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Abstract 
 

Modern mobile devices are equipped with various accelerated processing units to handle 

computationally intensive applications; therefore, Open Computing Language (OpenCL) has 

been proposed to fully take advantage of the computational power in heterogeneous systems. 

This article introduces a parallel software decoder of Low Density Parity Check (LDPC) codes 

on an embedded heterogeneous platform using an OpenCL framework. The LDPC code is one 

of the most popular and strongest error correcting codes for mobile communication systems. 

Each step of LDPC decoding has different parallelization characteristics. In the proposed 

LDPC decoder, steps suitable for task-level parallelization are executed on the multi-core 

central processing unit (CPU), and steps suitable for data-level parallelization are processed by 

the graphics processing unit (GPU). To improve the performance of OpenCL kernels for 

LDPC decoding operations, explicit thread scheduling, vectorization, and effective data 

transfer techniques are applied. The proposed LDPC decoder achieves high performance and 

high power efficiency by using heterogeneous multi-core processors on a unified computing 

framework. 
 

 

Keywords: Error correcting code, LDPC decoder, parallel processing, heterogeneous 

computing, OpenCL 
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1. Introduction 

Modern wireless devices transmit and receive high-rate data in real time, and the complexity 

of digital signal processing applications is increasing rapidly. Therefore, various hardware 

accelerators are commonly used to efficiently process computationally intensive applications. 

Typically, mobile devices are equipped with a multi-core central processing unit (CPU) and a 

multi-core graphics processing unit (GPU). Due to these heterogeneous processing units, the 

potential for application-specific customization and parallelization of mobile applications has 

increased considerably.  

However, it is not easy to take full advantage of heterogeneous devices simultaneously 

because they have distinct hardware structures and instruction sets. Furthermore, most 

hardware vendors support programming models that work only for their own computing 

platforms [1]. Therefore, diverse programming skills and detailed knowledge of hardware 

architectures are required for programmers to efficiently implement a target application. 

Consequently, it is desirable to have a standard programming framework independent of 

specific computing platforms.  

Recently, Open Computing Language (OpenCL) has been developed to provide a 

framework that supports heterogeneous computing platforms. A key advantage of OpenCL is 

that programmers can access computing resources using standard runtime application 

programming interfaces (APIs) and libraries. If an application is designed to be compliant with 

the OpenCL specification, designers can cope with rapidly evolving hardware architectures 

and provide an optimized solution for the target device [2]. Therefore, parallelization of digital 

signal processing applications using the OpenCL framework can support various protocols 

and multiple code rates on heterogeneous platforms to achieve both high portability and high 

performance.  

The Low Density Parity Check (LDPC) code is one of the strongest linear block error 

correcting codes, which detect and correct errors caused by unreliable communication 

channels. LDPC coding shows good bit error rate curves with few error floor issues; therefore, 

it is widely considered attractive for high-speed wireless communication applications such as 

local and metropolitan area networks, satellite communication, and mobile broadcasting [3]. 

The LDPC code has been adopted by more than 200 industrial standards such as IEEE 802.11 

standards and the next generation standard of digital video broadcasting (DVB-S2X) [4]. This 

article introduces a parallel software decoder of LDPC codes for the China Multimedia Mobile 

Broadcasting (CMMB) standard on a mobile device. CMMB is a mobile television and 

multimedia standard developed and specified by the State Administration of Radio, Film, and 

Television (SARFT) of China [5].  

 An LDPC decoding algorithm can correct errors by repeatedly computing and exchanging 

messages. The amount of computation depends on the size of a sparse parity check matrix 

called H-matrix. As the size of an H-matrix increases, the amount of computation grows 

rapidly. Therefore, designing parallel LDPC decoders using multi-core processors has been 

actively studied to provide reliable high-speed data transmission [6]-[10]. However, even if 

most approaches could reduce the decoding time significantly, hardware resource utilization 

would be insufficient because existing models were parallelized for specific devices with 

hardware-dependent programming models. 
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This article presents effective parallelization techniques for LDPC decoders on a 

heterogeneous mobile platform with an OpenCL framework. Many high performance mobile 

processors include both CPU and GPU cores on a single silicon die to enable low power 

consumption and effective communication using a shared memory system. In general, 

task-level parallel applications run faster on multi-core CPUs, whereas data-level parallel 

applications tend to run faster on multi-core GPUs. Specifically, the address generation step in 

LDPC decoding is suitable for task-level parallelization, and the iterative decoding steps in 

LDPC are suitable for data-level parallelization. To improve the performance of the proposed 

LDPC decoder, explicit thread scheduling, vectorization, and effective data transfer 

techniques are applied. The proposed LDPC decoder satisfies the performance requirement of 

the CMMB standard and achieves both high performance and low power consumption by 

using both CPU and GPU cores intelligently. 

The remainder of this article is organized as follows. Section 2 presents an overview of the 

OpenCL framework for heterogeneous computing. Section 3 provides a brief review of LDPC 

decoding. The proposed LDPC decoder customized for heterogeneous platforms is explained 

in Section 4. The experimental environment and results are presented in Section 5. Section 6 

concludes this article with suggestions for future work.   

2. Overview of OpenCL Framework for Heterogeneous Programming 

OpenCL is an open industry standard computing framework for programming heterogeneous 

devices. The OpenCL framework includes a programming language, APIs, and libraries to 

support software development. The OpenCL specification is defined in a hierarchy of models: 

platform model, execution model, memory model, and programming model [2].  

2.1 Platform Model 
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Fig. 1. OpenCL platform model for the proposed LDPC decoder 

  

Fig. 1 shows the OpenCL platform model for the proposed LDPC decoder. The platform 

model for OpenCL consists of a host connected to one or more OpenCL compute devices 

(CDs), which are divided into one or more compute units (CUs). Each CU is further divided 

into one or more processing elements (PEs). OpenCL C functions, called kernels, are executed 

by each PE in parallel. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 6, June 2016                                        2651 

Although OpenCL provides functional portability by defining abstract device architecture, 

architecture-specific features of heterogeneous devices should be taken into account to 

improve the target kernel performance. As shown in Fig. 1, the multi-core CPU in the 

proposed platform model is defined as the CD as well as the host. In general, CPU cores are 

designed to process control-intensive applications, and they are adequate for task-level 

parallelization [11]. On the other hand, an advantage of the GPU is high computational 

throughput gained by using hundreds of PEs that support efficient context switching between 

groups of threads [12]. Therefore, GPUs are optimized for data-level parallelization. For the 

proposed decoder, the parallelization characteristics of LDPC decoding steps were considered 

carefully, and appropriate parallelization techniques were applied to kernels depending on 

target devices. 

2.2 Execution Model 

The execution model is defined by how PEs execute kernels. When a kernel is assigned to a 

processor for execution by the host, an index space is defined by the host program. A single 

kernel instance at a point in the index space is called a work-item, and work-items are grouped 

into a work-group. Work-groups are organized and assigned to a CU that contains multiple 

PEs on which each work-item is executed [2]. The host defines the context for kernel 

execution to manage OpenCL objects such as memory, program, kernel, and event. As shown 

in Fig. 2, the CPU and the GPU are defined in the same context to share memory objects and 

apply effective synchronization techniques using event objects.  
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Fig. 2. OpenCL execution model for the proposed LDPC decoder 

 

A command-queue coordinates communication activities between the host and CDs. In this 

work, each CPU and GPU has its own command-queue within a single context. In particular, 

the CPU uses an out-of-order command-queue to implement task-parallel programming. The 

GPU uses non-blocking commands for in-order queues to reduce the global synchronization 

overhead that can be incurred by unnecessary command batching [12]. 
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2.3 Memory Model 

Work-items that execute a kernel use the abstract memory hierarchy defined in the OpenCL 

memory model. In general, the host and CDs are physically independent and have separate 

memory spaces. Therefore, memory allocations on each device and explicit data transfers 

between the devices are required. However, as shown in Fig. 3, the CPU and the GPU of the 

target platform share the physical memory region defined as the global memory. Therefore, 

applying conventional data transfer techniques for the proposed LDPC decoder causes 

unnecessary memory allocations and data copies on the unified memory architecture. In this 

article, a method called zero-copy is applied to the proposed kernels to increase performance 

that directly accessing a buffer object in the global memory avoiding unnecessary memory 

allocations and runtime data transfers [13].  
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Fig. 3. OpenCL memory model for the proposed LDPC decoder 

 

In the OpenCL framework, the local memory is shared by all work-items within a single 

work-group while the global memory is visible to all work-groups. On the GPU, this memory 

space is implemented as software-managed on-chip caches which have much shorter latency 

and higher bandwidth than the global memory. Therefore, the local memory of the GPU 

provides efficient communication and data transfer methods between work-items of the same 

work-group. However, all CPU memory objects are cached by hardware, and explicit 

management of the local memory can cause unnecessary overhead during kernel execution. 

Therefore, CPUs cannot take advantage of the OpenCL local memory region [12]. In this 

article, data transfer optimization methods using local memory for the GPU kernels are 

implemented. Details will be explained in Section 4. 

2.4 Programming Model 

As shown in Fig. 4, a task-level parallel execution method uses an out-of-order 

command-queue that can run multiple commands concurrently as soon as the device is ready. 

LDPC kernels for the CPU work in a pipeline manner with explicit synchronization techniques 

using event objects [12]. Event objects encapsulate the states of the issued commands, and a 

list of events can be passed to the command-queue as a dependency list. Issued commands will 
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not begin executing until all of the input events have been completed. 

The OpenCL framework provides a data-parallel programming model with concurrently 

executed work-items in a work-group [2]. In this work, explicit vectorization with single 

instruction multiple data (SIMD) instructions was applied to GPU kernels to fully utilize the 

large number of PEs in the GPU. A detailed description of the implementation will be given in 

Section 4. 
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Fig. 4. OpenCL programming model for the proposed LDPC decoder 

3. Review of LDPC Decoding Algorithm 

3.1 LDPC Decoding Algorithm 

LDPC is a linear block code, and decoding is carried out using a parity-check matrix called 

H-matrix. The rows and the columns of an H-matrix represent parity-check codes and symbols, 

respectively. LDPC codes are often represented by a bipartite graph in which the set of check 

nodes and the set of bit nodes compose two partite sets. The check nodes correspond to rows of 

the H-matrix, and the bit nodes correspond to its columns. When an H-matrix contains a fixed 

number of 1’s in each row and each column, the weights of the column and the row are equal. 

An LDPC code with equal weights for both nodes is said to be regular. The (N, K) regular 

LDPC codes can be defined by an (M, N) H-matrix, where M and N represent the number of 

check nodes and bit nodes, respectively [3].  

Table 1 shows the entire LDPC decoding algorithm. LDPC decoding consists of four main 

operations: initialization (INIT), check node processing (CNP), bit node processing (BNP), 

and parity check (PC). Most practical LDPC decoders are based on a concept of message 

passing called either belief propagation (BP) or sum-product algorithm (SPA). SPA is carried 

out by passing messages that contain an amount of belief quantified as 0 or 1 between adjacent 

nodes. Each node attempts to decode its own value based on the delivered messages. If the 

decoded value turns out to contain an error, the decoding process is repeated a pre-determined 

number of times. Typically, iterative LDPC decoding schemes use log-likelihood ratio (LLR) 

processing to deliver messages, which replaces expensive multiplication operations with 

inexpensive addition operations. Input LLR values received from the channel and the initial 

decision values are configured at the INIT step. Iterative decoding based on the delivered 

messages is processed during the CNP and BNP steps. The decoding process is iterated until 

the termination condition for the decoded words is satisfied at the PC step [10]. 
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Table 1. LDPC decoding based on the sum-product algorithm (SPA) 

Decoding Step Algorithm 

Initialization 

(INIT)  

*Hmn : the value at (m,n) of H-matrix 
set Fn = LLR for bit nodes (n = 1,2,…,N) 

set Zmn = Fn if Hmn is 1 for each (m,n) 

Check node 

processing 

(CNP) 

while (i ≤ imax) 

*N(m):  the set of bit nodes including the check node m 
      for each check node 

           where each (m,n) if Hmn is 1 

       
      

   

     
 
   

  ∈        

                  

        
     

       

 

     end for 

Bit node  

processing 

(BNP) 

* M(n): the set of check nodes including the bit node n 

      for each bit node 

            where each (m,n) if Hmn is 1 

                 

  ∈        

                 

               

 ∈    

 

    end for  

*   :  the decoded word 

    for each n (n =1,2,…,N) 

        …               
        

        
  

    end for   

Parity check 

(PC) 

*The parity check equation 

if        …      
 
is 0   

                   return success 

      i++ 

end while 

3.2 Parallelization of LDPC Decoding 

LDPC decoding can correct errors by repeatedly computing and exchanging messages. The 

amount of computation depends on the size of the H-matrix. However, recently published 

standards show that H-matrices are getting bigger as the amount of data transfer increases [10]. 

The huge size causes both decoding complexity and decoding time to increase. Therefore, it is 

crucial to distribute the workload to proper hardware accelerators and parallelize the 

computation efficiently.  

For example, a recent study proposed techniques such as asynchronous data transfer and 

multi-stream concurrent kernel execution to utilize the GPU to run a WiMAX LDPC decoder 

[6]. In [7], a method for LDPC decoding using Compute Unified Device Architecture (CUDA) 

for the NVIDIA GPU is proposed. And a programming model for the low-power embedded 

CPUs is proposed in [8]. Falcão et al. proposed a portable LDPC decoder executed on a set of 

platforms ranging from multi-core CPUs to many-core GPUs [9]. Park et al. proposed a 

parallel software LDPC decoder using OpenMP for the CPU and CUDA for the GPU [10]. 
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They showed that parallel LDPC decoding using multi-core processors could reduce decoding 

time dramatically. However, hardware resource utilization is not sufficiently high because 

they rely on a vendor-specific computing framework and different parallel programming 

models for the CPU and the GPU which make it hard to exploit hardware accelerators 

simultaneously. 

This work proposes a novel parallelization technique for a software LDPC decoder to use 

both CPU and GPU in a unified programming framework. The platform, execution, memory, 

and programming models in the OpenCL framework are customized for LDPC decoding 

operations. Further, efficient computing resource management for heterogeneous devices is 

achieved using OpenCL objects in a single uniform context, as explained in the next section.  

4. Parallel LDPC Decoder on a Heterogeneous Platform using OpenCL 

The proposed OpenCL kernels for CMMB LDPC decoding were designed and customized to 

take full advantage of different target hardware architectures. Fig. 5 shows the execution flow 

of the proposed LDPC decoding kernels. An OpenCL task-parallel programming model was 

applied to the one-dimensional address generation kernel for execution by the CPU, and a 

data-parallel programming model was applied to the INIT, CNP, BNP, and PC kernels for 

execution by the GPU. Even if the CPU and the GPU are defined in a unified context, they 

employ separate command-queues. The CPU uses an out-of-order command-queue, whereas 

the GPU uses an in-order command-queue. Effective synchronization techniques and data 

transfer optimizations between defined OpenCL objects are applied to the host and kernel 

programs. These OpenCL models provide cross-platform programming environments that 

enable the proposed parallel LDPC decoder to improve performance by flexibly utilizing the 

heterogeneous platform. 

If (HCT ≠ 0) 

CPU

GPU CNP

Read H-matrix file

INIT

BNP

PC

Index value 

Address array

Bit node

Index value 

Address array

Check node

One-dimensional address generation

SPA-based LDPC decoding

 
Fig. 5. Execution flow of the proposed LDPC decoding kernels 
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4.1 Design of One-dimensional Address Generation Kernels 

In the LDPC decoding algorithm, LLR values are copied from the H-matrix at the INIT step, 

and updated values are stored back when the CNP and the BNP steps are conducted. The PC 

operation examines the termination condition using all check nodes connected to each bit node. 

To make it easier to parallelize the execution of LDPC decoding and minimize the number of 

memory accesses, the positions of the LLR values are rearranged as a one-dimensional array.  

 
Fig. 6. One-dimensional address generation for the LLR values of each bit node and check node 

 

Fig. 6 shows the generated address array for the bit node and the check node. The position 

of each LLR value for check nodes is stored with the form of (x, y), where x is the position of a 

bit node, and y indicates the order of the same bit node. This position information is rearranged 

as a one-dimensional array Laddr as in (1), where WB is the degree of bit nodes. 

 

                                                                     ≤   ≤                                                   (1) 
 

Zaddr, the one-dimensional address array for bit nodes, is computed using a similar method to 

determine the address array for check nodes, as in (2) where WC is the degree of check nodes. 

 

                                                                     ≤   ≤                                                   (2) 

 

By using this address arrangement, the number of memory accesses to read the position of 

the LLR values is reduced in the INIT, CNP, BNP and PC operations [10].  

In these address generation steps, positions of LLR values are simply read from the given 

H-matrix, and the one-dimensional array for each node is constructed independently. Thus, 

there is no memory access dependency between the two generation tasks. Therefore, the check 

node address generation (CAG) and the bit node address generation (BAG) can run 

concurrently on the target multi-core CPU to improve the decoding speed. Fig. 7 shows the 
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proposed OpenCL task-parallel programming model for the CAG and the BAG operations. In 

the programming model, PEs execute work-items for each kernel in parallel. In the target 

OpenCL platform model, a core of the CPU is defined as a PE, and each PE executes a thread 

independently of the others. The CPU uses an out-of-order command-queue to coordinate the 

parallel execution of the proposed LDPC kernels. Using the out-of-order queue, queued tasks 

are executed as soon as idle PEs are available regardless of the input command order.  

 
Fig. 7. Task parallel programming model for the check node address generation (CAG) and bit node 

address generation (BAG) kernels 

 

Each address generation step consists of two mutually dependent kernels: the index value 

generation (IVG) kernel and the address array generation (AAG) kernel. The IVG kernel finds 

the index value y in the given H-matrix, which indicates the order of the corresponding nodes. 

The AAG kernel calculates the address array for each node using the index values calculated 

in the IVG kernel. Therefore, synchronization between IVG and AAG kernels is required for 

correct decoding.  
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Time

clEnqueueTask(CPU_queue, 
           IVG_kernel,1,

                          read_event,
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clEnqueueTask(CPU_queue, 
               AAG_kernel,1,

                                IVG_event[0],
 & AAG_event[0])Wait

BAG 
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Fig. 8. Synchronization between the data dependent kernels 

 

Command execution of the out-of-order queue depends only on the associated events in the 

wait list. As shown in Fig. 8, each AAG kernel registers unique event objects for an IVG 

PE PE

PE PE
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IVG kernel AAG kernel

IVG kernel AAG kernel

CAG 
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cnode.address[k]  =  bnode.position[k] 
   x bnode.degree 
   + bnode.index[k]      
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kernel in an event wait list for the clEnqueueTask API and waits until all input events have 

completed the execution. This provides fine-grained control for the out-of-order commands 

that preserves the execution order between the IVG kernel and the AAG kernel. Therefore, 

task-level parallel execution of BAG and CAG operations can be conducted successfully. 

4.2 Design of SPA-based LDPC Decoding Kernels 

Table 2. Pseudo-code for the proposed SPA-based LDPC decoding kernels 

Decoding Step Algorithm 

INIT 

//BSB : Block size of bit node 

xIndex = work_group_ID   WB   BSB + local_ ID   WB 

Index = work _group_ID   BSB + local_ ID 

for i < WB //For each bit node 

           Z[Zaddr[xIndex + i]] = F[Index] 

end for 

CNP 

//BSC : Block size of check node 

xIndex = work_group_ ID   WC   BSC + local_ ID   WC 

for i < WC //For each check node 

         L[Laddr[xIndex + i]] = Message[xIndex+i] 

end for 

BNP 

xIndex = work_group_ ID   WB   BSB + local_ ID   WB 

Index = work_group_ ID   BSB + local_ ID 

for i < WB//For each bit node 

       Z[Zaddr[xIndex + i]] = Message[Zaddr[xIndex + i]] 

          if Z       

                     Decode[Index] = 0   

          else     Decode[Index] = 1   

endif 

end for 

PC 

xIndex = work_group_ ID   WC   BSC + local_ ID   WC 

Index = work_group_ ID   BSC + local_ ID  

for i < WC //For each check node 

         Check += Decode[int(Laddr[xIndex + i]/WB)]  

end for 

Check = int (Check%2) 

 

Table 2 shows a pseudo-code for the proposed SPA-based LDPC decoding kernels that 

parallelized on the target GPU. The INIT step is carried out with a pre-generated Zaddr that 

indicates the destination of copied LLR values. The CNP operation then reads the degree of 

check nodes from the memory and updates the decision values based on the delivered 

messages. The results are stored in the same region using Laddr. The BNP step conducts similar 

operations for bit nodes using Zaddr. Finally, the PC operation examines the check nodes using 

Laddr to determine whether all the decoded values are 0.  

In the proposed kernels, the numbers of work-items executing the same instruction for each 

cycle are denoted as BSB for bit node operations and BSC for check node operations, and they 

are configurable using the index size argument of the clEnqueueNDRangeKernel runtime API. 
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As discussed above, the OpenCL data-parallel programming model operates by concurrently 

executing work-items on multiple PEs. Even though all work-items execute the same kernel 

code, the data to be processed can be assigned differently to each work-item by changing the 

allocated index. Work-items are uniquely identified with the combination of the work-group 

index and the local index. The local index is the position of the work-item inside of a 

work-group [2].  

As shown in Fig. 9, explicit vectorization was applied to GPU kernels. The OpenCL 

compiler generates SIMD instructions when built-in vector types are used in the kernels. In 

general, GPUs are optimized for 128-bit data transfer operations per SIMD lane to support 

four 32-bit pixel vectors [12]. Therefore, vectorization with the four-wide vector type which 

combines four scalar data into a single vector enables work-items to perform decoding 

operations on multiple data simultaneously to improve performance. Furthermore, explicit use 

of vector data types enables more coalesced memory operations and data transfers with a 

higher bandwidth.  

   CNP

   INIT

   BNP

    PC

SPA-based LDPC decoding

#Vectorization (four-wide) 
   float4 Z = (float4)(F.x,F.y,F.z,F.w)

#Vectorization (four-wide) 
   float4 L = (float4)(Message.x,Message.y,Message.z,Message.w)

#Vectorization (four-wide) 
   float4 Z = (float4)(Message.x,Message.y,Message.z,Message.w)
   int4 Decode.xvzw = (Z.xvzw < 0)?   1 : 0

#Vectorization (four-wide)
 int4 Check += Decode
 Check.xvzw =((int)(Check.xvzw)%2)

 
Fig. 9. Explicit vectorization for SPA-based LDPC decoding kernels 

 

As mentioned above, GPUs have a local memory region to store local data for a CU, and its 

access time is much faster than that of the global memory. Therefore, efficient use of the local 

memory region can improve performance of the GPU kernels by providing fast data access 

and efficient data sharing among hundreds of work-items in a work-group. In the proposed 

GPU kernels, the one-dimensional address array for each node is used by every work-item 

without having to repeatedly compute a new address. Therefore, the proposed GPU kernels 

allocate the address arrays in the local memory to hold position values that can be shared by all 

work-items that belong to the same work-group.  

As shown in Fig. 10, the INIT and BNP kernels use Zaddr and the CNP and PC kernels use 

Laddr in the local memory. However, the local memory state is not guaranteed to be consistent 

across work-items inside the group because the data transmission time of each work-item is 

different. Therefore, synchronization using a barrier is applied to the GPU kernels. A barrier is 

a built-in function that prevents work-items from crossing it until all work-items in a 

work-group have reached it [12]. Global synchronization among kernels is managed by event 

objects for non-blocking commands in the in-order GPU command-queue. Detailed 

experimental results are addressed in Section 5. 
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Fig. 10. Local memory allocation and synchronization for proposed GPU kernels 

4.3 Zero-copy Technique for the Proposed LDPC Decoder 

The host program asks a device to execute the assigned kernel using OpenCL runtime APIs. 

To execute a kernel, the data to be processed must be copied to the device memory because the 

host cannot directly access the memory system of the discrete CDs. After processing the data 

on the kernel, the computation results are transferred back to the host memory. Generally, 

OpenCL devices carry these operations out using the clEnqueueRead and clEnqueueWrite 

APIs. These explicit data transfers may suffer from large latency because the request must be 

handled by relatively slow inter-device busses.  

However, as mentioned in Section 2, the global memory of the target mobile platform is 

shared by the CPU and the GPU. A significant benefit of this heterogeneous system is that no 

memory object copy is necessary since the physical memory is unified. Furthermore, the CPU 

in the proposed platform model is defined as a CD as well as the host, and therefore, any 

explicit data transfer is unnecessary. Thus, the zero-copy technique imposing little execution 

overhead is applied to the entire CPU and GPU kernels.  

Fig. 11 shows how the zero-copy is carried out by the clEnqueueMapBuffer and 

clEnqueueUnmapMemObject APIs in place of explicit data transfer functions. These APIs just 

map a buffer region into the shared address space and return a pointer of the mapped region. 

The memory objects created with the CL_MEM_ALLOC_HOST_PTR flag can be accessed 

directly by both the host and a CD. These memory objects are called pinned zero-copy buffers, 

and they can be used by OpenCL applications as function arguments without any data copying. 

Using pinned zero-copy buffers prevents the allocated memory from being paged out 

accidentally by the operating system and provides an improved transfer speed by achieving 

near the peak interconnect bandwidth [13].  

As shown in Fig. 12, the zero-copy technique significantly reduces the execution time of the 

entire LDPC decoding process by eliminating runtime data transfers during kernel execution. 

When the host finishes a logical memory transfer to the zero-copy buffer with the map 

function, the unmap function makes this memory object available to the target devices. After 

processing the data by the GPU kernels, the host can directly access results using the 

zero-copy technique without any additional copying. Furthermore, this is done without any 

additional memory allocation because both CDs are defined in the same context, and memory 
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objects are associated with the context rather than the device. As the context is shared among 

CDs, global synchronization between the CPU and the GPU kernels becomes feasible using 

event objects. The completion of events for CPU commands is guaranteed that the generated 

address arrays for each node can be accessed directly by GPU kernels. The following section 

reports performance comparison results when the proposed zero-copy techniques were applied 

to the decoding kernels. 

(a) Discrete memory system (b) Integrated memory system

Host memory

clEnqueueReadclEnqueueWrite

CL_MEM_ALLOC_HOST_PTR

clEnqueueMap clEnqueueUnmap

Buffer

Buffer

Zero-copy

Device memory

Host memory

Buffer

Device memory
Buffer

 
Fig. 11. Zero-copy technique for the integrated memory system 
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Fig. 12. Reduced execution time after applying the zero-copy technique 

5. Experimental Results 

This article proposes a novel decoder for (3, 6) regular LDPC codes with a word length of 

9216 bits to satisfy the throughput requirement of the CMMB, China's designated mobile TV 

standard. Its H-matrix is known to have high error-correcting capability [5]. The CMMB 
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standard supports two code rates, 1/2 and 3/4; specifications for each code rate are 

summarized in Table 3. 

 
Table 3. LDPC coding configuration 

Code rate 

R 

Information 

K 

Code word 

N 

Row weight 

WC 

Column weight 

WB 

1/2 4608 bits 9216 bits 6 3 

3/4 6912 bits 9216 bits 12 3 

 

To evaluate the performance of the proposed LDPC decoder on a heterogeneous platform, 

kernels were compiled with an Intel software development kit (SDK) for OpenCL version 1.2 

which supports the out-of-order command-queue for the target CPU. Microsoft Visual Studio 

2010 with 64-bit Windows 7 Service pack 1 was used as the host C program compiler. The 

target heterogeneous mobile platform consists of an Intel i7-4720HQ quad-core CPU and an 

Intel HD 4600 integrated GPU with 8GB of DDR3 random access memory (RAM). The CPU 

was defined as a single CU including four PEs, and the GPU consisted of 7 CUs where each 

CU contained 32 PEs. A unified memory hierarchy for both CPU and GPU cores was defined 

as the OpenCL global memory. Performance of the proposed LDPC decoder was evaluated 

with respect to various signal-to-noise ratio (SNR) values on the target platform. 

5.1 Performance Evaluation for Proposed CPU Kernels 

The aforementioned task-level parallelization (TP) and the zero-copy technique were applied 

to the one-dimensional address generation and they were executed on the CPU. In this 

experiment, execution times for the proposed CPU kernels were compared with three other 

decoders: a decoder written in the C language, a decoder parallelized with OpenMP, and an 

OpenCL implementation that was not based on the proposed techniques (hereafter called as 

the base OpenCL implementation). OpenMP is a pragma-based parallelization API for 

multi-core CPUs [14]. In this experiment, OpenMP pragmas were inserted to parallelize the 

address generation on a quad-core CPU using four threads. 

 
Table 4. Average address array generation processing time/frame 

 C OpenMP 

OpenCL (CPU Kernel) 

Normal After TP 
After 

Zero-copy 

CMMB, code rate: 1/2, frame: 100,000, SNR: 1 

(ms) 2.564 1.563 3.041 1.641 1.295 

Speedup 1.97 1.21 2.34 1.26 - 

CMMB, code rate: 3/4, frame: 100,000, SNR: 1 

(ms) 4.245 2.522 4.890 2.577 2.047 

Speedup 2.12 1.23 2.40 1.25 - 

 

Table 4 summarizes processing times for the one-dimensional address array generation step 

for each CMMB code rate. Due to runtime overhead caused by OpenCL object management, 

the base OpenCL implementation takes longer than the standard C and the OpenMP 

implementations. However, when the TP technique was applied, the performance gap between 

the OpenCL and the OpenMP implementations was reduced. Performance of the entire 

address generation using the OpenCL framework was much improved when the zero-copy 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 6, June 2016                                        2663 

technique was applied.  

As shown in Fig. 13, the average data transfer time of the OpenCL implementations was 

much longer than the memory allocation time of the C and the OpenMP designs. To reduce the 

runtime of data transfers and unnecessary memory duplications caused by the mismatches 

between the platform model and the CPU architecture, the zero-copy technique was applied to 

the CPU kernels, and the data transfer time was decreased by almost 60%. As a result, the 

address generation processing achieved a speed-up of up to 2.12 over the case in which no 

parallelization was applied to the application written in C. 

 

 
Fig. 13. Average processing time of one-dimensional address generation on a CPU 

5.2 Performance Evaluation for Proposed GPU Kernels 

As described in Section 2.2, the number of work-items specified by a programmer is the same 

as the number of active threads that execute the proposed LDPC kernels in parallel. The best 

size of the thread block composing a work-group was determined to hide memory access 

latencies and use the GPU hardware resources wisely. Fig. 14 shows the average decoding 

time of the proposed GPU kernels for 100,000 frames with a code rate of 1/2. The execution 

time was most improved when each kernel was processed in parallel with 32 threads, largely 

because the number of PEs defined in the proposed execution model is 32, which was 

determined by considering the maximum number of the target GPU’s hardware threads. 

Table 5 compares the performance of the proposed OpenCL design with those of the other 

implementations for each code rate. Every OpenCL design ran the same GPU kernels on 32 

PEs to compare the CPU performance under the same conditions. In this article, explicit 

vectorization using four-wide vector types were applied to each GPU kernel because the 

internal memory paths on the target GPU support 128-bit data transfers. The effective data 

transfer techniques including zero-copy and local memory allocation were applied as well to 

maximize hardware resource utilization. When the utilization techniques were applied, the 

proposed LDPC decoder achieved a speedup of up to 17.6 over the C design and 2.14 over the 
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base OpenCL design. To satisfy the CMMB performance requirements, decoding for one 

frame must be processed within 3.3 milliseconds [10]. The proposed decoder satisfies this 

requirement with signal reception of at least 1 dB for a 1/2 code rate and 3 dB for a 3/4 code 

rate. 

 

 

Fig. 14. Average processing time of LDPC decoding kernels on a GPU with varying numbers of 

work-items 

 

Table 5. Average LDPC decoding time per frame versus SNR value 

SNR C OpenMP 

OpenCL 

(GPU, Work-item: 32) 

Normal 
After 

Utilization 

CMMB, code rate: 1/2, frame: 100,000, millisecond 

1 37.62 9.40 5.06 2.32 

1.5 15.60 6.30 2.10 1.04 

2 10.06 3.08 1.19 0.69 

2.5 7.39 1.84 1.00 0.56 

3 3.93 1.25 0.92 0.38 

3.5 3.01 0.90 0.86 0.33 

4 2.21 0.78 0.67 0.29 

CMMB, code rate: 3/4, frame: 100,000, millisecond 

2.5 140.84 39.91 17.15 7.99 

3 45.29 15.66 5.96 2.26 

3.5 38.85 13.29 5.26 1.75 

4 25.78 12.05 4.44 1.39 

4.5 21.69 8.03 2.97 1.21 

5 16.62 5.87 2.37 0.88 

5.5 14.50 5.16 2.24 0.75 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 6, June 2016                                        2665 

5.3 Performance Evaluation of the Entire LDPC Decoder 

As described in Section 4, the proposed design is a cost effective and flexible software LDPC 

decoder that can support multiple standards. To support multiple standards, multiple 

H-matrices are stored as files and the host CPU reads the H-matrix for a given standard and 

generates an address table of the LLR values. To show that our method is satisfactory for 

multiple standards, an LDPC decoder for IEEE 802.11n with a code rate of 1/2 is implemented. 

802.11n is a local area network (LAN) standard, and the H-matrix has 1944 bits of code words 

and 972 bits of an information word. In general, the entire decoding time of the 802.11n takes 

longer than CMMB because it is an irregular code that the parity check matrix contains a 

different number of  ’s in each row and each column [15].  

 
Table 6. Processing time of LDPC decoding versus SNR value 

SNR 
CPU only 

CPU+GPU 

(PCI-e) 

CPU+GPU 

(SoC) 

C OpenMP Cilk Plus OpenMP+CUDA OpenCL OpenCL 

CMMB, code rate: 1/2, frame: 100,000, second 

1 312.73 101.24 96.68 39.14 34.21 44.36 

1.5 157.21 55.62 51.21 20.35 17.79 23.07 

2 103.21 33.78 31.02 13.03 11.39 14.76 

2.5 52.46 18.63 17.24 6.77 5.92 7.68 

3 28.17 9.12 8.40 3.52 3.08 4.09 

3.5 13.58 4.93 4.25 1.83 1.6 2.12 

4 6.52 2.57 2.11 0.95 0.83 1.18 

802.11n, code rate: 1/2, frame: 100,000, second  

1 15.90 9.21 8.89 3.12 2.87 4.21 

1.2 28.00 19.80 17.12 8.22 7.32 8.90 

1.4 69.80 29.32 26.87 15.31 14.87 16.81 

1.6 272.60 123.59 114.94 54.12 52.41 61.12 

1.8 1114.10 612.22 589.77 385.13 370.41 391.91 

2.0 956.2 502.92 484.42 244.12 238.41 257.20 

2.2 838.9 452.34 440.06 210.89 190.54 227.52 

2.4 752.4 426.01 404.41 181.31 174.32 207.51 

2.6 684.3 387.41 368.67 165.41 150.32 191.28 

 

Table 6 shows the entire LDPC decoding time of six different implementations for CMMB 

and 802.11n standards with respect to various SNR values. The first three are C, OpenMP, and 

Intel Cilk Plus implementations that run only on the CPU. The fourth is a recently proposed 

design that was mentioned in Section 3.2 using OpenMP and CUDA [10]. The fifth and sixth 

approaches are the proposed OpenCL implementations on a heterogeneous mobile platform. 

The difference of the two is whether an external GPU is employed or an integrated one is 

employed. A NVIDIA GeForce GTX 860M, which was used for the external GPU of the third 

and the fourth cases, consisted of 16 CUs where each CU contained 40 PEs. And the external 

GPU is connected to the CPU via the peripheral component interconnect-express (PCI-e) bus.  

Intel Cilk Plus is a simple language extension to C and C++ to express multi-threaded 

parallelism for the Intel multi-core CPUs [16]. It introduces three new keywords in the 

programming language: cilk_for, clik_spawn, and cilk_sync, while OpenMP uses directive 

based programming models. In this section, all CPU versions have been compiled with Intel 

C++ compiler 16.0 that offers stable support for both OpenMP and Cilk Plus. As shown in 
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Table 6, both CMMB and 802.11n software LDPC decoders parallelized with Cilk Plus show 

the best performance among the CPU only versions because Cilk Plus supports optimized 

thread scheduling and vectorization using streaming SIMD extensions (SSE) for modern Intel 

processors.  

However, performance gain of the CPU only implementations is limited compared to the 

parallel LDPC decoder using OpenCL due to they rely on the vendor-specific computing 

framework. The parallel LDPC decoding on the heterogeneous platform using OpenCL shows 

better performance than the other implementations. Table 6 shows that for SNR of 1, we have 

achieved a speedup of 2.18 for CMMB and that of 2.11 for 802.11n compared to the Cilk Plus 

implementations. These results show that performance of the proposed decoder is excellent, 

mainly due to efficient hardware resource utilization with a unified computing framework for 

the CPU and the GPU.  

 
Table 7. Performance per watt of LDPC decoding 

 
CPU 

(OpenMP) 

CPU 

(Cilk Plus) 

CPU+GPU 

(OpenCL, PCI-e) 

CPU+GPU 

(OpenCL, SoC) 

CMMB, code rate: 1/2, frame:100,000, SNR: 1 

Power consumption 

(watt) 
11.97 14.86 55.26 22.63 

Frame per 

second/watt 
81.52 69.61 52.89 99.75 

802.11n, code rate: 1/2, frame: 100,000, SNR: 1 

Power consumption 

(watt) 
16.12 19.86 59.23 28.23 

Frame per 

second/watt 
786.25 566.39 588.27 843.41 

 

Although the PCI-e bus significantly limits the data transfer rate between the host and CDs, 

decoding time of the external GPU is faster than the integrated GPU because the external GPU 

has much more PEs that execute more work-items in parallel. However, speed and energy 

efficiency are equally important for consumer electronic devices. Thus, performance per watt 

of the LDPC decoding was evaluated. Table 7 compares the performance per watt of the CPU 

only implementations and the OpenCL implementations for CMMB and 802.11n standards 

with SNR of 1. Power consumption of each implementation has been measured using 

real-time power monitoring tools for the mobile CPU and the mobile GPU [17]. These results 

verify that performance per watt of the proposed decoder on a mobile platform is excellent, 

mainly due to the proposed hardware utilization techniques for the shared memory 

architecture. 

Hardware decoder implementations of LDPC codes show better performance per watt 

compared to the proposed OpenCL implementations because power consumptions of 

hardware decoders have ranged merely from 87 mW to 173.5 mW [18]. However, it is very 

challenging to design a hardware LDPC decoder that supports various standards and multiple 

data rates. The proposed parallel software LDPC decoder on a mobile system using an 

OpenCL framework satisfies the performance requirement of the multiple LDPC standards 

while providing scalability, high portability, and flexibility, which may not be possible with 

hardware implementations. 
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6. Conclusion 

When digital signal processing and communication applications are parallelized on an 

OpenCL framework, they can be executed on heterogeneous devices such as CPUs and GPUs 

to achieve both high portability and high performance. This article proposed parallelization 

methods for the LDPC decoder on an embedded SoC platform which included both a 

multi-core CPU and a multi-core GPU. Efficient computing resource management for 

heterogeneous devices was achieved using OpenCL objects defined under a unified single 

context. To improve performance of the proposed decoding kernels, explicit thread scheduling, 

vectorization, and effective data transfer techniques were applied. The proposed LDPC 

decoder satisfied the performance requirements of the CMMB standard and showed high 

performance per watt by intelligently utilizing both the CPU and the GPU with OpenCL. 

Future works are going on to parallelize the LDPC decoder on various heterogeneous 

computing platforms, including one with field-programmable gate arrays (FPGAs), using 

OpenCL. 
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