DOI QR코드

DOI QR Code

Efficient Delivery of Toxoid Antigens using Micro/Nano-carriers

마이크로/나노-운반체를 이용한 톡소이드 항원의 효과적인 전달 방법

  • Park, Ga-Young (School of Biological Sciences, Chungbuk National University) ;
  • Ahn, Gna (School of Biological Sciences, Chungbuk National University) ;
  • Lee, Se Hee (School of Biological Sciences, Chungbuk National University) ;
  • Kim, Sang Bum (Dairy Science Division, National Institute of Animal Science, Rural Development Administration) ;
  • Kim, Yang-Hoon (School of Biological Sciences, Chungbuk National University) ;
  • Ahn, Ji-Young (School of Biological Sciences, Chungbuk National University)
  • 박가영 (충북대학교 자연과학대학 미생물학과) ;
  • 안근아 (충북대학교 자연과학대학 미생물학과) ;
  • 이세희 (충북대학교 자연과학대학 미생물학과) ;
  • 김상범 (농촌진흥청 국립축산과학원 낙농과) ;
  • 김양훈 (충북대학교 자연과학대학 미생물학과) ;
  • 안지영 (충북대학교 자연과학대학 미생물학과)
  • Received : 2018.04.04
  • Accepted : 2018.04.26
  • Published : 2018.04.30

Abstract

Immunization has been performed for centuries and is generally accepted as a sustainable method of controlling bacteria, viruses, and mediated and infectious diseases. Despite many studies having been performed on animal subjects to demonstrate the importance of toxin immunity, the use of toxoid vaccines in humans and animals has been limited for a long time. Recently, the development of the toxoid antigen delivery system has been facilitated using novel nano-medicinal technology. The micro/nano-carrier has been used to improve vaccination coverage as well as reduce vaccine costs. A micro/nano-carrier is a micro/nano-sized material that delivers immune cargo, including recombinant or peptide toxoid antigens. These toxoid antigens are either encapsulated in the interior or displayed on the surface of micro/nano-carriers as a way to protect them from the cellular machinery. In particular, the combination of toxoid antigens and micro/nano-carriers can induce phagocytosis through the specific interactions between GCs and macrophages; thus, the toxoid antigens can be delivered easily into the macrophages. This paper reviews recent achievements of micro/nano-carriers in the field of vaccine delivery systems such as microbial ghost cells (GCs, Bacterial ghost cells and Yeast ghost cells), gene-manipulated outer membrane vesicles (OMVs) and biocompatible, polymer-based nanoparticles (NPs, NP-Carrier and NP-Cage). Finally, this review shows various aspects in terms of the hosts' immune responses.

톡소이드는 독성은 제거되고 항원성은 유지시킨 독소 단백질로써, 다양한 병원체의 감염 및 질병 예방을 위해 지속적으로 연구 되었다. 그러나, 톡소이드의 활성 감소 및 이와 함께 사용하는 어쥬번트의 부작용 등이 지속적으로 보고되면서, 면역성은 강화하고 어쥬번트의 사용은 줄일 수 있는 톡소이드 항원 전달 시스템이 필요하게 되었다. 따라서, 이러한 단점을 개선하고자 최근 새로운 백신과 약물 전달수송을 위해 다양한 분야에서 활용하고 있는 마이크로/나노 운반체를 톡소이드 항원에 도입하고 있다. 이와 같은 마이크로/나노 운반체는 미생물 자체를 이용하거나 미생물을 통해 생산해 낼 수도 있으며, 더 나아가 다양한 소재의 폴리머를 이용하여 제작할 수 있다. 본 총설에서는 톡소이드 항원 전달을 위한 마이크로/나노 운반체를 미생물 유래의 ghost cells (GCs), 그람 음성 세균이 분비하는 outer membrane vesicles (OMVs) 및 고분자 폴리머로 구성된 nanoparticles (NPs)으로 분류하였다. 마지막으로 각 운반체에 대한 톡소이드 항원의 전달 방식 및 이를 적용하였을 때 일어나는 면역반응에 대하여 서술하였으며, 이를 통해 향후 톡소이드의 효율 및 부작용이 개선되기를 기대한다.

Keywords

References

  1. Amirnasr, M., Fallah Tafti, T., Sankian, M., Rezaei, A. and Tafaghodi, M. 2016. Immunization against HTLV-I with chitosan and tri-methylchitosan nanoparticles loaded with recombinant env23 and env13 antigens of envelope protein gp46. Microb. Pathog. 97, 38-44. https://doi.org/10.1016/j.micpath.2016.05.012
  2. Baert, K., De Geest, B. G., De Greve, H., Cox, E. and Devriendt, B. 2016. Duality of beta-glucan microparticles: antigen carrier and immunostimulants. Int. J. Nanomedicine 11, 2463-2469.
  3. Banerjee, A., Qi, J., Gogoi, R., Wong, J. and Mitragotri, S. 2016. Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J. Control. Release 238, 176-185. https://doi.org/10.1016/j.jconrel.2016.07.051
  4. Bansal, V., Kumar, M., Dalela, M., Brahmne, H. G. and Singh, H. 2014. Evaluation of synergistic effect of biodegradable polymeric nanoparticles and aluminum based adjuvant for improving vaccine efficacy. Int. J. Pharm. 471, 377-384. https://doi.org/10.1016/j.ijpharm.2014.05.061
  5. Bartolini, E., Ianni, E., Frigimelica, E., Petracca, R., Galli, G., Berlanda Scorza, F., Norais, N., Laera, D., Giusti, F., Pierleoni, A., Donati, M., Cevenini, R., Finco, O., Grandi, G. and Grifantini, R. 2013. Recombinant outer membrane vesicles carrying Chlamydia muridarum HtrA induce antibodies that neutralize chlamydial infection in vitro. J. Extracell. Vesicles 2, 1-14.
  6. Batbayar, S., Lee, D. H. and Kim, H. W. 2012. Immunomodulation of fungal beta-glucan in host defense signaling by dectin-1. Biomol. Ther. (Seoul) 20, 433-445. https://doi.org/10.4062/biomolther.2012.20.5.433
  7. Baxter, D. 2007. Active and passive immunity, vaccine types, excipients and licensing. Occup. Med. (Lond) 57, 552-556. https://doi.org/10.1093/occmed/kqm110
  8. Berner, V. K., duPre, S. A., Redelman, D. and Hunter, K. W. 2015. Microparticulate beta-glucan vaccine conjugates phagocytized by dendritic cells activate both naive CD4 and CD8 T cells in vitro. Cell Immunol. 298, 104-114. https://doi.org/10.1016/j.cellimm.2015.10.007
  9. Berner, V. K., Sura, M. E. and Hunter, K. W. J. 2008. Conjugation of protein antigen to microparticulate beta-glucan from Saccharomyces cerevisiae: a new adjuvant for intradermal and oral immunizations. Appl. Microbiol. Biotechnol. 80, 1053-1061. https://doi.org/10.1007/s00253-008-1618-8
  10. Beveridge, T. J. 1999. Structures of gram-negative cell walls and their derived membrane vesicles. J. Bacteriol. 181, 4725-4733.
  11. Biswas, S., Chattopadhyay, M., Sen, K. K. and Saha, M. K. 2015. Development and characterization of alginate coated low molecular weight chitosan nanoparticles as new carriers for oral vaccine delivery in mice. Carbohydr. Polym. 121, 403-410. https://doi.org/10.1016/j.carbpol.2014.12.044
  12. Brown, G. D., Herre, J., Williams, D. L., Willment, J. A., Marshall, A. S. and Gordon, S. 2003. Dectin-1 mediates the biological effects of beta-glucans. J. Exp. Med. 197, 1119-1124. https://doi.org/10.1084/jem.20021890
  13. Bystricky, S., Machova, E., Bartek, P., Kolarova, N. and Kogan, G. 2000. Conjugation of yeast mannans with protein employing cyanopyridinium agent (CDAP)--an effective route of antifungal vaccine preparation. Glycoconj. J. 17, 677-680. https://doi.org/10.1023/A:1011002118819
  14. Cai, K., Tu, W., Liu, Y., Li, T. and Wang, H. 2015. Novel fusion antigen displayed-bacterial ghosts vaccine candidate against infection of Escherichia coli O157:H7. Sci. Rep. 5, 1-10.
  15. Cai, K., Zhang, Y., Yang, B. and Chen, S. 2013. Yersinia enterocolitica ghost with msbB mutation provides protection and reduces proinflammatory cytokines in mice. Vaccine 31, 334-340. https://doi.org/10.1016/j.vaccine.2012.11.004
  16. Canas, M. A., Gimenez, R., Fabrega, M. J., Toloza, L., Baldoma, L. and Badia, J. 2016. Outer membrane vesicles from the probiotic escherichia coli nissle 1917 and the commensal ECOR12 enter intestinal epithelial cells via clathrin-dependent endocytosis and elicit differential effects on DNA damage. PLoS One 11, 1-22.
  17. Cecil, J. D., O'Brien-Simpson, N. M., Lenzo, J. C., Holden, J. A., Singleton, W., Perez-Gonzalez, A., Mansell, A. and Reynolds, E. C. 2017. Outer membrane vesicles prime and activate macrophage inflammasomes and cytokine secretion in vitro and in vivo. Front. Immunol. 8, 1-22.
  18. Chudina, T., Labyntsev, A., Manoilov, K., Kolybo, D. and Komisarenko, S. 2015. Cellobiose-coated poly(lactide-coglycolide) particles loaded with diphtheria toxoid for per os immunization. Croat. Med. J. 56, 85-93. https://doi.org/10.3325/cmj.2015.56.85
  19. Conway, M. A., Madrigal-Estebas, L., McClean, S., Brayden, D. J. and Mills, K. H. 2001. Protection against Bordetella pertussis infection following parenteral or oral immunization with antigens entrapped in biodegradable particles: effect of formulation and route of immunization on induction of Th1 and Th2 cells. Vaccine 19, 1940-1950. https://doi.org/10.1016/S0264-410X(00)00433-3
  20. Daleke-Schermerhorn, M. H., Felix, T., Soprova, Z., Ten Hagen-Jongman, C. M., Vikstrom, D., Majlessi, L., Beskers, J., Follmann, F., de Punder, K., van der Wel, N. N., Baumgarten, T., Pham, T. V., Piersma, S. R., Jimenez, C. R., van Ulsen, P., de Gier, J. W., Leclerc, C., Jong, W. S. and Luirink, J. 2014. Decoration of outer membrane vesicles with multiple antigens by using an autotransporter approach. Appl. Environ. Microbiol. 80, 5854-5865. https://doi.org/10.1128/AEM.01941-14
  21. De Jong, W. H. and Borm, P. J. 2008. Drug delivery and nanoparticles:applications and hazards. Int. J. Nanomedicine 3, 133-149.
  22. De Smet, R., Demoor, T., Verschuere, S., Dullaers, M., Ostroff, G. R., Leclercq, G., Allais, L., Pilette, C., Dierendonck, M., De Geest, B. G. and Cuvelier, C. A. 2013. beta-Glucan microparticles are good candidates for mucosal antigen delivery in oral vaccination. J. Control. Release 172, 671-678. https://doi.org/10.1016/j.jconrel.2013.09.007
  23. Donato, G. M., Goldsmith, C. S., Paddock, C. D., Eby, J. C., Gray, M. C. and Hewlett, E. L. 2012. Delivery of Bordetella pertussis adenylate cyclase toxin to target cells via outer membrane vesicles. FEBS Lett. 586, 459-465. https://doi.org/10.1016/j.febslet.2012.01.032
  24. Driscoll, M., Hansen, R., Ding, C., Cramer, D. E. and Yan, J. 2009. Therapeutic potential of various beta-glucan sources in conjunction with anti-tumor monoclonal antibody in cancer therapy. Cancer Biol. Ther. 8, 218-225. https://doi.org/10.4161/cbt.8.3.7337
  25. Ebensen, T., Paukner, S., Link, C., Kudela, P., de Domenico, C., Lubitz, W. and Guzman, C. A. 2004. Bacterial ghosts are an efficient delivery system for DNA vaccines. J. Immunol. 172, 6858-6865. https://doi.org/10.4049/jimmunol.172.11.6858
  26. Eko, F. O., Lubitz, W., McMillan, L., Ramey, K., Moore, T. T., Ananaba, G. A., Lyn, D., Black, C. M. and Igietseme, J. U. 2003. Recombinant Vibrio cholerae ghosts as a delivery vehicle for vaccinating against Chlamydia trachomatis. Vaccine 21, 1694-1703. https://doi.org/10.1016/S0264-410X(02)00677-1
  27. Ellis, T. N. and Kuehn, M. J. 2010. Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol. Mol. Biol. Rev. 74, 81-94. https://doi.org/10.1128/MMBR.00031-09
  28. Fantappie, L., de Santis, M., Chiarot, E., Carboni, F., Bensi, G., Jousson, O., Margarit, I. and Grandi, G. 2014. Antibody-mediated immunity induced by engineered Escherichia coli OMVs carrying heterologous antigens in their lumen. J. Extracell. Vesicles 3, 1-14.
  29. Felnerova, D., Kudela, P., Bizik, J., Haslberger, A., Hensel, A., Saalmuller, A. and Lubitz, W. 2004. T cell-specific immune response induced by bacterial ghosts. Med. Sci. Monit. 10, BR362-BR370.
  30. Fifis, T., Gamvrellis, A., Crimeen-Irwin, B., Pietersz, G. A., Li, J., Mottram, P. L., McKenzie, I. F. and Plebanski, M. 2004. Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J. Immunol. 173, 3148-3154. https://doi.org/10.4049/jimmunol.173.5.3148
  31. Figueiredo, D., Turcotte, C., Frankel, G., Li, Y., Dolly, O., Wilkin, G., Marriott, D., Fairweather, N. and Dougan, G. 1995. Characterization of recombinant tetanus toxin derivatives suitable for vaccine development. Infect. Immun. 63, 3218-3221.
  32. Florindo, H. F., Pandit, S., Goncalves, L. M., Alpar, H. O. and Almeida, A. J. 2008. Streptococcus equi antigens adsorbed onto surface modified poly-epsilon-caprolactone microspheres induce humoral and cellular specific immune responses. Vaccine 26, 4168-4177. https://doi.org/10.1016/j.vaccine.2008.05.074
  33. Gerritzen, M .J. H., Martens, D.E., Wijffels, R.H., van der Pol, L. and Stork, M. 2017. Bioengineering bacterial outer membrane vesicles as vaccine platform. Biotechnol. Adv. 35, 565-574. https://doi.org/10.1016/j.biotechadv.2017.05.003
  34. Ghalavand, M., Saadati, M., Ahmadi, A., Abbasi, E. and Salimian, J. 2018. Immunological evaluation of chitosan nanoparticles loaded with tetanus toxoid. Bratisl Lek Listy 119, 71-74.
  35. Goodridge, H. S., Reyes, C. N., Becker, C. A., Katsumoto, T. R., Ma, J., Wolf, A. J., Bose, N., Chan, A.S., Magee, A.S., Danielson, M.E., Weiss, A., Vasilakos, J.P. and Underhill, D.M. 2011. Activation of the innate immune receptor Dectin-1 upon formation of a 'phagocytic synapse'. Nature 472, 471-475. https://doi.org/10.1038/nature10071
  36. Gregory, A. E., Titball, R. and Williamson, D. 2013. Vaccine delivery using nanoparticles. Fron. Cell Infect. Microbiol. 3, 1-13.
  37. Hajam, I. A., Dar, P. A., Won, G. and Lee, J. H. 2017. Bacterial ghosts as adjuvants: mechanisms and potential. Vet. Res. 48, 1-13. https://doi.org/10.1186/s13567-016-0406-1
  38. Hernanz-Falcon, P., Joffre, O., Williams, D. L. and Reis e Sousa, C. 2009. Internalization of Dectin-1 terminates induction of inflammatory responses. Eur. J. Immunol. 39, 507-513. https://doi.org/10.1002/eji.200838687
  39. Huang, H., Ostroff, G. R., Lee, C. K., Specht, C. A. and Levitz, S. M. 2010. Robust stimulation of humoral and cellular immune responses following vaccination with antigen-loaded beta-glucan particles. MBio. 1, 1-7. https://doi.org/10.3391/mbi.2010.1.1.02
  40. Huang, H., Ostroff, G. R., Lee, C. K., Specht, C. A. and Levitz, S. M. 2013. Characterization and optimization of the glucan particle-based vaccine platform. Clin. Vaccine Immunol. 20, 1585-1591. https://doi.org/10.1128/CVI.00463-13
  41. Huang, W., Wang, S., Yao, Y., Xia, Y., Yang, X., Li, K., Sun, P., Liu, C., Sun, W., Bai, H., Chu, X., Li, Y. and Ma, Y. 2016. Employing Escherichia coli-derived outer membrane vesicles as an antigen delivery platform elicits protective immunity against Acinetobacter baumannii infection. Sci. Rep. 6, 1-12. https://doi.org/10.1038/s41598-016-0001-8
  42. Hunter, K. W., Jr., Gault, R. A. and Berner, M. D. 2002. Preparation of microparticulate beta-glucan from Saccharomyces cerevisiae for use in immune potentiation. Lett. Appl. Microbiol. 35, 267-271. https://doi.org/10.1046/j.1472-765X.2002.01201.x
  43. Huter, V., Szostak, M. P., Gampfer, J., Prethaler, S., Wanner, G., Gabor, F. and Lubitz, W. 1999. Bacterial ghosts as drug carrier and targeting vehicles. J. Control. Release 61, 51-63. https://doi.org/10.1016/S0168-3659(99)00099-1
  44. Jain, A. K., Goyal, A. K., Gupta, P. N., Khatri, K., Mishra, N., Mehta, A., Mangal, S. and Vyas, S. P. 2009. Synthesis, characterization and evaluation of novel triblock copolymer based nanoparticles for vaccine delivery against hepatitis B. J. Control. Release 136, 161-169. https://doi.org/10.1016/j.jconrel.2009.02.010
  45. Jan, A. T. 2017. Outer membrane vesicles (OMVs) of gram-negative bacteria: a perspective update. Front. Microbiol. 8, 1-11.
  46. Jawale, C. V., Chaudhari, A. A. and Lee, J. H. 2014. Generation of a safety enhanced Salmonella Gallinarum ghost using antibiotic resistance free plasmid and its potential as an effective inactivated vaccine candidate against fowl typhoid. Vaccine 32, 1093-1099. https://doi.org/10.1016/j.vaccine.2013.12.053
  47. Jechlinger, W., Haller, C., Resch, S., Hofmann, A., Szostak, M.P. and Lubitz, W. 2005. Comparative immunogenicity of the hepatitis B virus core 149 antigen displayed on the inner and outer membrane of bacterial ghosts. Vaccine 23, 3609-3617. https://doi.org/10.1016/j.vaccine.2004.11.078
  48. Jones, R. G., Liu, Y., Rigsby, P. and Sesardic, D. 2008. An improved method for development of toxoid vaccines and antitoxins. J. Immunol. Methods 337, 42-48. https://doi.org/10.1016/j.jim.2008.05.009
  49. Jorquera, P. A. and Tripp, R. A. 2016. Synthetic biodegradable microparticle and nanoparticle vaccines against the respiratory syncytial virus. Vaccines (Basel). 4, 1-14. https://doi.org/10.3390/vaccines4010001
  50. Katare, Y. K., Panda, A. K., Lalwani, K., Haque, I. U. and Ali, M. M. 2003. Potentiation of immune response from polymer-entrapped antigen: toward development of single dose tetanus toxoid vaccine. Drug Deliv. 10, 231-238. https://doi.org/10.1080/drd_10_4_231
  51. Kim, C. S., Hur, J., Eo, S. K., Park, S. Y. and Lee, J. H. 2016. Generation of Salmonella ghost cells expressing fimbrial antigens of enterotoxigenic Escherichia coli and evaluation of their antigenicity in a murine model. Can. J. Vet. Res. 80, 40-48.
  52. Kim, S. W., Gal, S. W., Lee, J. H., Hah, Y. S., Kim, T. W., Kim, C. W., Kim, I. S. and Kim, S. W. 2017. Immune responses of BALB/c mice orally immunized with Salmonella Typhimurium ghost cells carrying antigens of enterotoxigenic Escherichia coli. Veterinarski Arhiv. 87, 87-101.
  53. Kuehn, M. J. and Kesty, N. C. 2005. Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev. 19, 2645-55. https://doi.org/10.1101/gad.1299905
  54. Kulp, A. and Kuehn, M. J. 2010. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 64, 163-184. https://doi.org/10.1146/annurev.micro.091208.073413
  55. Langemann, T., Koller, V.J., Muhammad, A., Kudela, P., Mayr, U. B. and Lubitz, W. 2010. The Bacterial Ghost platform system: production and applications. Bioeng. Bugs 1, 326-336. https://doi.org/10.4161/bbug.1.5.12540
  56. Li, X., Deng, X., Yuan, M., Xiong, C., Huang, Z., Zhang, Y. and Jia, W. 2000. In vitro degradation and release profiles of Poly-DLLactide-Poly (ethylene glycol) microspheres with entrapped proteins. J. Appl. Polym. Sci. 78, 140-148. https://doi.org/10.1002/1097-4628(20001003)78:1<140::AID-APP180>3.0.CO;2-P
  57. Lim, S. and Yoon, H. 2015. Roles of outer memrane vesicles (OMVs) in bacterial virulence. J. Bacteriol. Virol. 45, 1-10. https://doi.org/10.4167/jbv.2015.45.1.1
  58. Liu, H., Jia, Z., Yang, C., Song, M., Jing, Z., Zhao, Y., Wu, Z., Zhao, L., Wei, D., Yin, Z. and Hong, Z. 2018. Aluminum hydroxide colloid vaccine encapsulated in yeast shells with enhanced humoral and cellular immune responses. Biomaterials 167, 32-43. https://doi.org/10.1016/j.biomaterials.2018.03.014
  59. Manolova, V., Flace, A., Bauer, M., Schwarz, K., Saudan, P. and Bachmann, M. F. 2008. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol. 38, 1404-1413. https://doi.org/10.1002/eji.200737984
  60. Mansoor, F., Earley, B., Cassidy, J. P., Markey, B., Doherty, S. and Welsh, M. D. 2015. Comparing the immune response to a novel intranasal nanoparticle PLGA vaccine and a commercial BPI3V vaccine in dairy calves. BMC Vet. Res. 11, 1-11. https://doi.org/10.1186/s12917-014-0312-6
  61. Mashburn-Warren, L., Howe, J., Garidel, P., Richter, W., Steiniger, F., Roessle, M., Brandenburg, K. and Whiteley, M. 2008. Interaction of quorum signals with outer membrane lipids: insights into prokaryotic membrane vesicle formation. Mol. Microbiol. 69, 491-502. https://doi.org/10.1111/j.1365-2958.2008.06302.x
  62. Mayr, U. B., Haller, C., Haidinger, W., Atrasheuskaya, A., Bukin, E., Lubitz, W. and Ignatyev, G. 2005. Bacterial ghosts as an oral vaccine: a single dose of Escherichia coli O157:H7 bacterial ghosts protects mice against lethal challenge. Infect. Immun. 73, 4810-4817. https://doi.org/10.1128/IAI.73.8.4810-4817.2005
  63. Mayr, U. B., Walcher, P., Azimpour, C., Riedmann, E., Haller, C. and Lubitz, W. 2005. Bacterial ghosts as antigen delivery vehicles. Adv. Drug Deliv. Rev. 57, 1381-1391. https://doi.org/10.1016/j.addr.2005.01.027
  64. Montanaro, J., Inic-Kanada, A., Ladurner, A., Stein, E., Belij, S., Bintner, N., Schlacher, S., Schuerer, N., Mayr, U. B., Lubitz, W., Leisch, N. and Barisani-Asenbauer, T. 2015. Escherichia coli Nissle 1917 bacterial ghosts retain crucial surface properties and express chlamydial antigen: an imaging study of a delivery system for the ocular surface. Drug Des. Devel. Ther. 9, 3741-3754.
  65. Moyle, P. M. and Toth, I. 2013. Modern subunit vaccines: development, components, and research opportunities. Chem. Med. Chem. 8, 360-376. https://doi.org/10.1002/cmdc.201200487
  66. Mulcahy, L. A., Pink, R. C. and Carter, D. R. 2014. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles 3, 1-14.
  67. Nagamoto, T., Hattori, Y., Takayama, K. and Maitani, Y. 2004. Novel chitosan particles and chitosan-coated emulsions inducing immune response via intranasal vaccine delivery. Pharm. Res. 21, 671-674. https://doi.org/10.1023/B:PHAM.0000022414.17183.58
  68. O'Donoghue, E. J. and Krachler, A. M. 2016. Mechanisms of outer membrane vesicle entry into host cells. Cell Microbiol. 18, 1508-1517. https://doi.org/10.1111/cmi.12655
  69. Oh, N. and Park, J. H. 2014. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int. J. Nanomedicine 9 Suppl 1, 51-63.
  70. Pan, Y., Li, X., Kang, T., Meng, H., Chen, Z., Yang, L., Wu, Y., Wei, Y. and Gou, M. 2015. Efficient delivery of antigen to DCs using yeast-derived microparticles. Sci. Rep. 5, 1-9.
  71. Park, S. J., Lee, S. J., Kim, K. H. and Kim, S. K. 2011. High cell density fed-batch fermentation for the production of recombinant E. coli K-12 ghost vaccine against streptococcal disease. Biotechnol. Bioprocess Eng. 16, 733-738. https://doi.org/10.1007/s12257-010-0324-4
  72. Prados-Rosales, R., Carreno, L. J., Batista-Gonzalez, A., Baena, A., Venkataswamy, M. M., Xu, J., Yu, X., Wallstrom, G., Magee, D. M., LaBaer, J., Achkar, J. M., Jacobs, W. R. Jr., Chan, J., Porcelli, S. A. and Casadevall, A. 2014. Mycobacterial membrane vesicles administered systemically in mice induce a protective immune response to surface compartments of Mycobacterium tuberculosis. MBio. 5, 1-14. https://doi.org/10.3391/mbi.2014.5.1.01
  73. Rappaport, R. S., Bonde, G., McCann, T., Rubin, B. A. and Tint, H. 1974. Development of a purified cholera toxoid. II. Preparation of a stable, antigenic toxoid by reaction of purified toxin with glutaraldehyde. Infect. Immun. 9, 304-317.
  74. Riedmann, E. M., Kyd, J. M., Smith, A. M., Gomez-Gallego, S., Jalava, K., Cripps, A. W. and Lubitz, W. 2003. Construction of recombinant S-layer proteins (rSbsA) and their expression in bacterial ghosts--a delivery system for the nontypeable Haemophilus influenzae antigen Omp26. FEMS Immunol. Med. Microbiol. 37, 185-192. https://doi.org/10.1016/S0928-8244(03)00070-1
  75. Salverda, M. L., Meinderts, S. M., Hamstra, H. J., Wagemakers, A., Hovius, J. W., van der Ark, A., Stork, M. and van der Ley, P. 2016. Surface display of a borrelial lipoprotein on meningococcal outer membrane vesicles. Vaccine 34, 1025-1033. https://doi.org/10.1016/j.vaccine.2016.01.019
  76. Sanchez, A., Villamayor, B., Guo, Y., McIver, J. and Alonso, M. J. 1999. Formulation strategies for the stabilization of tetanus toxoid in poly(lactide-co-glycolide) microspheres. Int. J. Pharm. 185, 255-266. https://doi.org/10.1016/S0378-5173(99)00178-7
  77. Schwendeman, S. P., Costantino, H. R., Gupta, R. K., Siber, G. R., Klibanov, A. M. and Langer, R. 1995. Stabilization of tetanus and diphtheria toxoids against moisture-induced aggregation. Proc. Natl. Acad. Sci. USA. 92, 11234-11238. https://doi.org/10.1073/pnas.92.24.11234
  78. Schwendeman, S. P., Tobio, M., Joworowicz, M., Alonso, M. J. and Langer, R. 1998. New strategies for the microencapsulation of tetanus vaccine. J. Microencapsul. 15, 299-318. https://doi.org/10.3109/02652049809006859
  79. Schwendener, R. A. 2014. Liposomes as vaccine delivery systems: a review of the recent advances. Ther. Adv. Vaccines 2, 159-182. https://doi.org/10.1177/2051013614541440
  80. Sharp, F. A., Ruane, D., Claass, B., Creagh, E., Harris, J., Malyala, P., Singh, M., O'Hagan, D. T., Petrilli, V., Tschopp, J., O'Neill, L. A. and Lavelle, E. C. 2009. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc. Natl. Acad. Sci. USA. 106, 870-875. https://doi.org/10.1073/pnas.0804897106
  81. Siadat, S. D., Vaziri, F., Eftekhary, M., Karbasian, M., Moshiri, A., Aghasadeghi, M. R., Ardestani, M. S., Alitappeh, M. A., Arsang, A., Fateh, A., Peerayeh, S. N. and Bahrmand, A. R. 2015. Preparation and evaluation of a new lipopolysaccharide-based conjugate as a vaccine candidate for brucellosis. Osong Public Health Res. Perspect. 6, 9-13. https://doi.org/10.1016/j.phrp.2014.10.012
  82. Singh, M. S. and Bhaskar, S. 2014. Nanocarrier-based immunotherapy in cancer management and research. Immunotargets Ther. 3, 121-134.
  83. Sloat, B. R., Sandoval, M. A., Hau, A. M., He, Y. and Cui, Z. 2010. Strong antibody responses induced by protein antigens conjugated onto the surface of lecithin-based nanoparticles. J. Control. Release 141, 93-100. https://doi.org/10.1016/j.jconrel.2009.08.023
  84. Soares, E., Jesus, S. and Borges, O. 2018. Oral hepatitis B vaccine: chitosan or glucan based delivery systems for efficient HBsAg immunization following subcutaneous priming. Int. J. Pharm. 535, 261-271. https://doi.org/10.1016/j.ijpharm.2017.11.009
  85. Soto, E. R. and Ostroff, G. R. 2008. Characterization of multilayered nanoparticles encapsulated in yeast cell wall particles for DNA delivery. Bioconjug. Chem. 19, 840-848. https://doi.org/10.1021/bc700329p
  86. Tavano, R., Franzoso, S., Cecchini, P., Cartocci, E., Oriente, F., Arico, B. and Papini, E. 2009. The membrane expression of Neisseria meningitidis adhesin A (NadA) increases the proimmune effects of MenB OMVs on human macrophages, compared with NadA- OMVs, without further stimulating their proinflammatory activity on circulating monocytes. J. Leukoc Biol. 86, 143-153. https://doi.org/10.1189/jlb.0109030
  87. Tipper, D. J. and Szomolanyi-Tsuda, E. 2016. Scaffolded antigens in yeast cell particle vaccines provide protection against systemic polyoma virus infection. J. Immunol. Res. 2016, 1-15.
  88. Vartak, A. and Sucheck, S. J. 2016. Recent advances in subunit vaccine carriers. Vaccines (Basel). 4, 1-18. https://doi.org/10.3390/vaccines4010001
  89. Vinod, N., Oh, S., Kim, S., Choi, C. W., Kim, S. C. and Jung, C. H. 2014. Chemically induced Salmonella enteritidis ghosts as a novel vaccine candidate against virulent challenge in a rat model. Vaccine 32, 3249-3255. https://doi.org/10.1016/j.vaccine.2014.03.090
  90. Walcher, P., Cui, X., Arrow, J. A., Scobie, S., Molinia, F. C., Cowan, P. E., Lubitz, W. and Duckworth, J. A. 2008. Bacterial ghosts as a delivery system for zona pellucida-2 fertility control vaccines for brushtail possums (Trichosurus vulpecula). Vaccine 26, 6832-6838. https://doi.org/10.1016/j.vaccine.2008.09.088
  91. Weiner, A., Mellouk, N., Lopez-Montero, N., Chang, Y. Y., Souque, C., Schmitt, C. and Enninga, J. 2016. Macropinosomes are key players in early shigella invasion and vacuolar escape in epithelial cells. PLoS Pathog. 12, 1-24.
  92. Wendorf, J., Chesko, J., Kazzaz, J., Ugozzoli, M., Vajdy, M., O'Hagan, D. and Singh, M. 2008. A comparison of anionic nanoparticles and microparticles as vaccine delivery systems. Hum. Vaccin. 4, 44-49. https://doi.org/10.4161/hv.4.1.4886
  93. Witte, A., Wanner, G., Sulzner, M. and Lubitz, W. 1992. Dynamics of PhiX174 protein E-mediated lysis of Escherichia coli. Arch. Microbiol. 157, 381-388. https://doi.org/10.1007/BF00248685
  94. Xiang, S. D., Scholzen, A., Minigo, G., David, C., Apostolopoulos, V., Mottram, P. L. and Plebanski, M. 2006. Pathogen recognition and development of particulate vaccines: does size matter? Methods 40, 1-9. https://doi.org/10.1016/j.ymeth.2006.05.016
  95. Yan, J., Allendorf, D. J. and Brandley, B. 2005. Yeast whole glucan particle (WGP) beta-glucan in conjunction with antitumour monoclonal antibodies to treat cancer. Expert. Opin. Biol. Ther. 5, 691-702. https://doi.org/10.1517/14712598.5.5.691
  96. Young, K. D. and Young, R. 1982. Lytic action of cloned phi X174 gene E. J. Virol. 44, 993-1002.