• 제목/요약/키워드: multi-core processing

Search Result 218, Processing Time 0.03 seconds

Efficiency Low-Power Signal Processing for Multi-Channel LiDAR Sensor-Based Vehicle Detection Platform (멀티채널 LiDAR 센서 기반 차량 검출 플랫폼을 위한 효율적인 저전력 신호처리 기법)

  • Chong, Taewon;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.977-985
    • /
    • 2021
  • The LiDAR sensor is attracting attention as a key sensor for autonomous driving vehicle. LiDAR sensor provides measured three-dimensional lengths within range using LASER. However, as much data is provided to the external system, it is difficult to process such data in an external system or processor of the vehicle. To resolve these issues, we develop integrated processing system for LiDAR sensor. The system is configured that client receives data from LiDAR sensor and processes data, server gathers data from clients and transmits integrated data in real-time. The test was carried out to ensure real-time processing of the system by changing the data acquisition, processing method and process driving method of process. As a result of the experiment, when receiving data from four LiDAR sensors, client and server process was operated using background or multi-core processing, the system response time of each client was about 13.2 ms and the server was about 12.6 ms.

Integrated Parallelization of Video Decoding on Multi-core Systems (멀티코어 시스템에서의 통합된 비디오 디코딩 병렬화)

  • Hong, Jung-Hyun;Kim, Won-Jin;Chung, Ki-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.7
    • /
    • pp.39-49
    • /
    • 2012
  • Demand for high resolution video services leads to active studies on high speed video processing. Especially, widespread deployment of multi-core systems accelerates researches on high resolution video processing based on parallelization of multimedia software. Previously proposed parallelization approach could improve the decoding performance. However, some parallelization methods did not consider the entropy decoding and others considered only a partial decoding parallelization. Therefore, we consider parallel entropy decoding integrated with other parallel video decoding process on a multi-core system. We propose a novel parallel decoding method called Integrated Parallelization. We propose a method on how to optimize the parallelization of video decoding when we have a multi-core system with many cores. We parallelized the KTA 2.7 decoder with the proposed technique on an Intel i7 Quad-Core platform with Intel Hyper-Threading technology and multi-threads scheduling. We achieved up to 70% performance improvement using IP method.

Implementation of Multi-Core Processor for Beamforming Algorithm of Mobile Ultrasound Image Signals (모바일 초음파 영상신호의 빔포밍 알고리즘을 위한 멀티코어 프로세서 구현)

  • Choi, Byong-Kook;Kim, Jong-Myon
    • The KIPS Transactions:PartA
    • /
    • v.18A no.2
    • /
    • pp.45-52
    • /
    • 2011
  • In the past, a patient went to the room where an ultrasound image diagnosis device was set, and then he or she was examined by a doctor. However, currently a doctor can go and examine the patient with a handheld ultrasound device who stays in a room. However, it was implemented with only fundamental functions, and can not meet the high performance required by the focusing algorithm of ultrasound beam which determines the quality of ultrasound image. In addition, low energy consumption was satisfied for the mobile ultrasound device. To satisfy these requirements, this paper proposes a high-performance and low-power single instruction, multiple data (SIMD) based multi-core processor that supports a representative beamforming algorithm out of several focusing methods of mobile ultrasound image signals. The proposed SIMD multi-core processor, which consists of 16 processing elements (PEs), satisfies the high-performance required by the beamforming algorithm by exploiting considerable data-level parallelism inherent in the echo image data of ultrasound. Experimental results showed that the proposed multi-core processor outperforms a commercial high-performance processor, TI DSP C6416, in terms of execution time (15.8 times better), energy efficiency (6.9 times better), and area efficiency (10 times better).

The Design of Multicase Key distribution Protocol based CBT(Core Based Tree) (CBT(Core Based Tree)를 기반으로 한 멀티캐스트 키 분배 프로토콜 설계)

  • Kim, Bong-Han;Lee, Jae-Gwang
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.4
    • /
    • pp.1184-1192
    • /
    • 2000
  • Multicast has communication mechanism that is able to transfer voice, video for only the specific user group. As compared to unicast, multicast is more susceptive to attack such as masquerading, malicious replay, denial of service, repudiation and traffic observation, because of the multicast has much more communication links than unicast communication. Multicast-specific security threats can affect not only a group's receivers, but a potentially large proportion of the internet. In this paper, we proposed the multicast security model that is able to secure multi-group communication in CBT(Core Based Tree), which is multicast routing. And designed the multicast key distribution protocol that can offer authentication, user privacy using core (be does as Authentication Server) in the proposed model.

  • PDF

Acceleration of Intrusion Detection for Multi-core Video Surveillance Systems (멀티 코어 프로세서 기반의 영상 감시 시스템을 위한 침입 탐지 처리의 가속화)

  • Lee, Gil-Beom;Jung, Sang-Jin;Kim, Tae-Hwan;Lee, Myeong-Jin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.141-149
    • /
    • 2013
  • This paper presents a high-speed intrusion detection process for multi-core video surveillance systems. The high-speed intrusion detection was designed to a parallel process. Based on the analysis of the conventional process, a parallel intrusion detection process was proposed so as to be accelerated by utilizing multiple processing cores in contemporary computing systems. The proposed process performs the intrusion detection in a per-frame parallel manner, considering the data dependency between frames. The proposed process was validated by implementing a multi-threaded intrusion detection program. For the system having eight processing cores, the detection speed of the proposed program is higher than that of the conventional one by up to 353.76% in terms of the frame rate.

Multiple Signature Comparison of LogTM-SE for Fast Conflict Detection (다중 시그니처 비교를 통한 트랜잭셔널 메모리의 충돌해소 정책의 성능향상)

  • Kim, Deok-Ho;Oh, Doo-Hwan;Ro, Won-W.
    • The KIPS Transactions:PartA
    • /
    • v.18A no.1
    • /
    • pp.19-24
    • /
    • 2011
  • As era of multi-core processors has arrived, transactional memory has been considered as an effective method to achieve easy and fast multi-threaded programming. Various hardware transactional memory systems such as UTM, VTM, FastTM, LogTM, and LogTM-SE, have been introduced in order to implement high-performance multi-core processors. Especially, LogTM-SE has provided study performance with an efficient memory management policy and a practical thread scheduling method through conflict detection based on signatures. However, increasing number of cores on a processor imposes the hardware complexity for signature processing. This causes overall performance degradation due to the heavy workload on signature comparison. In this paper, we propose a new architecture of multiple signature comparison to improve conflict detection of signature based transactional memory systems.

Multi-Threaded Parallel H.264/AVC Decoder for Multi-Core Systems (멀티코어 시스템을 위한 멀티스레드 H.264/AVC 병렬 디코더)

  • Kim, Won-Jin;Cho, Keol;Chung, Ki-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.11
    • /
    • pp.43-53
    • /
    • 2010
  • Wide deployment of high resolution video services leads to active studies on high speed video processing. Especially, prevalent employment of multi-core systems accelerates researches on high resolution video processing based on parallelization of multimedia software. In this paper, we propose a novel parallel H.264/AVC decoding scheme on a multi-core platform. Parallel H.264/AVC decoding is challenging not only because parallelization may incur significant synchronization overhead but also because software may have complicated dependencies. To overcome such issues, we propose a novel approach called Multi-Threaded Parallelization(MTP). In MTP, to reduce synchronization overhead, a separate thread is allocated to each stage in the pipeline. In addition, an efficient memory reuse technique is used to reduce the memory requirement. To verify the effectiveness of the proposed approach, we parallelized FFmpeg H.264/AVC decoder with the proposed technique using OpenMP, and carried out experiments on an Intel Quad-Core platform. The proposed design performs better than FFmpeg H.264/AVC decoder before the parallelization by 53%. We also reduced the amount of memory usage by 65% and 81% for a high-definition(HD) and a full high-definition(FHD) video, respectively compared with that of popular existing method called 2Dwave.

Parallel LDPC Decoding on a Heterogeneous Platform using OpenCL

  • Hong, Jung-Hyun;Park, Joo-Yul;Chung, Ki-Seok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2648-2668
    • /
    • 2016
  • Modern mobile devices are equipped with various accelerated processing units to handle computationally intensive applications; therefore, Open Computing Language (OpenCL) has been proposed to fully take advantage of the computational power in heterogeneous systems. This article introduces a parallel software decoder of Low Density Parity Check (LDPC) codes on an embedded heterogeneous platform using an OpenCL framework. The LDPC code is one of the most popular and strongest error correcting codes for mobile communication systems. Each step of LDPC decoding has different parallelization characteristics. In the proposed LDPC decoder, steps suitable for task-level parallelization are executed on the multi-core central processing unit (CPU), and steps suitable for data-level parallelization are processed by the graphics processing unit (GPU). To improve the performance of OpenCL kernels for LDPC decoding operations, explicit thread scheduling, vectorization, and effective data transfer techniques are applied. The proposed LDPC decoder achieves high performance and high power efficiency by using heterogeneous multi-core processors on a unified computing framework.

Low-latency SAO Architecture and its SIMD Optimization for HEVC Decoder

  • Kim, Yong-Hwan;Kim, Dong-Hyeok;Yi, Joo-Young;Kim, Je-Woo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • This paper proposes a low-latency Sample Adaptive Offset filter (SAO) architecture and its Single Instruction Multiple Data (SIMD) optimization scheme to achieve fast High Efficiency Video Coding (HEVC) decoding in a multi-core environment. According to the HEVC standard and its Test Model (HM), SAO operation is performed only at the picture level. Most realtime decoders, however, execute their sub-modules on a Coding Tree Unit (CTU) basis to reduce the latency and memory bandwidth. The proposed low-latency SAO architecture has the following advantages over picture-based SAO: 1) significantly less memory requirements, and 2) low-latency property enabling efficient pipelined multi-core decoding. In addition, SIMD optimization of SAO filtering can reduce the SAO filtering time significantly. The simulation results showed that the proposed low-latency SAO architecture with significantly less memory usage, produces a similar decoding time as a picture-based SAO in single-core decoding. Furthermore, the SIMD optimization scheme reduces the SAO filtering time by approximately 509% and increases the total decoding speed by approximately 7% compared to the existing look-up table approach of HM.

Energy-Efficient Multi- Core Scheduling for Real-Time Video Processing (실시간 비디오 처리에 적합한 에너지 효율적인 멀티코어 스케쥴링)

  • Paek, Hyung-Goo;Yeo, Jeong-Mo;Lee, Wan-Yeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.6
    • /
    • pp.11-20
    • /
    • 2011
  • In this paper, we propose an optimal scheduling scheme that minimizes the energy consumption of a real-time video task on the multi-core platform supporting dynamic voltage and frequency scaling. Exploiting parallel execution on multiple cores for less energy consumption, the propose scheme allocates an appropriate number of cores to the task execution, turns off the power of unused cores, and assigns the lowest clock frequency meeting the deadline. Our experiments show that the proposed scheme saves a significant amount of energy, up to 67% and 89% of energy consumed by two previous methods that execute the task on a single core and on all cores respectively.