system, to make biotin nano-liposome with improved solubility and precipitation problems.

Transdermal Delivery of FITC-Ovalbumin with Microneedle System (마이크로 피부침을 이용한 FITC-OVA의 경피흡수)

  • Jang, Woo-Young;Lee, Chang-Rae;Seo, Seong-Mi;Lee, Bong;Kim, Moon-Suk;Khang, Gil-Son;Lee, Han-Gu;Lee, Hai-Bang
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.6
    • /
    • pp.403-409
    • /
    • 2005
  • For transdermal delivery of large molecular drugs such as vaccine and protein drugs, novel microneedle treatment device with roll was designed. The roll dimension is 1.43 cm diameter and 2.8 cm perimeter. Total number of microneedle on the roll is 3,360 with $230\;{\mu}m$ height and $740\;{\mu}m$ distance. The pore with $150\;{\mu}m$ depth and $35\;{\mu}m$ diameter on the skin was made by the designed microneedle device. This system could be achieved without pain. The permeation rates of FITC labelled ovalbumin (FITC-OVA, molecular weight: 45,000 g/mol) as a model protein were determined by modified Franz diffusion cells using skins of hairless mice or SD rats which were treated by using microneedle device two or four times. The average penetration fluxes of model protein increased from 674 to $872\;{\mu}g/cm^{2}{\cdot}hr$ as the number of treatment to make pore increased from two to four times. In conclusion, we confirmed the possibility of using the designed microneedle treatment device for transdermal delivery of the large molecular drugs.

Formation of Nano-emulsions with Resorcinol bis-ethylhexanoate upon Type of Emulsifiers (레조르시놀 비스-에틸헥사노에이트를 함유한 나노에멀젼의 유화제 종류에 따른 형성)

  • Cho, Wan Goo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.1
    • /
    • pp.29-35
    • /
    • 2016
  • RS White (resorcinol bis-ethylhexanoate) is used in cosmetics as a skin whitening agent. In this study, we studied the possibility of nano-emulsion formation containing whitening agent, RS White, with different types of emulsifying agents. With Tween 80, 60, HCO 60 and 40 as a hydrophilic surfactants and Span 80 as ahydrophilic surfactant, nano-emulsions were formed at appropriate concentrations, but they were not formed in the system using the Myrj 52, Montanov L, and Tegocare 450 with Span 80. The diameter of nano-emulsion sphere was smaller than 100 nm. The emulsion showed a translucent appearance and maintained stability in stability evaluation with time. In vitro skin permeation experiments showed that amounts of skin permeated nano-emulsion for 24 h were $70.84{\mu}g/cm^2$ and those of O/W emulsion were $28.97{\mu}g/cm^2$. In conclusion, a stable nano-emulsion containing the resorcinol bis-ethylhexanoate is effective for potential efficacy system as an efficient delivery system of the functional materials into skin.

Synthesis of Lactide/Hyaluronic Acid Polymer Membrane for the Application of Drug Delivery System (약물방출시스템 적용을 위한 락타이드/히아루론산 고분자 막의 제조)

  • Kim, Min-Su;Kwon, Ji-Young;Cheong, Seong-Ihl
    • Membrane Journal
    • /
    • v.15 no.4
    • /
    • pp.281-288
    • /
    • 2005
  • The hyaluronic acid (HA) with excellent biocompatibility can be combined with lactide, the ester dimer of polylactide, with good biodegradability to produce biocompatible materials applicable to drug delivery system. By freeze drying method, HA and lactide were crosslinked with crosslinking agent, 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide. Degree of lactide and EDC reaction was determined by the analysis of nuclear magnetic resonance (NMR) spectroscopy. The degree of lactide and EDC reaction increased and swelling ratio decreased as the mole ratio of lactide to HA or crosslinking agent concentration increased or reaction temperature decreased. The drug release experiment result from membranes having different degree of lactide reaction showed that drug release rate reduced in proportion to the degree of lactide reaction. The drug release experiment result from drugs having different hyrodphobicity showed that the more hydrophobic drug was released more slowly.

Development and Prospect of Emulsion Technology in Cosmetics (화장품에서 유화기술의 발전 및 전망)

  • Kyong, Kee-Yeol;Lee, Cheon-Koo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.4 s.59
    • /
    • pp.209-217
    • /
    • 2006
  • Emulsion is a dispersion system among liquids which are not miscible together. There are numerous cosmetic raw materials which have different physicochemical properties. Therefore, emulsion technology is very useful in cosmetics. With the development of emulsifier, several emulsification technologies have been developed. Since HLB method by Griffin in 1950's, PIT method, gel method, and D-phase methods, etc, have been developed. Recently, the application of natural emulsifier and polymeric emulsifier increases in cosmetics in order to achieve enhanced safety and biocompatibility. Besides nano-emulsion, multiple-emulsion, liquid crystal emulsion, and Pickering emulsion have been developed and applied as means of differentiating appearance and texture of products and achieving enhanced delivery of active ingredients. Meanwhile, the application studies of nano-dispersed structural system such as liposome or cubosome are on progress. Liposome is a bi- or multi-lamella layer dispersion system composed of amhiphilic molecules - phospholipids which are main components of plasma membrane. Cubosome also is a nano-sized dispersion system composed of a specific molecule like glyceryl monoloeate derived from natural products. And it has a cubic bicontinuous structure in water due to its unique molecular structure. Incorporating compounds (active materials) into such nano-particles can increase biocompatibility and delivery efficiency of target compounds. Manufacturing process and application of cosmetic emulsions and nano-particles are briefly introduced in this paper.