Development and Prospect of Emulsion Technology in Cosmetics

화장품에서 유화기술의 발전 및 전망

  • Kyong, Kee-Yeol (Cosmetics R&D Center, LG Household & Health Care Research Park) ;
  • Lee, Cheon-Koo (Cosmetics R&D Center, LG Household & Health Care Research Park)
  • 경기열 (LG 생활건강 기술연구원 화장품 연구소) ;
  • 이천구 (LG 생활건강 기술연구원 화장품 연구소)
  • Published : 2006.12.30

Abstract

Emulsion is a dispersion system among liquids which are not miscible together. There are numerous cosmetic raw materials which have different physicochemical properties. Therefore, emulsion technology is very useful in cosmetics. With the development of emulsifier, several emulsification technologies have been developed. Since HLB method by Griffin in 1950's, PIT method, gel method, and D-phase methods, etc, have been developed. Recently, the application of natural emulsifier and polymeric emulsifier increases in cosmetics in order to achieve enhanced safety and biocompatibility. Besides nano-emulsion, multiple-emulsion, liquid crystal emulsion, and Pickering emulsion have been developed and applied as means of differentiating appearance and texture of products and achieving enhanced delivery of active ingredients. Meanwhile, the application studies of nano-dispersed structural system such as liposome or cubosome are on progress. Liposome is a bi- or multi-lamella layer dispersion system composed of amhiphilic molecules - phospholipids which are main components of plasma membrane. Cubosome also is a nano-sized dispersion system composed of a specific molecule like glyceryl monoloeate derived from natural products. And it has a cubic bicontinuous structure in water due to its unique molecular structure. Incorporating compounds (active materials) into such nano-particles can increase biocompatibility and delivery efficiency of target compounds. Manufacturing process and application of cosmetic emulsions and nano-particles are briefly introduced in this paper.

유화란 서로 섞이지 않는 액체들간의 분산계이다. 화장품에 사용되는 원료에는 서로 잘 섞이지 않는 물질들이 많기 때문에 이들을 한 제제 내에 잘 혼합할 수 있는 유화기술이 매우 유용하게 이용되고 있다. 유화제제의 안정화 및 물성 변화를 위하여 유화제의 발달과 함께 여러 가지 다양한 형태의 유화기술이 개발되었다. 1950년대에 Griffin이 제안한 HLB법을 시작으로 PIT법, 겔(gel) 유화법, D상 유화법 등이 있으며, 최근에는 피부 친화성 또는 인체에 대한 안전성을 높이기 위한 수단으로 천연 유래의 유화제 및 고분자계 유화제의 사용이 늘고 있다. 이 외에도 제품의 외관 차별화 및 유효성분의 전달 효율을 높이기 위한 수단으로 나노 유화, 다중 유화, 액정 유화, 피커링 유화 등이 개발 적용되고 있으며, 리포좀이나 큐보좀 같은 나노 구조체 입자들의 응용에 관한 연구도 활발하게 진행되고 있다. 리포좀은 생체막의 주요 구성성분인 양친매성 인지질의 이중층으로 구성된 계이고, 큐보좀 역시 생체 유래 성분인 모노올레인 같은 물질로 만들어지는 나노 입자의 일종으로 그 분자 구조적 특성으로 인해 수용액 내에서 입방상 구조의 이연속적 수상 채널을 갖는다. 이러한 나노 입자에 효능물질을 봉입시켜 제제화 함으로서 생체 친화적이면서 물질의 전달 효율을 높일 수 있다. 여기서는 화장품용 유화물 및 나노 입자들의 제조 방법, 응용 등에 대하여 간략히 소개하였다.

Keywords

References

  1. K. Ogino, The progress and situation of colloid chemistry, eds. M. Sekine and A Tagawa, 86, Nikko chemicals and Nippon Surfactant Kokyo, Tokyo (1987)
  2. H. Butt, K. Graf, and M. Kappl, Physics and chemistry of interfaces, 246, Wiley-VCH, Weinheim (2003)
  3. J. Lee, The latest trends of emulsifiers, Fragrance J. Special Issue, 19, 105 (2005)
  4. T. Okamoto, Recent development and prospect in emulsification technique for cosmetics, Fragrance J. Special Issue, 19, 52 (2005)
  5. Y. Nakama, O/W, W/O type emulsification method using liquid crystals, Fragrance J. Special Issue, 19, 83 (2005)
  6. Q. XU and M. Nakajima, The emulsification properties of hydrophilic silica nanoparticles, Fragrance J. Special Issue, 19, 39 (2005)
  7. J. D. Kim and J. H. Jung, Surlace chemistry in biocompatible nanocolloidal particles, J. Soc. Cosmet. Scientists Korea, 30(3), 295 (2004)
  8. A. D. Bangharn, M. M. Standish, and J. C. Watkins, Diffusion of univalent ions across the lamellae of swollen phospholipids, J. Mol. BioI., 13, 238 (1965) https://doi.org/10.1016/S0022-2836(65)80093-6
  9. D. D. Lasic, Liposomes form physics to application, Elsevier (1993)
  10. US Patent 5,531,925 (1996)
  11. M. Nakano, A. Sugita, H. Matsuoka, and T. Handa, Small-angle X -ray scattering and $^{13}C$ NMR investigation on the internal structure of 'Cubosornes', Langmuir, 17, 3917 (2001) https://doi.org/10.1021/la010224a
  12. D. M. Anderson and H. Wennerstrm, Self-diffusion in bicontinuous cubic phases, $L_3$ phases, and microemulsions, J. Phys. Chem., 94, 8683 (1990) https://doi.org/10.1021/j100387a012
  13. T. Landh, Phase behavior in the system pine oil monoglycerides-poloxamer 407-water at 20$^{\circ}C$, J. Physical Chemistry, 98, 8453 (1994) https://doi.org/10.1021/j100085a028
  14. G. Rummel, A. Hardmeyer, C. Widmer, M. L. Chiu, P. Nollert, and K. P. Locher, Lipidic cubic phases: new matrices for the three-dimensional crvstalli zation of membrane proteins, J. Stru. Biol., 121, 82 (1998) https://doi.org/10.1006/jsbi.1997.3952
  15. S. Engstrom, K. Alfons, M. Rasmusson, and H. Ljusberg-Wahren, Solvent-induced sponge ($L_3$) phases in the solvent-monoolein-water system, Prog. Colloid Polym Sci., 108, 93 (1998) https://doi.org/10.1007/BFb0117965
  16. P. T. Spicer and K. L. Hayden, Novel process for producing cubic liquid crystalline nanoparticles (Cubosornes), Langmuir, 17, 5748 (2001) https://doi.org/10.1021/la010161w
  17. T. Landh and K. Larsson, Particles, method of preparing said particles and uses thereof, US Patent 5,531,925 (1996)
  18. A. Ribier and B. Biatry, Oily phase in an aqueous phase dispersion stabilized by cubic gel particles and method of making, US Patent 5,756,108 (1998)
  19. B. Biatry, Cosmetic or dermatological composition, EP Patent App. 968704 (2000)
  20. B. Biatry, Use of phythantriol as anti-pollution agent in a cosmetic composition, EP Patent App. 1161938 (2001)
  21. J. Schreiber and H. Albrecht, Hair care products with disperse liquid Crystals exhibiting the cubic phases, DE Patent App, 10057769 (2002)
  22. W. Leesajakul, M. Nakano, A. Taniguchi, and T. Handa, Interaction of cubosome with plasma components resulting in the destabilization of cubosomes in plasma, Colloids and Surfaces, 34, 253 (2004) https://doi.org/10.1016/j.colsurfb.2004.01.010