Browse > Article
http://dx.doi.org/10.15230/SCSK.2020.46.2.133

Study on the Stability of Biotin-containing Nano-liposome  

Yang, Seong Jun (Department of Chemistry and Cosmetics, College of National Science, Jeju National University)
Kim, Tae Yang (Songpa R&D Center, Coreana Cosmetic CO., Ltd.)
Lee, Chun Mong (Songpa R&D Center, Coreana Cosmetic CO., Ltd.)
Lee, Kwang Sik (Songpa R&D Center, Coreana Cosmetic CO., Ltd.)
Yoon, Kyung-Sup (Department of Chemistry and Cosmetics, College of National Science, Jeju National University)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.46, no.2, 2020 , pp. 133-145 More about this Journal
Abstract
This study utilized nano-liposomes for the purpose of stabilizing and increasing the solubility of biotin, a water-soluble active material with low solubility. The particle size, zeta potential, and polydispersity index were confirmed with a nano zetasizer. It was possible to manufacture nano liposomes at 100 to 250 nm of particle size and -80 to -30 mV of zeta potential. Dialysis membrane method (DMM) was used to measure the capsulation efficiency of biotin in biotin nano-liposomes, and results showed that pH increased biotin nano-liposomes had higher capsulation efficiency than normal biotin nano-liposome. Through this experiment, it was confirmed that the pH has a great influence on the stability of biotin nano-liposomes. In vitro franz diffusion cell method was used to measure in vitro skin absorption rate of biotin nano-liposomes. The shape of the formulation and biotin solubility in nano-liposome was observed by cryogenic transmission electron microscopy (cryo-TEM). Through this study, we confirmed that biotin, which is introduced as closely related to hair health, can be incorporated into a nano-liposome drug delivery system, to make biotin nano-liposome with improved solubility and precipitation problems.
Keywords
biotin; stabilization; nano-liposome; cryo-SEM; zetasizer;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 A. Claude, J. Dominique, and D. Roland, Biotin metabolism in plants, Annu. Rev. Plant Physiol. Plant Mol. Biol., 51, 17 (2000).   DOI
2 S. A. Harris, D. E. Wolf, R. Mozingo, R. C. Anderson, G. E. Arth, N. R. Easton, D. Heyl, A. N. Wilson, and K. Folkers, Biotin. II. synthesis of biotin, J. Am. Chem. Soc., 66(10), 1756 (1944).   DOI
3 L. J. Goldberg and Y. Lenzy, Nutrition and hair, Clin. Dermatol., 28(4), 412 (2010).   DOI
4 R. M. Trueb, Serum biotin levels in women complaining of hair loss, Int J Trichology, 8(2), 73 (2016).   DOI
5 D. P. Patel, S. M. Swink, and L. Catelo-Sccio, A review of the use of biotin for hair loss, Skin Appendage Disord., 3(3), 166 (2017).   DOI
6 J. M. Yoo, S. Y. Kim, E. Cho, E. Cho, S. Choi, Y. Jeong, B. Ha, and H. J. Chae, Stabilization of astaxanthin using nanoliposome, KSBB J., 25(2), 130 (2010).
7 E. J. An, C. K. Kang, J. W. Kim, and B. S. Jin, Lipid-based vesicles as transdermal delivery system, KIC News, 13(4), 24 (2010).
8 E. J. Yang, Master's Thesis Dissertation, Konkuk Univ., Seoul, Korea (2003).
9 E. Mayhew, R. Lazo, W. J. Vail, J. King, and A. M. Green, Characterization of liposomes prepared using a microemulsifier, Biochim. Biophys. Acta., 775(2), 169 (1984).   DOI
10 M. S. Park, J. K. Park, G. W. Lee, M. K. Baek, and U. K. Jee, Preparation and evaluation of aclarubicin liposome using microfluidizer, Yakhak Hoeji, 42(3), 265 (1998).
11 J. G. Duman, N. J. Pathak, M. S. Ladinsky, K. L. Mcdonald, and J. G. Forte, Three-dimensional reconstruction of cytoplasmic membrane networks in parietal cells, J. Cell. Sci., 115(6), 1251 (2002).   DOI
12 A. Laouini, C. Jaafar-Maalej, I. Limayem-Blouza, S. Sfar, C. Charcosset, and H. Fessi, Preparation, characterization and applications of liposomes: state of the art, J. Colloid Sci. Biotechnol., 1(2), 147 (2012).   DOI
13 D. H. Bae and J. S. Shin, Silicone nanoemulsion stablized with hydrogenated lecithin, J. Korean. Ind. Eng. Chem., 11(5), 522 (2000).
14 Y. Ebato, Y. Kato, H. Onishi, T. Nagai, and Y. Machida, In vivo efficacy of a novel double liposome as an oral dosage form of salmon calcitonin, Drug Dev. Res., 58(3), 253 (2003).   DOI
15 G. J. Grant, Y. Barenholz, E. M. Bolotin, M. Bansinath, H. Turndorf, B. Piskoun, and E. M. Davidson, A novel liposomal bupivacaine formulation to produce ultralong-acting analgesia, Anesthesiology, 101(1), 133 (2004).   DOI
16 K. Katayama, Y. Kato, H. Onishi, T. Nagai, and Y. Machida, Double liposomes: hypoglycemic effects of liposomal insulin on normal rats drug, Dev Ind Pharm, 29(7), 725 (2003).   DOI
17 J. Lee, G. Y. Chi, and J. Lim, Effect of fatty acid on the membrane fluidity of liposomes, Appl. Chem. Eng., 28(2), 177 (2017).   DOI
18 E. Yilmaz and H. H. Borchert, Design of a phytosphingosine-containing, positively-charged nanoemulsion as a colloidal carrier system for dermal application of ceramides, Eur J Pharm Biopharm, 60(1), 91 (2005).   DOI
19 D. Carugo, E. Bottaro, J. Owen, E. Strider, and C. Nastruzzi, Liposome production by microfluidics: potential and limiting factors, Sci. Rep., 6, 1 (2016).   DOI
20 Y. P. Patil and S. Jadhav, Novel methods for liposome preparation, Chem. Phys. Lipids., 177, 8 (2013).
21 X. R. Shao, X. Q. Wei, S. Zhang, N. Fu, Y. F. Lin, X. X. Cai, and Q. Peng, Effects of microenvironmental pH of liposome on chemical stability of loaded drug, Nanoscale Res. Lett., 12(1), 504 (2017).   DOI