Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.4.496

Efficient Delivery of Toxoid Antigens using Micro/Nano-carriers  

Park, Ga-Young (School of Biological Sciences, Chungbuk National University)
Ahn, Gna (School of Biological Sciences, Chungbuk National University)
Lee, Se Hee (School of Biological Sciences, Chungbuk National University)
Kim, Sang Bum (Dairy Science Division, National Institute of Animal Science, Rural Development Administration)
Kim, Yang-Hoon (School of Biological Sciences, Chungbuk National University)
Ahn, Ji-Young (School of Biological Sciences, Chungbuk National University)
Publication Information
Journal of Life Science / v.28, no.4, 2018 , pp. 496-507 More about this Journal
Abstract
Immunization has been performed for centuries and is generally accepted as a sustainable method of controlling bacteria, viruses, and mediated and infectious diseases. Despite many studies having been performed on animal subjects to demonstrate the importance of toxin immunity, the use of toxoid vaccines in humans and animals has been limited for a long time. Recently, the development of the toxoid antigen delivery system has been facilitated using novel nano-medicinal technology. The micro/nano-carrier has been used to improve vaccination coverage as well as reduce vaccine costs. A micro/nano-carrier is a micro/nano-sized material that delivers immune cargo, including recombinant or peptide toxoid antigens. These toxoid antigens are either encapsulated in the interior or displayed on the surface of micro/nano-carriers as a way to protect them from the cellular machinery. In particular, the combination of toxoid antigens and micro/nano-carriers can induce phagocytosis through the specific interactions between GCs and macrophages; thus, the toxoid antigens can be delivered easily into the macrophages. This paper reviews recent achievements of micro/nano-carriers in the field of vaccine delivery systems such as microbial ghost cells (GCs, Bacterial ghost cells and Yeast ghost cells), gene-manipulated outer membrane vesicles (OMVs) and biocompatible, polymer-based nanoparticles (NPs, NP-Carrier and NP-Cage). Finally, this review shows various aspects in terms of the hosts' immune responses.
Keywords
Ghost cells (GCs); micro/nano carrier; nanoparticles (NPs); outer membrane vesicles (OMVs); toxoid antigen;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kulp, A. and Kuehn, M. J. 2010. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 64, 163-184.   DOI
2 Langemann, T., Koller, V.J., Muhammad, A., Kudela, P., Mayr, U. B. and Lubitz, W. 2010. The Bacterial Ghost platform system: production and applications. Bioeng. Bugs 1, 326-336.   DOI
3 Li, X., Deng, X., Yuan, M., Xiong, C., Huang, Z., Zhang, Y. and Jia, W. 2000. In vitro degradation and release profiles of Poly-DLLactide-Poly (ethylene glycol) microspheres with entrapped proteins. J. Appl. Polym. Sci. 78, 140-148.   DOI
4 Lim, S. and Yoon, H. 2015. Roles of outer memrane vesicles (OMVs) in bacterial virulence. J. Bacteriol. Virol. 45, 1-10.   DOI
5 Liu, H., Jia, Z., Yang, C., Song, M., Jing, Z., Zhao, Y., Wu, Z., Zhao, L., Wei, D., Yin, Z. and Hong, Z. 2018. Aluminum hydroxide colloid vaccine encapsulated in yeast shells with enhanced humoral and cellular immune responses. Biomaterials 167, 32-43.   DOI
6 Berner, V. K., duPre, S. A., Redelman, D. and Hunter, K. W. 2015. Microparticulate beta-glucan vaccine conjugates phagocytized by dendritic cells activate both naive CD4 and CD8 T cells in vitro. Cell Immunol. 298, 104-114.   DOI
7 Berner, V. K., Sura, M. E. and Hunter, K. W. J. 2008. Conjugation of protein antigen to microparticulate beta-glucan from Saccharomyces cerevisiae: a new adjuvant for intradermal and oral immunizations. Appl. Microbiol. Biotechnol. 80, 1053-1061.   DOI
8 Beveridge, T. J. 1999. Structures of gram-negative cell walls and their derived membrane vesicles. J. Bacteriol. 181, 4725-4733.
9 Biswas, S., Chattopadhyay, M., Sen, K. K. and Saha, M. K. 2015. Development and characterization of alginate coated low molecular weight chitosan nanoparticles as new carriers for oral vaccine delivery in mice. Carbohydr. Polym. 121, 403-410.   DOI
10 Manolova, V., Flace, A., Bauer, M., Schwarz, K., Saudan, P. and Bachmann, M. F. 2008. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol. 38, 1404-1413.   DOI
11 Mansoor, F., Earley, B., Cassidy, J. P., Markey, B., Doherty, S. and Welsh, M. D. 2015. Comparing the immune response to a novel intranasal nanoparticle PLGA vaccine and a commercial BPI3V vaccine in dairy calves. BMC Vet. Res. 11, 1-11.   DOI
12 Mashburn-Warren, L., Howe, J., Garidel, P., Richter, W., Steiniger, F., Roessle, M., Brandenburg, K. and Whiteley, M. 2008. Interaction of quorum signals with outer membrane lipids: insights into prokaryotic membrane vesicle formation. Mol. Microbiol. 69, 491-502.   DOI
13 Vinod, N., Oh, S., Kim, S., Choi, C. W., Kim, S. C. and Jung, C. H. 2014. Chemically induced Salmonella enteritidis ghosts as a novel vaccine candidate against virulent challenge in a rat model. Vaccine 32, 3249-3255.   DOI
14 Tavano, R., Franzoso, S., Cecchini, P., Cartocci, E., Oriente, F., Arico, B. and Papini, E. 2009. The membrane expression of Neisseria meningitidis adhesin A (NadA) increases the proimmune effects of MenB OMVs on human macrophages, compared with NadA- OMVs, without further stimulating their proinflammatory activity on circulating monocytes. J. Leukoc Biol. 86, 143-153.   DOI
15 Tipper, D. J. and Szomolanyi-Tsuda, E. 2016. Scaffolded antigens in yeast cell particle vaccines provide protection against systemic polyoma virus infection. J. Immunol. Res. 2016, 1-15.
16 Vartak, A. and Sucheck, S. J. 2016. Recent advances in subunit vaccine carriers. Vaccines (Basel). 4, 1-18.   DOI
17 Walcher, P., Cui, X., Arrow, J. A., Scobie, S., Molinia, F. C., Cowan, P. E., Lubitz, W. and Duckworth, J. A. 2008. Bacterial ghosts as a delivery system for zona pellucida-2 fertility control vaccines for brushtail possums (Trichosurus vulpecula). Vaccine 26, 6832-6838.   DOI
18 Weiner, A., Mellouk, N., Lopez-Montero, N., Chang, Y. Y., Souque, C., Schmitt, C. and Enninga, J. 2016. Macropinosomes are key players in early shigella invasion and vacuolar escape in epithelial cells. PLoS Pathog. 12, 1-24.
19 Wendorf, J., Chesko, J., Kazzaz, J., Ugozzoli, M., Vajdy, M., O'Hagan, D. and Singh, M. 2008. A comparison of anionic nanoparticles and microparticles as vaccine delivery systems. Hum. Vaccin. 4, 44-49.   DOI
20 Witte, A., Wanner, G., Sulzner, M. and Lubitz, W. 1992. Dynamics of PhiX174 protein E-mediated lysis of Escherichia coli. Arch. Microbiol. 157, 381-388.   DOI
21 Cai, K., Zhang, Y., Yang, B. and Chen, S. 2013. Yersinia enterocolitica ghost with msbB mutation provides protection and reduces proinflammatory cytokines in mice. Vaccine 31, 334-340.   DOI
22 Brown, G. D., Herre, J., Williams, D. L., Willment, J. A., Marshall, A. S. and Gordon, S. 2003. Dectin-1 mediates the biological effects of beta-glucans. J. Exp. Med. 197, 1119-1124.   DOI
23 Bystricky, S., Machova, E., Bartek, P., Kolarova, N. and Kogan, G. 2000. Conjugation of yeast mannans with protein employing cyanopyridinium agent (CDAP)--an effective route of antifungal vaccine preparation. Glycoconj. J. 17, 677-680.   DOI
24 Cai, K., Tu, W., Liu, Y., Li, T. and Wang, H. 2015. Novel fusion antigen displayed-bacterial ghosts vaccine candidate against infection of Escherichia coli O157:H7. Sci. Rep. 5, 1-10.
25 Banerjee, A., Qi, J., Gogoi, R., Wong, J. and Mitragotri, S. 2016. Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J. Control. Release 238, 176-185.   DOI
26 Amirnasr, M., Fallah Tafti, T., Sankian, M., Rezaei, A. and Tafaghodi, M. 2016. Immunization against HTLV-I with chitosan and tri-methylchitosan nanoparticles loaded with recombinant env23 and env13 antigens of envelope protein gp46. Microb. Pathog. 97, 38-44.   DOI
27 Canas, M. A., Gimenez, R., Fabrega, M. J., Toloza, L., Baldoma, L. and Badia, J. 2016. Outer membrane vesicles from the probiotic escherichia coli nissle 1917 and the commensal ECOR12 enter intestinal epithelial cells via clathrin-dependent endocytosis and elicit differential effects on DNA damage. PLoS One 11, 1-22.
28 Cecil, J. D., O'Brien-Simpson, N. M., Lenzo, J. C., Holden, J. A., Singleton, W., Perez-Gonzalez, A., Mansell, A. and Reynolds, E. C. 2017. Outer membrane vesicles prime and activate macrophage inflammasomes and cytokine secretion in vitro and in vivo. Front. Immunol. 8, 1-22.
29 Chudina, T., Labyntsev, A., Manoilov, K., Kolybo, D. and Komisarenko, S. 2015. Cellobiose-coated poly(lactide-coglycolide) particles loaded with diphtheria toxoid for per os immunization. Croat. Med. J. 56, 85-93.   DOI
30 Baert, K., De Geest, B. G., De Greve, H., Cox, E. and Devriendt, B. 2016. Duality of beta-glucan microparticles: antigen carrier and immunostimulants. Int. J. Nanomedicine 11, 2463-2469.
31 Bansal, V., Kumar, M., Dalela, M., Brahmne, H. G. and Singh, H. 2014. Evaluation of synergistic effect of biodegradable polymeric nanoparticles and aluminum based adjuvant for improving vaccine efficacy. Int. J. Pharm. 471, 377-384.   DOI
32 Bartolini, E., Ianni, E., Frigimelica, E., Petracca, R., Galli, G., Berlanda Scorza, F., Norais, N., Laera, D., Giusti, F., Pierleoni, A., Donati, M., Cevenini, R., Finco, O., Grandi, G. and Grifantini, R. 2013. Recombinant outer membrane vesicles carrying Chlamydia muridarum HtrA induce antibodies that neutralize chlamydial infection in vitro. J. Extracell. Vesicles 2, 1-14.
33 Batbayar, S., Lee, D. H. and Kim, H. W. 2012. Immunomodulation of fungal beta-glucan in host defense signaling by dectin-1. Biomol. Ther. (Seoul) 20, 433-445.   DOI
34 Baxter, D. 2007. Active and passive immunity, vaccine types, excipients and licensing. Occup. Med. (Lond) 57, 552-556.   DOI
35 Montanaro, J., Inic-Kanada, A., Ladurner, A., Stein, E., Belij, S., Bintner, N., Schlacher, S., Schuerer, N., Mayr, U. B., Lubitz, W., Leisch, N. and Barisani-Asenbauer, T. 2015. Escherichia coli Nissle 1917 bacterial ghosts retain crucial surface properties and express chlamydial antigen: an imaging study of a delivery system for the ocular surface. Drug Des. Devel. Ther. 9, 3741-3754.
36 Conway, M. A., Madrigal-Estebas, L., McClean, S., Brayden, D. J. and Mills, K. H. 2001. Protection against Bordetella pertussis infection following parenteral or oral immunization with antigens entrapped in biodegradable particles: effect of formulation and route of immunization on induction of Th1 and Th2 cells. Vaccine 19, 1940-1950.   DOI
37 Daleke-Schermerhorn, M. H., Felix, T., Soprova, Z., Ten Hagen-Jongman, C. M., Vikstrom, D., Majlessi, L., Beskers, J., Follmann, F., de Punder, K., van der Wel, N. N., Baumgarten, T., Pham, T. V., Piersma, S. R., Jimenez, C. R., van Ulsen, P., de Gier, J. W., Leclerc, C., Jong, W. S. and Luirink, J. 2014. Decoration of outer membrane vesicles with multiple antigens by using an autotransporter approach. Appl. Environ. Microbiol. 80, 5854-5865.   DOI
38 De Jong, W. H. and Borm, P. J. 2008. Drug delivery and nanoparticles:applications and hazards. Int. J. Nanomedicine 3, 133-149.
39 Mayr, U. B., Haller, C., Haidinger, W., Atrasheuskaya, A., Bukin, E., Lubitz, W. and Ignatyev, G. 2005. Bacterial ghosts as an oral vaccine: a single dose of Escherichia coli O157:H7 bacterial ghosts protects mice against lethal challenge. Infect. Immun. 73, 4810-4817.   DOI
40 Mayr, U. B., Walcher, P., Azimpour, C., Riedmann, E., Haller, C. and Lubitz, W. 2005. Bacterial ghosts as antigen delivery vehicles. Adv. Drug Deliv. Rev. 57, 1381-1391.   DOI
41 Moyle, P. M. and Toth, I. 2013. Modern subunit vaccines: development, components, and research opportunities. Chem. Med. Chem. 8, 360-376.   DOI
42 Oh, N. and Park, J. H. 2014. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int. J. Nanomedicine 9 Suppl 1, 51-63.
43 De Smet, R., Demoor, T., Verschuere, S., Dullaers, M., Ostroff, G. R., Leclercq, G., Allais, L., Pilette, C., Dierendonck, M., De Geest, B. G. and Cuvelier, C. A. 2013. beta-Glucan microparticles are good candidates for mucosal antigen delivery in oral vaccination. J. Control. Release 172, 671-678.   DOI
44 Donato, G. M., Goldsmith, C. S., Paddock, C. D., Eby, J. C., Gray, M. C. and Hewlett, E. L. 2012. Delivery of Bordetella pertussis adenylate cyclase toxin to target cells via outer membrane vesicles. FEBS Lett. 586, 459-465.   DOI
45 Mulcahy, L. A., Pink, R. C. and Carter, D. R. 2014. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles 3, 1-14.
46 Nagamoto, T., Hattori, Y., Takayama, K. and Maitani, Y. 2004. Novel chitosan particles and chitosan-coated emulsions inducing immune response via intranasal vaccine delivery. Pharm. Res. 21, 671-674.   DOI
47 O'Donoghue, E. J. and Krachler, A. M. 2016. Mechanisms of outer membrane vesicle entry into host cells. Cell Microbiol. 18, 1508-1517.   DOI
48 Pan, Y., Li, X., Kang, T., Meng, H., Chen, Z., Yang, L., Wu, Y., Wei, Y. and Gou, M. 2015. Efficient delivery of antigen to DCs using yeast-derived microparticles. Sci. Rep. 5, 1-9.
49 Yan, J., Allendorf, D. J. and Brandley, B. 2005. Yeast whole glucan particle (WGP) beta-glucan in conjunction with antitumour monoclonal antibodies to treat cancer. Expert. Opin. Biol. Ther. 5, 691-702.   DOI
50 Xiang, S. D., Scholzen, A., Minigo, G., David, C., Apostolopoulos, V., Mottram, P. L. and Plebanski, M. 2006. Pathogen recognition and development of particulate vaccines: does size matter? Methods 40, 1-9.   DOI
51 Young, K. D. and Young, R. 1982. Lytic action of cloned phi X174 gene E. J. Virol. 44, 993-1002.
52 Ellis, T. N. and Kuehn, M. J. 2010. Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol. Mol. Biol. Rev. 74, 81-94.   DOI
53 Driscoll, M., Hansen, R., Ding, C., Cramer, D. E. and Yan, J. 2009. Therapeutic potential of various beta-glucan sources in conjunction with anti-tumor monoclonal antibody in cancer therapy. Cancer Biol. Ther. 8, 218-225.   DOI
54 Ebensen, T., Paukner, S., Link, C., Kudela, P., de Domenico, C., Lubitz, W. and Guzman, C. A. 2004. Bacterial ghosts are an efficient delivery system for DNA vaccines. J. Immunol. 172, 6858-6865.   DOI
55 Eko, F. O., Lubitz, W., McMillan, L., Ramey, K., Moore, T. T., Ananaba, G. A., Lyn, D., Black, C. M. and Igietseme, J. U. 2003. Recombinant Vibrio cholerae ghosts as a delivery vehicle for vaccinating against Chlamydia trachomatis. Vaccine 21, 1694-1703.   DOI
56 Fantappie, L., de Santis, M., Chiarot, E., Carboni, F., Bensi, G., Jousson, O., Margarit, I. and Grandi, G. 2014. Antibody-mediated immunity induced by engineered Escherichia coli OMVs carrying heterologous antigens in their lumen. J. Extracell. Vesicles 3, 1-14.
57 Felnerova, D., Kudela, P., Bizik, J., Haslberger, A., Hensel, A., Saalmuller, A. and Lubitz, W. 2004. T cell-specific immune response induced by bacterial ghosts. Med. Sci. Monit. 10, BR362-BR370.
58 Florindo, H. F., Pandit, S., Goncalves, L. M., Alpar, H. O. and Almeida, A. J. 2008. Streptococcus equi antigens adsorbed onto surface modified poly-epsilon-caprolactone microspheres induce humoral and cellular specific immune responses. Vaccine 26, 4168-4177.   DOI
59 Fifis, T., Gamvrellis, A., Crimeen-Irwin, B., Pietersz, G. A., Li, J., Mottram, P. L., McKenzie, I. F. and Plebanski, M. 2004. Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J. Immunol. 173, 3148-3154.   DOI
60 Figueiredo, D., Turcotte, C., Frankel, G., Li, Y., Dolly, O., Wilkin, G., Marriott, D., Fairweather, N. and Dougan, G. 1995. Characterization of recombinant tetanus toxin derivatives suitable for vaccine development. Infect. Immun. 63, 3218-3221.
61 Gerritzen, M .J. H., Martens, D.E., Wijffels, R.H., van der Pol, L. and Stork, M. 2017. Bioengineering bacterial outer membrane vesicles as vaccine platform. Biotechnol. Adv. 35, 565-574.   DOI
62 Ghalavand, M., Saadati, M., Ahmadi, A., Abbasi, E. and Salimian, J. 2018. Immunological evaluation of chitosan nanoparticles loaded with tetanus toxoid. Bratisl Lek Listy 119, 71-74.
63 Goodridge, H. S., Reyes, C. N., Becker, C. A., Katsumoto, T. R., Ma, J., Wolf, A. J., Bose, N., Chan, A.S., Magee, A.S., Danielson, M.E., Weiss, A., Vasilakos, J.P. and Underhill, D.M. 2011. Activation of the innate immune receptor Dectin-1 upon formation of a 'phagocytic synapse'. Nature 472, 471-475.   DOI
64 Gregory, A. E., Titball, R. and Williamson, D. 2013. Vaccine delivery using nanoparticles. Fron. Cell Infect. Microbiol. 3, 1-13.
65 Hajam, I. A., Dar, P. A., Won, G. and Lee, J. H. 2017. Bacterial ghosts as adjuvants: mechanisms and potential. Vet. Res. 48, 1-13.   DOI
66 Salverda, M. L., Meinderts, S. M., Hamstra, H. J., Wagemakers, A., Hovius, J. W., van der Ark, A., Stork, M. and van der Ley, P. 2016. Surface display of a borrelial lipoprotein on meningococcal outer membrane vesicles. Vaccine 34, 1025-1033.   DOI
67 Park, S. J., Lee, S. J., Kim, K. H. and Kim, S. K. 2011. High cell density fed-batch fermentation for the production of recombinant E. coli K-12 ghost vaccine against streptococcal disease. Biotechnol. Bioprocess Eng. 16, 733-738.   DOI
68 Prados-Rosales, R., Carreno, L. J., Batista-Gonzalez, A., Baena, A., Venkataswamy, M. M., Xu, J., Yu, X., Wallstrom, G., Magee, D. M., LaBaer, J., Achkar, J. M., Jacobs, W. R. Jr., Chan, J., Porcelli, S. A. and Casadevall, A. 2014. Mycobacterial membrane vesicles administered systemically in mice induce a protective immune response to surface compartments of Mycobacterium tuberculosis. MBio. 5, 1-14.   DOI
69 Rappaport, R. S., Bonde, G., McCann, T., Rubin, B. A. and Tint, H. 1974. Development of a purified cholera toxoid. II. Preparation of a stable, antigenic toxoid by reaction of purified toxin with glutaraldehyde. Infect. Immun. 9, 304-317.
70 Riedmann, E. M., Kyd, J. M., Smith, A. M., Gomez-Gallego, S., Jalava, K., Cripps, A. W. and Lubitz, W. 2003. Construction of recombinant S-layer proteins (rSbsA) and their expression in bacterial ghosts--a delivery system for the nontypeable Haemophilus influenzae antigen Omp26. FEMS Immunol. Med. Microbiol. 37, 185-192.   DOI
71 Sanchez, A., Villamayor, B., Guo, Y., McIver, J. and Alonso, M. J. 1999. Formulation strategies for the stabilization of tetanus toxoid in poly(lactide-co-glycolide) microspheres. Int. J. Pharm. 185, 255-266.   DOI
72 Schwendeman, S. P., Costantino, H. R., Gupta, R. K., Siber, G. R., Klibanov, A. M. and Langer, R. 1995. Stabilization of tetanus and diphtheria toxoids against moisture-induced aggregation. Proc. Natl. Acad. Sci. USA. 92, 11234-11238.   DOI
73 Huang, W., Wang, S., Yao, Y., Xia, Y., Yang, X., Li, K., Sun, P., Liu, C., Sun, W., Bai, H., Chu, X., Li, Y. and Ma, Y. 2016. Employing Escherichia coli-derived outer membrane vesicles as an antigen delivery platform elicits protective immunity against Acinetobacter baumannii infection. Sci. Rep. 6, 1-12.   DOI
74 Hernanz-Falcon, P., Joffre, O., Williams, D. L. and Reis e Sousa, C. 2009. Internalization of Dectin-1 terminates induction of inflammatory responses. Eur. J. Immunol. 39, 507-513.   DOI
75 Huang, H., Ostroff, G. R., Lee, C. K., Specht, C. A. and Levitz, S. M. 2010. Robust stimulation of humoral and cellular immune responses following vaccination with antigen-loaded beta-glucan particles. MBio. 1, 1-7.   DOI
76 Huang, H., Ostroff, G. R., Lee, C. K., Specht, C. A. and Levitz, S. M. 2013. Characterization and optimization of the glucan particle-based vaccine platform. Clin. Vaccine Immunol. 20, 1585-1591.   DOI
77 Hunter, K. W., Jr., Gault, R. A. and Berner, M. D. 2002. Preparation of microparticulate beta-glucan from Saccharomyces cerevisiae for use in immune potentiation. Lett. Appl. Microbiol. 35, 267-271.   DOI
78 Huter, V., Szostak, M. P., Gampfer, J., Prethaler, S., Wanner, G., Gabor, F. and Lubitz, W. 1999. Bacterial ghosts as drug carrier and targeting vehicles. J. Control. Release 61, 51-63.   DOI
79 Jain, A. K., Goyal, A. K., Gupta, P. N., Khatri, K., Mishra, N., Mehta, A., Mangal, S. and Vyas, S. P. 2009. Synthesis, characterization and evaluation of novel triblock copolymer based nanoparticles for vaccine delivery against hepatitis B. J. Control. Release 136, 161-169.   DOI
80 Jan, A. T. 2017. Outer membrane vesicles (OMVs) of gram-negative bacteria: a perspective update. Front. Microbiol. 8, 1-11.
81 Jorquera, P. A. and Tripp, R. A. 2016. Synthetic biodegradable microparticle and nanoparticle vaccines against the respiratory syncytial virus. Vaccines (Basel). 4, 1-14.   DOI
82 Jawale, C. V., Chaudhari, A. A. and Lee, J. H. 2014. Generation of a safety enhanced Salmonella Gallinarum ghost using antibiotic resistance free plasmid and its potential as an effective inactivated vaccine candidate against fowl typhoid. Vaccine 32, 1093-1099.   DOI
83 Jechlinger, W., Haller, C., Resch, S., Hofmann, A., Szostak, M.P. and Lubitz, W. 2005. Comparative immunogenicity of the hepatitis B virus core 149 antigen displayed on the inner and outer membrane of bacterial ghosts. Vaccine 23, 3609-3617.   DOI
84 Jones, R. G., Liu, Y., Rigsby, P. and Sesardic, D. 2008. An improved method for development of toxoid vaccines and antitoxins. J. Immunol. Methods 337, 42-48.   DOI
85 Katare, Y. K., Panda, A. K., Lalwani, K., Haque, I. U. and Ali, M. M. 2003. Potentiation of immune response from polymer-entrapped antigen: toward development of single dose tetanus toxoid vaccine. Drug Deliv. 10, 231-238.   DOI
86 Kim, C. S., Hur, J., Eo, S. K., Park, S. Y. and Lee, J. H. 2016. Generation of Salmonella ghost cells expressing fimbrial antigens of enterotoxigenic Escherichia coli and evaluation of their antigenicity in a murine model. Can. J. Vet. Res. 80, 40-48.
87 Kim, S. W., Gal, S. W., Lee, J. H., Hah, Y. S., Kim, T. W., Kim, C. W., Kim, I. S. and Kim, S. W. 2017. Immune responses of BALB/c mice orally immunized with Salmonella Typhimurium ghost cells carrying antigens of enterotoxigenic Escherichia coli. Veterinarski Arhiv. 87, 87-101.
88 Kuehn, M. J. and Kesty, N. C. 2005. Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev. 19, 2645-55.   DOI
89 Schwendener, R. A. 2014. Liposomes as vaccine delivery systems: a review of the recent advances. Ther. Adv. Vaccines 2, 159-182.   DOI
90 Schwendeman, S. P., Tobio, M., Joworowicz, M., Alonso, M. J. and Langer, R. 1998. New strategies for the microencapsulation of tetanus vaccine. J. Microencapsul. 15, 299-318.   DOI
91 Sharp, F. A., Ruane, D., Claass, B., Creagh, E., Harris, J., Malyala, P., Singh, M., O'Hagan, D. T., Petrilli, V., Tschopp, J., O'Neill, L. A. and Lavelle, E. C. 2009. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc. Natl. Acad. Sci. USA. 106, 870-875.   DOI
92 Siadat, S. D., Vaziri, F., Eftekhary, M., Karbasian, M., Moshiri, A., Aghasadeghi, M. R., Ardestani, M. S., Alitappeh, M. A., Arsang, A., Fateh, A., Peerayeh, S. N. and Bahrmand, A. R. 2015. Preparation and evaluation of a new lipopolysaccharide-based conjugate as a vaccine candidate for brucellosis. Osong Public Health Res. Perspect. 6, 9-13.   DOI
93 Singh, M. S. and Bhaskar, S. 2014. Nanocarrier-based immunotherapy in cancer management and research. Immunotargets Ther. 3, 121-134.
94 Sloat, B. R., Sandoval, M. A., Hau, A. M., He, Y. and Cui, Z. 2010. Strong antibody responses induced by protein antigens conjugated onto the surface of lecithin-based nanoparticles. J. Control. Release 141, 93-100.   DOI
95 Soares, E., Jesus, S. and Borges, O. 2018. Oral hepatitis B vaccine: chitosan or glucan based delivery systems for efficient HBsAg immunization following subcutaneous priming. Int. J. Pharm. 535, 261-271.   DOI
96 Soto, E. R. and Ostroff, G. R. 2008. Characterization of multilayered nanoparticles encapsulated in yeast cell wall particles for DNA delivery. Bioconjug. Chem. 19, 840-848.   DOI