
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 6, Jun. 2016 2648

Copyright ⓒ2016 KSII

This research was supported by the MSIP (Ministry of Science, ICT&Future Planning), Korea, under the ITRC

(Information Technology Research Center) support program (IITP-2016-H8501-16-1005) supervised by the IITP

(Institute for Information&communications Technology Promotion).

http://dx.doi.org/10.3837/tiis.2016.06.011 ISSN : 1976-7277

Parallel LDPC Decoding on a
Heterogeneous Platform using OpenCL

Jung-Hyun Hong

1
, Joo-Yul Park

2
 and Ki-Seok Chung

2

1 Department of Electronics and Computer Engineering, Hanyang University, Seoul, Korea

[e-mail : jhhong34@hanyang.ac.kr]
2 Department of Electronic Engineering, Hanyang University, Seoul, Korea

[e-mail : jooyul.park@gmail.com, kchung@hanyang.ac.kr]

*Corresponding author: Ki-Seok Chung

Received October 28, 2015; revised March 15, 2016; accepted May 18, 2016;

published June 30, 2016

Abstract

Modern mobile devices are equipped with various accelerated processing units to handle

computationally intensive applications; therefore, Open Computing Language (OpenCL) has

been proposed to fully take advantage of the computational power in heterogeneous systems.

This article introduces a parallel software decoder of Low Density Parity Check (LDPC) codes

on an embedded heterogeneous platform using an OpenCL framework. The LDPC code is one

of the most popular and strongest error correcting codes for mobile communication systems.

Each step of LDPC decoding has different parallelization characteristics. In the proposed

LDPC decoder, steps suitable for task-level parallelization are executed on the multi-core

central processing unit (CPU), and steps suitable for data-level parallelization are processed by

the graphics processing unit (GPU). To improve the performance of OpenCL kernels for

LDPC decoding operations, explicit thread scheduling, vectorization, and effective data

transfer techniques are applied. The proposed LDPC decoder achieves high performance and

high power efficiency by using heterogeneous multi-core processors on a unified computing

framework.

Keywords: Error correcting code, LDPC decoder, parallel processing, heterogeneous

computing, OpenCL

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 6, June 2016 2649

1. Introduction

Modern wireless devices transmit and receive high-rate data in real time, and the complexity

of digital signal processing applications is increasing rapidly. Therefore, various hardware

accelerators are commonly used to efficiently process computationally intensive applications.

Typically, mobile devices are equipped with a multi-core central processing unit (CPU) and a

multi-core graphics processing unit (GPU). Due to these heterogeneous processing units, the

potential for application-specific customization and parallelization of mobile applications has

increased considerably.

However, it is not easy to take full advantage of heterogeneous devices simultaneously

because they have distinct hardware structures and instruction sets. Furthermore, most

hardware vendors support programming models that work only for their own computing

platforms [1]. Therefore, diverse programming skills and detailed knowledge of hardware

architectures are required for programmers to efficiently implement a target application.

Consequently, it is desirable to have a standard programming framework independent of

specific computing platforms.

Recently, Open Computing Language (OpenCL) has been developed to provide a

framework that supports heterogeneous computing platforms. A key advantage of OpenCL is

that programmers can access computing resources using standard runtime application

programming interfaces (APIs) and libraries. If an application is designed to be compliant with

the OpenCL specification, designers can cope with rapidly evolving hardware architectures

and provide an optimized solution for the target device [2]. Therefore, parallelization of digital

signal processing applications using the OpenCL framework can support various protocols

and multiple code rates on heterogeneous platforms to achieve both high portability and high

performance.

The Low Density Parity Check (LDPC) code is one of the strongest linear block error

correcting codes, which detect and correct errors caused by unreliable communication

channels. LDPC coding shows good bit error rate curves with few error floor issues; therefore,

it is widely considered attractive for high-speed wireless communication applications such as

local and metropolitan area networks, satellite communication, and mobile broadcasting [3].

The LDPC code has been adopted by more than 200 industrial standards such as IEEE 802.11

standards and the next generation standard of digital video broadcasting (DVB-S2X) [4]. This

article introduces a parallel software decoder of LDPC codes for the China Multimedia Mobile

Broadcasting (CMMB) standard on a mobile device. CMMB is a mobile television and

multimedia standard developed and specified by the State Administration of Radio, Film, and

Television (SARFT) of China [5].

 An LDPC decoding algorithm can correct errors by repeatedly computing and exchanging

messages. The amount of computation depends on the size of a sparse parity check matrix

called H-matrix. As the size of an H-matrix increases, the amount of computation grows

rapidly. Therefore, designing parallel LDPC decoders using multi-core processors has been

actively studied to provide reliable high-speed data transmission [6]-[10]. However, even if

most approaches could reduce the decoding time significantly, hardware resource utilization

would be insufficient because existing models were parallelized for specific devices with

hardware-dependent programming models.

2650 Hong et al.: Parallel LDPC Decoding on a Heterogeneous Platform using OpenCL

This article presents effective parallelization techniques for LDPC decoders on a

heterogeneous mobile platform with an OpenCL framework. Many high performance mobile

processors include both CPU and GPU cores on a single silicon die to enable low power

consumption and effective communication using a shared memory system. In general,

task-level parallel applications run faster on multi-core CPUs, whereas data-level parallel

applications tend to run faster on multi-core GPUs. Specifically, the address generation step in

LDPC decoding is suitable for task-level parallelization, and the iterative decoding steps in

LDPC are suitable for data-level parallelization. To improve the performance of the proposed

LDPC decoder, explicit thread scheduling, vectorization, and effective data transfer

techniques are applied. The proposed LDPC decoder satisfies the performance requirement of

the CMMB standard and achieves both high performance and low power consumption by

using both CPU and GPU cores intelligently.

The remainder of this article is organized as follows. Section 2 presents an overview of the

OpenCL framework for heterogeneous computing. Section 3 provides a brief review of LDPC

decoding. The proposed LDPC decoder customized for heterogeneous platforms is explained

in Section 4. The experimental environment and results are presented in Section 5. Section 6

concludes this article with suggestions for future work.

2. Overview of OpenCL Framework for Heterogeneous Programming

OpenCL is an open industry standard computing framework for programming heterogeneous

devices. The OpenCL framework includes a programming language, APIs, and libraries to

support software development. The OpenCL specification is defined in a hierarchy of models:

platform model, execution model, memory model, and programming model [2].

2.1 Platform Model

PE PE

PE PE

CU

CD (CPU)

Host CD (GPU)

PE PE

PE PE

PE PE

PE PE

PE PE

...

CU
PE PE

PE PE

PE PE

PE PE

PE PE

CU
PE PE

PE PE

PE PE

PE PE

PE PE

CU

Fig. 1. OpenCL platform model for the proposed LDPC decoder

Fig. 1 shows the OpenCL platform model for the proposed LDPC decoder. The platform

model for OpenCL consists of a host connected to one or more OpenCL compute devices

(CDs), which are divided into one or more compute units (CUs). Each CU is further divided

into one or more processing elements (PEs). OpenCL C functions, called kernels, are executed

by each PE in parallel.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 6, June 2016 2651

Although OpenCL provides functional portability by defining abstract device architecture,

architecture-specific features of heterogeneous devices should be taken into account to

improve the target kernel performance. As shown in Fig. 1, the multi-core CPU in the

proposed platform model is defined as the CD as well as the host. In general, CPU cores are

designed to process control-intensive applications, and they are adequate for task-level

parallelization [11]. On the other hand, an advantage of the GPU is high computational

throughput gained by using hundreds of PEs that support efficient context switching between

groups of threads [12]. Therefore, GPUs are optimized for data-level parallelization. For the

proposed decoder, the parallelization characteristics of LDPC decoding steps were considered

carefully, and appropriate parallelization techniques were applied to kernels depending on

target devices.

2.2 Execution Model

The execution model is defined by how PEs execute kernels. When a kernel is assigned to a

processor for execution by the host, an index space is defined by the host program. A single

kernel instance at a point in the index space is called a work-item, and work-items are grouped

into a work-group. Work-groups are organized and assigned to a CU that contains multiple

PEs on which each work-item is executed [2]. The host defines the context for kernel

execution to manage OpenCL objects such as memory, program, kernel, and event. As shown

in Fig. 2, the CPU and the GPU are defined in the same context to share memory objects and

apply effective synchronization techniques using event objects.

CU
PE

PE PE
PE PE

PE PE
PE PE

PE
CU

PE
PE PE
PE PE

PE PE
PE PE

PE
CU

PE
Work-item PE

PE PE

PE PE
PE PE

PE
Work-groupWork-group

Work-
item

Work-
item

Work-
item

Work-
item

0 1 2 3 4 5

In-order Command-queueOut-of-order Command-queue

Kernel objectProgram object

Event object

Work-item Work-item

Work-item Work-item

Work-item Work-item

Work-item Work-item

Work-item Work-item

CPU GPU

Context

0 2 3 1 5 4

M
em

o
ry

 o
b

je
ct

Fig. 2. OpenCL execution model for the proposed LDPC decoder

A command-queue coordinates communication activities between the host and CDs. In this

work, each CPU and GPU has its own command-queue within a single context. In particular,

the CPU uses an out-of-order command-queue to implement task-parallel programming. The

GPU uses non-blocking commands for in-order queues to reduce the global synchronization

overhead that can be incurred by unnecessary command batching [12].

2652 Hong et al.: Parallel LDPC Decoding on a Heterogeneous Platform using OpenCL

2.3 Memory Model

Work-items that execute a kernel use the abstract memory hierarchy defined in the OpenCL

memory model. In general, the host and CDs are physically independent and have separate

memory spaces. Therefore, memory allocations on each device and explicit data transfers

between the devices are required. However, as shown in Fig. 3, the CPU and the GPU of the

target platform share the physical memory region defined as the global memory. Therefore,

applying conventional data transfer techniques for the proposed LDPC decoder causes

unnecessary memory allocations and data copies on the unified memory architecture. In this

article, a method called zero-copy is applied to the proposed kernels to increase performance

that directly accessing a buffer object in the global memory avoiding unnecessary memory

allocations and runtime data transfers [13].

CU (Work-group)

PE 0 ...
Work-items

PE 1 PE 2 PE n

Main Memory

CPU (Host = CD)

PE N
(Work-item)

CU (Work-group)

PE 0 ...
Work-items

PE 1 PE 2 PE n

GPU (CD)

Global Memory

Local Memory

Private Memory

Local Memory

Private Memory

Fig. 3. OpenCL memory model for the proposed LDPC decoder

In the OpenCL framework, the local memory is shared by all work-items within a single

work-group while the global memory is visible to all work-groups. On the GPU, this memory

space is implemented as software-managed on-chip caches which have much shorter latency

and higher bandwidth than the global memory. Therefore, the local memory of the GPU

provides efficient communication and data transfer methods between work-items of the same

work-group. However, all CPU memory objects are cached by hardware, and explicit

management of the local memory can cause unnecessary overhead during kernel execution.

Therefore, CPUs cannot take advantage of the OpenCL local memory region [12]. In this

article, data transfer optimization methods using local memory for the GPU kernels are

implemented. Details will be explained in Section 4.

2.4 Programming Model

As shown in Fig. 4, a task-level parallel execution method uses an out-of-order

command-queue that can run multiple commands concurrently as soon as the device is ready.

LDPC kernels for the CPU work in a pipeline manner with explicit synchronization techniques

using event objects [12]. Event objects encapsulate the states of the issued commands, and a

list of events can be passed to the command-queue as a dependency list. Issued commands will

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 6, June 2016 2653

not begin executing until all of the input events have been completed.

The OpenCL framework provides a data-parallel programming model with concurrently

executed work-items in a work-group [2]. In this work, explicit vectorization with single

instruction multiple data (SIMD) instructions was applied to GPU kernels to fully utilize the

large number of PEs in the GPU. A detailed description of the implementation will be given in

Section 4.

Read Run Write

Read Run Write

Out-of-order Command-queue0 1 20 1 2

In-order Command-queue

Read Run Write Read Run Write

0 1 2 0 1 2

Event objects

Command for kernel 0

Command for kernel 1

Time

Fig. 4. OpenCL programming model for the proposed LDPC decoder

3. Review of LDPC Decoding Algorithm

3.1 LDPC Decoding Algorithm

LDPC is a linear block code, and decoding is carried out using a parity-check matrix called

H-matrix. The rows and the columns of an H-matrix represent parity-check codes and symbols,

respectively. LDPC codes are often represented by a bipartite graph in which the set of check

nodes and the set of bit nodes compose two partite sets. The check nodes correspond to rows of

the H-matrix, and the bit nodes correspond to its columns. When an H-matrix contains a fixed

number of 1’s in each row and each column, the weights of the column and the row are equal.

An LDPC code with equal weights for both nodes is said to be regular. The (N, K) regular

LDPC codes can be defined by an (M, N) H-matrix, where M and N represent the number of

check nodes and bit nodes, respectively [3].

Table 1 shows the entire LDPC decoding algorithm. LDPC decoding consists of four main

operations: initialization (INIT), check node processing (CNP), bit node processing (BNP),

and parity check (PC). Most practical LDPC decoders are based on a concept of message

passing called either belief propagation (BP) or sum-product algorithm (SPA). SPA is carried

out by passing messages that contain an amount of belief quantified as 0 or 1 between adjacent

nodes. Each node attempts to decode its own value based on the delivered messages. If the

decoded value turns out to contain an error, the decoding process is repeated a pre-determined

number of times. Typically, iterative LDPC decoding schemes use log-likelihood ratio (LLR)

processing to deliver messages, which replaces expensive multiplication operations with

inexpensive addition operations. Input LLR values received from the channel and the initial

decision values are configured at the INIT step. Iterative decoding based on the delivered

messages is processed during the CNP and BNP steps. The decoding process is iterated until

the termination condition for the decoded words is satisfied at the PC step [10].

2654 Hong et al.: Parallel LDPC Decoding on a Heterogeneous Platform using OpenCL

Table 1. LDPC decoding based on the sum-product algorithm (SPA)

Decoding Step Algorithm

Initialization

(INIT)

*Hmn : the value at (m,n) of H-matrix
set Fn = LLR for bit nodes (n = 1,2,…,N)

set Zmn = Fn if Hmn is 1 for each (m,n)

Check node

processing

(CNP)

while (i ≤ imax)

*N(m): the set of bit nodes including the check node m
 for each check node

 where each (m,n) if Hmn is 1

 ∈

 end for

Bit node

processing

(BNP)

* M(n): the set of check nodes including the bit node n

 for each bit node

 where each (m,n) if Hmn is 1

 ∈

 ∈

 end for

* : the decoded word

 for each n (n =1,2,…,N)

 …

 end for

Parity check

(PC)

*The parity check equation

if …

is 0

 return success

 i++

end while

3.2 Parallelization of LDPC Decoding

LDPC decoding can correct errors by repeatedly computing and exchanging messages. The

amount of computation depends on the size of the H-matrix. However, recently published

standards show that H-matrices are getting bigger as the amount of data transfer increases [10].

The huge size causes both decoding complexity and decoding time to increase. Therefore, it is

crucial to distribute the workload to proper hardware accelerators and parallelize the

computation efficiently.

For example, a recent study proposed techniques such as asynchronous data transfer and

multi-stream concurrent kernel execution to utilize the GPU to run a WiMAX LDPC decoder

[6]. In [7], a method for LDPC decoding using Compute Unified Device Architecture (CUDA)

for the NVIDIA GPU is proposed. And a programming model for the low-power embedded

CPUs is proposed in [8]. Falcão et al. proposed a portable LDPC decoder executed on a set of

platforms ranging from multi-core CPUs to many-core GPUs [9]. Park et al. proposed a

parallel software LDPC decoder using OpenMP for the CPU and CUDA for the GPU [10].

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 6, June 2016 2655

They showed that parallel LDPC decoding using multi-core processors could reduce decoding

time dramatically. However, hardware resource utilization is not sufficiently high because

they rely on a vendor-specific computing framework and different parallel programming

models for the CPU and the GPU which make it hard to exploit hardware accelerators

simultaneously.

This work proposes a novel parallelization technique for a software LDPC decoder to use

both CPU and GPU in a unified programming framework. The platform, execution, memory,

and programming models in the OpenCL framework are customized for LDPC decoding

operations. Further, efficient computing resource management for heterogeneous devices is

achieved using OpenCL objects in a single uniform context, as explained in the next section.

4. Parallel LDPC Decoder on a Heterogeneous Platform using OpenCL

The proposed OpenCL kernels for CMMB LDPC decoding were designed and customized to

take full advantage of different target hardware architectures. Fig. 5 shows the execution flow

of the proposed LDPC decoding kernels. An OpenCL task-parallel programming model was

applied to the one-dimensional address generation kernel for execution by the CPU, and a

data-parallel programming model was applied to the INIT, CNP, BNP, and PC kernels for

execution by the GPU. Even if the CPU and the GPU are defined in a unified context, they

employ separate command-queues. The CPU uses an out-of-order command-queue, whereas

the GPU uses an in-order command-queue. Effective synchronization techniques and data

transfer optimizations between defined OpenCL objects are applied to the host and kernel

programs. These OpenCL models provide cross-platform programming environments that

enable the proposed parallel LDPC decoder to improve performance by flexibly utilizing the

heterogeneous platform.

If (HCT ≠ 0)

CPU

GPU CNP

Read H-matrix file

INIT

BNP

PC

Index value

Address array

Bit node

Index value

Address array

Check node

One-dimensional address generation

SPA-based LDPC decoding

Fig. 5. Execution flow of the proposed LDPC decoding kernels

2656 Hong et al.: Parallel LDPC Decoding on a Heterogeneous Platform using OpenCL

4.1 Design of One-dimensional Address Generation Kernels

In the LDPC decoding algorithm, LLR values are copied from the H-matrix at the INIT step,

and updated values are stored back when the CNP and the BNP steps are conducted. The PC

operation examines the termination condition using all check nodes connected to each bit node.

To make it easier to parallelize the execution of LDPC decoding and minimize the number of

memory accesses, the positions of the LLR values are rearranged as a one-dimensional array.

Fig. 6. One-dimensional address generation for the LLR values of each bit node and check node

Fig. 6 shows the generated address array for the bit node and the check node. The position

of each LLR value for check nodes is stored with the form of (x, y), where x is the position of a

bit node, and y indicates the order of the same bit node. This position information is rearranged

as a one-dimensional array Laddr as in (1), where WB is the degree of bit nodes.

 ≤ ≤ (1)

Zaddr, the one-dimensional address array for bit nodes, is computed using a similar method to

determine the address array for check nodes, as in (2) where WC is the degree of check nodes.

 ≤ ≤ (2)

By using this address arrangement, the number of memory accesses to read the position of

the LLR values is reduced in the INIT, CNP, BNP and PC operations [10].

In these address generation steps, positions of LLR values are simply read from the given

H-matrix, and the one-dimensional array for each node is constructed independently. Thus,

there is no memory access dependency between the two generation tasks. Therefore, the check

node address generation (CAG) and the bit node address generation (BAG) can run

concurrently on the target multi-core CPU to improve the decoding speed. Fig. 7 shows the

B0 B1 B2 B3 B4 B5 B6 B7

C0

C1

C2

C3

0(0,0) 0 (0,1) (0,2) 0 (0,3) 0

(1,0)0 0 (1,1) (1,2) (1,3)0 0

(2,0) (2,1) (2,2) 0 0 0(2,3) 0

(3,0)0 0 (3,1) (3,2) 0 0 (3,3)

B7B6B5B4B3B2B1B0

0(0,0) 0 (3,0) (4,0) 0 (6,0) 0

(2,0)0 0 (5,0) (6,1) (7,0)0 0

(0,1) (1,0) (2,1) 0 0 0(5,1) 0

(1,1)0 0 (3,1) (4,1) 0 0 (7,1)

C0

C1

C2

C3

H-matrix =

H-matrix =

Laddr = (2,0) (2,1) (3,0) (3,1) (4,0) ...(0,0) (0,1) (1,0) (1,1)

(1,0) (1,1) (1,2) (1,3) (2,0) ...(0,0) (0,1) (0,2) (0,3)Zaddr =

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 6, June 2016 2657

proposed OpenCL task-parallel programming model for the CAG and the BAG operations. In

the programming model, PEs execute work-items for each kernel in parallel. In the target

OpenCL platform model, a core of the CPU is defined as a PE, and each PE executes a thread

independently of the others. The CPU uses an out-of-order command-queue to coordinate the

parallel execution of the proposed LDPC kernels. Using the out-of-order queue, queued tasks

are executed as soon as idle PEs are available regardless of the input command order.

Fig. 7. Task parallel programming model for the check node address generation (CAG) and bit node

address generation (BAG) kernels

Each address generation step consists of two mutually dependent kernels: the index value

generation (IVG) kernel and the address array generation (AAG) kernel. The IVG kernel finds

the index value y in the given H-matrix, which indicates the order of the corresponding nodes.

The AAG kernel calculates the address array for each node using the index values calculated

in the IVG kernel. Therefore, synchronization between IVG and AAG kernels is required for

correct decoding.

CPU out-of-order command-queue

0 1 2 3 4 5A B C D E F

Commands for IVG kernel Commands for AAG kernel

Time

clEnqueueTask(CPU_queue,
 IVG_kernel,1,

 read_event,
& IVG_event[0])

clEnqueueTask(CPU_queue,
 AAG_kernel,1,

 IVG_event[0],
 & AAG_event[0])Wait

BAG

CAG Write_3 Run_4 Read_5Write_0 Run_1 Read_2

Write_D Run_E Read_FWrite_A Run_B Read_C

Fig. 8. Synchronization between the data dependent kernels

Command execution of the out-of-order queue depends only on the associated events in the

wait list. As shown in Fig. 8, each AAG kernel registers unique event objects for an IVG

PE PE

PE PE

CU

IVG kernel AAG kernel

IVG kernel AAG kernel

CAG

BAG

cnode.address[k] = bnode.position[k]
 x bnode.degree
 + bnode.index[k]

2658 Hong et al.: Parallel LDPC Decoding on a Heterogeneous Platform using OpenCL

kernel in an event wait list for the clEnqueueTask API and waits until all input events have

completed the execution. This provides fine-grained control for the out-of-order commands

that preserves the execution order between the IVG kernel and the AAG kernel. Therefore,

task-level parallel execution of BAG and CAG operations can be conducted successfully.

4.2 Design of SPA-based LDPC Decoding Kernels

Table 2. Pseudo-code for the proposed SPA-based LDPC decoding kernels

Decoding Step Algorithm

INIT

//BSB : Block size of bit node

xIndex = work_group_ID WB BSB + local_ ID WB

Index = work _group_ID BSB + local_ ID

for i < WB //For each bit node

 Z[Zaddr[xIndex + i]] = F[Index]

end for

CNP

//BSC : Block size of check node

xIndex = work_group_ ID WC BSC + local_ ID WC

for i < WC //For each check node

 L[Laddr[xIndex + i]] = Message[xIndex+i]

end for

BNP

xIndex = work_group_ ID WB BSB + local_ ID WB

Index = work_group_ ID BSB + local_ ID

for i < WB//For each bit node

 Z[Zaddr[xIndex + i]] = Message[Zaddr[xIndex + i]]

 if Z

 Decode[Index] = 0

 else Decode[Index] = 1

endif

end for

PC

xIndex = work_group_ ID WC BSC + local_ ID WC

Index = work_group_ ID BSC + local_ ID

for i < WC //For each check node

 Check += Decode[int(Laddr[xIndex + i]/WB)]

end for

Check = int (Check%2)

Table 2 shows a pseudo-code for the proposed SPA-based LDPC decoding kernels that

parallelized on the target GPU. The INIT step is carried out with a pre-generated Zaddr that

indicates the destination of copied LLR values. The CNP operation then reads the degree of

check nodes from the memory and updates the decision values based on the delivered

messages. The results are stored in the same region using Laddr. The BNP step conducts similar

operations for bit nodes using Zaddr. Finally, the PC operation examines the check nodes using

Laddr to determine whether all the decoded values are 0.

In the proposed kernels, the numbers of work-items executing the same instruction for each

cycle are denoted as BSB for bit node operations and BSC for check node operations, and they

are configurable using the index size argument of the clEnqueueNDRangeKernel runtime API.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 6, June 2016 2659

As discussed above, the OpenCL data-parallel programming model operates by concurrently

executing work-items on multiple PEs. Even though all work-items execute the same kernel

code, the data to be processed can be assigned differently to each work-item by changing the

allocated index. Work-items are uniquely identified with the combination of the work-group

index and the local index. The local index is the position of the work-item inside of a

work-group [2].

As shown in Fig. 9, explicit vectorization was applied to GPU kernels. The OpenCL

compiler generates SIMD instructions when built-in vector types are used in the kernels. In

general, GPUs are optimized for 128-bit data transfer operations per SIMD lane to support

four 32-bit pixel vectors [12]. Therefore, vectorization with the four-wide vector type which

combines four scalar data into a single vector enables work-items to perform decoding

operations on multiple data simultaneously to improve performance. Furthermore, explicit use

of vector data types enables more coalesced memory operations and data transfers with a

higher bandwidth.

 CNP

 INIT

 BNP

 PC

SPA-based LDPC decoding

#Vectorization (four-wide)
 float4 Z = (float4)(F.x,F.y,F.z,F.w)

#Vectorization (four-wide)
 float4 L = (float4)(Message.x,Message.y,Message.z,Message.w)

#Vectorization (four-wide)
 float4 Z = (float4)(Message.x,Message.y,Message.z,Message.w)
 int4 Decode.xvzw = (Z.xvzw < 0)? 1 : 0

#Vectorization (four-wide)
 int4 Check += Decode
 Check.xvzw =((int)(Check.xvzw)%2)

Fig. 9. Explicit vectorization for SPA-based LDPC decoding kernels

As mentioned above, GPUs have a local memory region to store local data for a CU, and its

access time is much faster than that of the global memory. Therefore, efficient use of the local

memory region can improve performance of the GPU kernels by providing fast data access

and efficient data sharing among hundreds of work-items in a work-group. In the proposed

GPU kernels, the one-dimensional address array for each node is used by every work-item

without having to repeatedly compute a new address. Therefore, the proposed GPU kernels

allocate the address arrays in the local memory to hold position values that can be shared by all

work-items that belong to the same work-group.

As shown in Fig. 10, the INIT and BNP kernels use Zaddr and the CNP and PC kernels use

Laddr in the local memory. However, the local memory state is not guaranteed to be consistent

across work-items inside the group because the data transmission time of each work-item is

different. Therefore, synchronization using a barrier is applied to the GPU kernels. A barrier is

a built-in function that prevents work-items from crossing it until all work-items in a

work-group have reached it [12]. Global synchronization among kernels is managed by event

objects for non-blocking commands in the in-order GPU command-queue. Detailed

experimental results are addressed in Section 5.

2660 Hong et al.: Parallel LDPC Decoding on a Heterogeneous Platform using OpenCL

N = bit node group size
M = check node group size ..

.
CNP

INIT ...

...

Work-group 1 Work-group 2 Work-group N

Work-group 1 Work-group 2 Work-group M

barrier

wait
event

barrier

__local
 Zaddr

__local
 Laddr

Fig. 10. Local memory allocation and synchronization for proposed GPU kernels

4.3 Zero-copy Technique for the Proposed LDPC Decoder

The host program asks a device to execute the assigned kernel using OpenCL runtime APIs.

To execute a kernel, the data to be processed must be copied to the device memory because the

host cannot directly access the memory system of the discrete CDs. After processing the data

on the kernel, the computation results are transferred back to the host memory. Generally,

OpenCL devices carry these operations out using the clEnqueueRead and clEnqueueWrite

APIs. These explicit data transfers may suffer from large latency because the request must be

handled by relatively slow inter-device busses.

However, as mentioned in Section 2, the global memory of the target mobile platform is

shared by the CPU and the GPU. A significant benefit of this heterogeneous system is that no

memory object copy is necessary since the physical memory is unified. Furthermore, the CPU

in the proposed platform model is defined as a CD as well as the host, and therefore, any

explicit data transfer is unnecessary. Thus, the zero-copy technique imposing little execution

overhead is applied to the entire CPU and GPU kernels.

Fig. 11 shows how the zero-copy is carried out by the clEnqueueMapBuffer and

clEnqueueUnmapMemObject APIs in place of explicit data transfer functions. These APIs just

map a buffer region into the shared address space and return a pointer of the mapped region.

The memory objects created with the CL_MEM_ALLOC_HOST_PTR flag can be accessed

directly by both the host and a CD. These memory objects are called pinned zero-copy buffers,

and they can be used by OpenCL applications as function arguments without any data copying.

Using pinned zero-copy buffers prevents the allocated memory from being paged out

accidentally by the operating system and provides an improved transfer speed by achieving

near the peak interconnect bandwidth [13].

As shown in Fig. 12, the zero-copy technique significantly reduces the execution time of the

entire LDPC decoding process by eliminating runtime data transfers during kernel execution.

When the host finishes a logical memory transfer to the zero-copy buffer with the map

function, the unmap function makes this memory object available to the target devices. After

processing the data by the GPU kernels, the host can directly access results using the

zero-copy technique without any additional copying. Furthermore, this is done without any

additional memory allocation because both CDs are defined in the same context, and memory

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 6, June 2016 2661

objects are associated with the context rather than the device. As the context is shared among

CDs, global synchronization between the CPU and the GPU kernels becomes feasible using

event objects. The completion of events for CPU commands is guaranteed that the generated

address arrays for each node can be accessed directly by GPU kernels. The following section

reports performance comparison results when the proposed zero-copy techniques were applied

to the decoding kernels.

(a) Discrete memory system (b) Integrated memory system

Host memory

clEnqueueReadclEnqueueWrite

CL_MEM_ALLOC_HOST_PTR

clEnqueueMap clEnqueueUnmap

Buffer

Buffer

Zero-copy

Device memory

Host memory

Buffer

Device memory
Buffer

Fig. 11. Zero-copy technique for the integrated memory system

T
im

e

Before zero-copy After zero-copy

INIT
CNP
BNP
PC

Map
UnMap Map

UnMap

CAG
BAG

Reduced
execution time

Global sysnchronization

Write
INIT
Read

Write

Write
CNP
Read

Write

Write
BNP
Read

Write

Write
PC

Read

Write

CAG
Write
IVG
Read

Write

Write
AAG
Read

Write

Write
IVG
Read

Write

Write
AAG
Read

Write

BAG

Global sysnchronization

Map
UnMap

CPU kernel
GPU kernel

IVG
AAG IVG

AAG

Fig. 12. Reduced execution time after applying the zero-copy technique

5. Experimental Results

This article proposes a novel decoder for (3, 6) regular LDPC codes with a word length of

9216 bits to satisfy the throughput requirement of the CMMB, China's designated mobile TV

standard. Its H-matrix is known to have high error-correcting capability [5]. The CMMB

2662 Hong et al.: Parallel LDPC Decoding on a Heterogeneous Platform using OpenCL

standard supports two code rates, 1/2 and 3/4; specifications for each code rate are

summarized in Table 3.

Table 3. LDPC coding configuration

Code rate

R

Information

K

Code word

N

Row weight

WC

Column weight

WB

1/2 4608 bits 9216 bits 6 3

3/4 6912 bits 9216 bits 12 3

To evaluate the performance of the proposed LDPC decoder on a heterogeneous platform,

kernels were compiled with an Intel software development kit (SDK) for OpenCL version 1.2

which supports the out-of-order command-queue for the target CPU. Microsoft Visual Studio

2010 with 64-bit Windows 7 Service pack 1 was used as the host C program compiler. The

target heterogeneous mobile platform consists of an Intel i7-4720HQ quad-core CPU and an

Intel HD 4600 integrated GPU with 8GB of DDR3 random access memory (RAM). The CPU

was defined as a single CU including four PEs, and the GPU consisted of 7 CUs where each

CU contained 32 PEs. A unified memory hierarchy for both CPU and GPU cores was defined

as the OpenCL global memory. Performance of the proposed LDPC decoder was evaluated

with respect to various signal-to-noise ratio (SNR) values on the target platform.

5.1 Performance Evaluation for Proposed CPU Kernels

The aforementioned task-level parallelization (TP) and the zero-copy technique were applied

to the one-dimensional address generation and they were executed on the CPU. In this

experiment, execution times for the proposed CPU kernels were compared with three other

decoders: a decoder written in the C language, a decoder parallelized with OpenMP, and an

OpenCL implementation that was not based on the proposed techniques (hereafter called as

the base OpenCL implementation). OpenMP is a pragma-based parallelization API for

multi-core CPUs [14]. In this experiment, OpenMP pragmas were inserted to parallelize the

address generation on a quad-core CPU using four threads.

Table 4. Average address array generation processing time/frame

 C OpenMP

OpenCL (CPU Kernel)

Normal After TP
After

Zero-copy

CMMB, code rate: 1/2, frame: 100,000, SNR: 1

(ms) 2.564 1.563 3.041 1.641 1.295

Speedup 1.97 1.21 2.34 1.26 -

CMMB, code rate: 3/4, frame: 100,000, SNR: 1

(ms) 4.245 2.522 4.890 2.577 2.047

Speedup 2.12 1.23 2.40 1.25 -

Table 4 summarizes processing times for the one-dimensional address array generation step

for each CMMB code rate. Due to runtime overhead caused by OpenCL object management,

the base OpenCL implementation takes longer than the standard C and the OpenMP

implementations. However, when the TP technique was applied, the performance gap between

the OpenCL and the OpenMP implementations was reduced. Performance of the entire

address generation using the OpenCL framework was much improved when the zero-copy

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 6, June 2016 2663

technique was applied.

As shown in Fig. 13, the average data transfer time of the OpenCL implementations was

much longer than the memory allocation time of the C and the OpenMP designs. To reduce the

runtime of data transfers and unnecessary memory duplications caused by the mismatches

between the platform model and the CPU architecture, the zero-copy technique was applied to

the CPU kernels, and the data transfer time was decreased by almost 60%. As a result, the

address generation processing achieved a speed-up of up to 2.12 over the case in which no

parallelization was applied to the application written in C.

Fig. 13. Average processing time of one-dimensional address generation on a CPU

5.2 Performance Evaluation for Proposed GPU Kernels

As described in Section 2.2, the number of work-items specified by a programmer is the same

as the number of active threads that execute the proposed LDPC kernels in parallel. The best

size of the thread block composing a work-group was determined to hide memory access

latencies and use the GPU hardware resources wisely. Fig. 14 shows the average decoding

time of the proposed GPU kernels for 100,000 frames with a code rate of 1/2. The execution

time was most improved when each kernel was processed in parallel with 32 threads, largely

because the number of PEs defined in the proposed execution model is 32, which was

determined by considering the maximum number of the target GPU’s hardware threads.

Table 5 compares the performance of the proposed OpenCL design with those of the other

implementations for each code rate. Every OpenCL design ran the same GPU kernels on 32

PEs to compare the CPU performance under the same conditions. In this article, explicit

vectorization using four-wide vector types were applied to each GPU kernel because the

internal memory paths on the target GPU support 128-bit data transfers. The effective data

transfer techniques including zero-copy and local memory allocation were applied as well to

maximize hardware resource utilization. When the utilization techniques were applied, the

proposed LDPC decoder achieved a speedup of up to 17.6 over the C design and 2.14 over the

2664 Hong et al.: Parallel LDPC Decoding on a Heterogeneous Platform using OpenCL

base OpenCL design. To satisfy the CMMB performance requirements, decoding for one

frame must be processed within 3.3 milliseconds [10]. The proposed decoder satisfies this

requirement with signal reception of at least 1 dB for a 1/2 code rate and 3 dB for a 3/4 code

rate.

Fig. 14. Average processing time of LDPC decoding kernels on a GPU with varying numbers of

work-items

Table 5. Average LDPC decoding time per frame versus SNR value

SNR C OpenMP

OpenCL

(GPU, Work-item: 32)

Normal
After

Utilization

CMMB, code rate: 1/2, frame: 100,000, millisecond

1 37.62 9.40 5.06 2.32

1.5 15.60 6.30 2.10 1.04

2 10.06 3.08 1.19 0.69

2.5 7.39 1.84 1.00 0.56

3 3.93 1.25 0.92 0.38

3.5 3.01 0.90 0.86 0.33

4 2.21 0.78 0.67 0.29

CMMB, code rate: 3/4, frame: 100,000, millisecond

2.5 140.84 39.91 17.15 7.99

3 45.29 15.66 5.96 2.26

3.5 38.85 13.29 5.26 1.75

4 25.78 12.05 4.44 1.39

4.5 21.69 8.03 2.97 1.21

5 16.62 5.87 2.37 0.88

5.5 14.50 5.16 2.24 0.75

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 6, June 2016 2665

5.3 Performance Evaluation of the Entire LDPC Decoder

As described in Section 4, the proposed design is a cost effective and flexible software LDPC

decoder that can support multiple standards. To support multiple standards, multiple

H-matrices are stored as files and the host CPU reads the H-matrix for a given standard and

generates an address table of the LLR values. To show that our method is satisfactory for

multiple standards, an LDPC decoder for IEEE 802.11n with a code rate of 1/2 is implemented.

802.11n is a local area network (LAN) standard, and the H-matrix has 1944 bits of code words

and 972 bits of an information word. In general, the entire decoding time of the 802.11n takes

longer than CMMB because it is an irregular code that the parity check matrix contains a

different number of ’s in each row and each column [15].

Table 6. Processing time of LDPC decoding versus SNR value

SNR
CPU only

CPU+GPU

(PCI-e)

CPU+GPU

(SoC)

C OpenMP Cilk Plus OpenMP+CUDA OpenCL OpenCL

CMMB, code rate: 1/2, frame: 100,000, second

1 312.73 101.24 96.68 39.14 34.21 44.36

1.5 157.21 55.62 51.21 20.35 17.79 23.07

2 103.21 33.78 31.02 13.03 11.39 14.76

2.5 52.46 18.63 17.24 6.77 5.92 7.68

3 28.17 9.12 8.40 3.52 3.08 4.09

3.5 13.58 4.93 4.25 1.83 1.6 2.12

4 6.52 2.57 2.11 0.95 0.83 1.18

802.11n, code rate: 1/2, frame: 100,000, second

1 15.90 9.21 8.89 3.12 2.87 4.21

1.2 28.00 19.80 17.12 8.22 7.32 8.90

1.4 69.80 29.32 26.87 15.31 14.87 16.81

1.6 272.60 123.59 114.94 54.12 52.41 61.12

1.8 1114.10 612.22 589.77 385.13 370.41 391.91

2.0 956.2 502.92 484.42 244.12 238.41 257.20

2.2 838.9 452.34 440.06 210.89 190.54 227.52

2.4 752.4 426.01 404.41 181.31 174.32 207.51

2.6 684.3 387.41 368.67 165.41 150.32 191.28

Table 6 shows the entire LDPC decoding time of six different implementations for CMMB

and 802.11n standards with respect to various SNR values. The first three are C, OpenMP, and

Intel Cilk Plus implementations that run only on the CPU. The fourth is a recently proposed

design that was mentioned in Section 3.2 using OpenMP and CUDA [10]. The fifth and sixth

approaches are the proposed OpenCL implementations on a heterogeneous mobile platform.

The difference of the two is whether an external GPU is employed or an integrated one is

employed. A NVIDIA GeForce GTX 860M, which was used for the external GPU of the third

and the fourth cases, consisted of 16 CUs where each CU contained 40 PEs. And the external

GPU is connected to the CPU via the peripheral component interconnect-express (PCI-e) bus.

Intel Cilk Plus is a simple language extension to C and C++ to express multi-threaded

parallelism for the Intel multi-core CPUs [16]. It introduces three new keywords in the

programming language: cilk_for, clik_spawn, and cilk_sync, while OpenMP uses directive

based programming models. In this section, all CPU versions have been compiled with Intel

C++ compiler 16.0 that offers stable support for both OpenMP and Cilk Plus. As shown in

2666 Hong et al.: Parallel LDPC Decoding on a Heterogeneous Platform using OpenCL

Table 6, both CMMB and 802.11n software LDPC decoders parallelized with Cilk Plus show

the best performance among the CPU only versions because Cilk Plus supports optimized

thread scheduling and vectorization using streaming SIMD extensions (SSE) for modern Intel

processors.

However, performance gain of the CPU only implementations is limited compared to the

parallel LDPC decoder using OpenCL due to they rely on the vendor-specific computing

framework. The parallel LDPC decoding on the heterogeneous platform using OpenCL shows

better performance than the other implementations. Table 6 shows that for SNR of 1, we have

achieved a speedup of 2.18 for CMMB and that of 2.11 for 802.11n compared to the Cilk Plus

implementations. These results show that performance of the proposed decoder is excellent,

mainly due to efficient hardware resource utilization with a unified computing framework for

the CPU and the GPU.

Table 7. Performance per watt of LDPC decoding

CPU

(OpenMP)

CPU

(Cilk Plus)

CPU+GPU

(OpenCL, PCI-e)

CPU+GPU

(OpenCL, SoC)

CMMB, code rate: 1/2, frame:100,000, SNR: 1

Power consumption

(watt)
11.97 14.86 55.26 22.63

Frame per

second/watt
81.52 69.61 52.89 99.75

802.11n, code rate: 1/2, frame: 100,000, SNR: 1

Power consumption

(watt)
16.12 19.86 59.23 28.23

Frame per

second/watt
786.25 566.39 588.27 843.41

Although the PCI-e bus significantly limits the data transfer rate between the host and CDs,

decoding time of the external GPU is faster than the integrated GPU because the external GPU

has much more PEs that execute more work-items in parallel. However, speed and energy

efficiency are equally important for consumer electronic devices. Thus, performance per watt

of the LDPC decoding was evaluated. Table 7 compares the performance per watt of the CPU

only implementations and the OpenCL implementations for CMMB and 802.11n standards

with SNR of 1. Power consumption of each implementation has been measured using

real-time power monitoring tools for the mobile CPU and the mobile GPU [17]. These results

verify that performance per watt of the proposed decoder on a mobile platform is excellent,

mainly due to the proposed hardware utilization techniques for the shared memory

architecture.

Hardware decoder implementations of LDPC codes show better performance per watt

compared to the proposed OpenCL implementations because power consumptions of

hardware decoders have ranged merely from 87 mW to 173.5 mW [18]. However, it is very

challenging to design a hardware LDPC decoder that supports various standards and multiple

data rates. The proposed parallel software LDPC decoder on a mobile system using an

OpenCL framework satisfies the performance requirement of the multiple LDPC standards

while providing scalability, high portability, and flexibility, which may not be possible with

hardware implementations.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 6, June 2016 2667

6. Conclusion

When digital signal processing and communication applications are parallelized on an

OpenCL framework, they can be executed on heterogeneous devices such as CPUs and GPUs

to achieve both high portability and high performance. This article proposed parallelization

methods for the LDPC decoder on an embedded SoC platform which included both a

multi-core CPU and a multi-core GPU. Efficient computing resource management for

heterogeneous devices was achieved using OpenCL objects defined under a unified single

context. To improve performance of the proposed decoding kernels, explicit thread scheduling,

vectorization, and effective data transfer techniques were applied. The proposed LDPC

decoder satisfied the performance requirements of the CMMB standard and showed high

performance per watt by intelligently utilizing both the CPU and the GPU with OpenCL.

Future works are going on to parallelize the LDPC decoder on various heterogeneous

computing platforms, including one with field-programmable gate arrays (FPGAs), using

OpenCL.

References

[1] J.-H. Hong, Y.-H. Ahn, B.-J. Kim, and K.-S. Chung, “Design of OpenCL Framework for

Embedded Multi-core Processors,” IEEE Trans. Consumer Electron., vol. 60, no. 2, pp. 233-241,

May, 2014. Article (CrossRef Link).

[2] Khronos OpenCL Working Group, The OpenCL Specification Version 1.2, Document Revision 19,

2012. Article (CrossRef Link).

[3] R.G. Gallager, “Low-density parity check codes,” IRE Trans. Information Theory, vol. 8, no. 1, pp.

21-28, Jan. 1962. Article (CrossRef Link).

[4] E.-S. Jeon et al., "Iterative detection and ICI cancellation for MISO-mode DVB-T2 system with

dual carrier frequency offsets," KSII Transactions on Internet and Information Systems, vol. 6, no.

2, pp. 702-721, Feb. 2012. Article (CrossRef Link).

[5] K. Zhang, X. Huang, and Z. Wang, “A Dual-Rate LDPC Decoder for China Multimedia Mobile

Broadcasting Systems,” IEEE Trans. Consumer Electron., vol. 56, no. 2, pp. 399-407, May, 2010.

Article (CrossRef Link).

[6] G. Wang, M. Wu, B. Yin, and J. R. Cavallaro, “High throughput low latency LDPC decoding on

GPU for SDR systems,” in Proc. of 2013 IEEE Global Conference on Signal Processing,

pp.1258-1261, Dec. 2013. Article (CrossRef Link).

[7] S. Wang, S. Cheng, and Q. Wu, “A parallel decoding algorithm of LDPC codes using CUDA,” in

Proc. of 2008 42nd Asilomar Conference on Signals, Systems and Computers, pp. 171-175, Oct.

2008. Article (CrossRef Link).

[8] B. Gal and C. Jego, “High-throughput LDPC decoder on low-power embedded processors,” IEEE

Communication Letters, vol. 1, no. 99, pp. 1-4, Sep. 2015. Article (CrossRef Link).

[9] G. Falcão, V. Silva , L. Sousa, and J. Andrade, “Portable LDPC decoding on multicores using

OpenCL,” IEEE Signal Processing Magazine, vol. 29, no. 4, pp. 81-109, July, 2012.

Article (CrossRef Link).

[10] J.-Y. Park and K.-S. Chung, “Parallel LDPC decoding using CUDA and OpenMP,” EURASIP

Journal on Wireless Communications and Networking, vol. 2011, no. 1, Dec. 2011.

Article (CrossRef Link).

[11] J.-H. Hong, W.-J. Kim, and K.-S. Chung, “A Parallelization Technique with Integrated

Multi-Threading for Video Decoding on Multi-core Systems,” KSII Transactions on Internet and

Information Systems, vol. 7, no. 10, pp. 2479-2496, Oct. 2013. Article (CrossRef Link).

[12] B. R. Gaster, L. Howes, D. R. Kaeli, P. Mistry, and D. Schadd, Heterogeneous computing with

OpenCL: Revised OpenCL 1.2 Edition, Morgan Kaufmann, 2012. Article (CrossRef Link).

http://dx.doi.org/10.1109/TCE.2014.6851999
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://dx.doi.org/10.1109/TIT.1962.1057683
http://dx.doi.org/10.3837/tiis.2012.02.015
http://dx.doi.org/10.1109/TCE.2010.5505946
http://dx.doi.org/10.1109/globalsip.2013.6737137
http://dx.doi.org/10.1109/acssc.2008.5074385
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7244167&tag=
http://dx.doi.org/10.1109/MSP.2012.2192212
http://dx.doi.org/10.1186/1687-1499-2011-172
http://dx.doi.org/10.3837/tiis.2013.10.009
http://store.elsevier.com/Heterogeneous-Computing-with-OpenCL/Benedict-Gaster/isbn-9780124058941/

2668 Hong et al.: Parallel LDPC Decoding on a Heterogeneous Platform using OpenCL

[13] J. Shen, J. Fang, H. Sips, and A. L. Varbanescu, “Performance Traps in OpenCL for CPUs,” in

Proc. of 21st Euro Micro International Conference on Parallel, Distributed, and Network-Based

Processing, pp. 38-45, Feb. 2013. Article (CrossRef Link).

[14] D. Leonardo and R. Menon, “OpenMP: an industry standard API for shared-memory

programming,” IEEE Computational Science & Engineering, vol. 5, no.1, pp. 46-55, Jan. 1998.

Article (CrossRef Link).

[15] K. Gunnam, G. Choi, W. Wang, and M. Yeary, “Multi-Rate Layered Decoder Architecture for

Block LDPC Codes of the IEEE 802.11n Wireless Standard,” in Proc. of 2007 IEEE International

Symposium on Circuits and Systems, pp. 1645-1648, May, 2007. Article (CrossRef Link).

[16] Intel Corporation, Intel Cilk Plus Language Specification, Document Revision 1.0, 2010.

Article (CrossRef Link).

[17] G. Sheng, Z. Yong, S. Zhukai, and S. Fan, “Optimize power for portable games on Ultrabook,” in

Proc. of 2012 IEEE International Conference on Energy Aware Computing, pp. 1-6, Dec. 2012.

Article (CrossRef Link).

[18] J. Li, J. Ma, and G. He, “A memory efficient parallel layered QC-LDPC decoder for CMMB

systems,” Integration, the VLSI Journal, vol. 46, no. 4, pp. 359-368, Sep. 2013.

Article (CrossRef Link).

Jung-Hyun Hong received his B.S. degree in Media Communication Engineering

from Hanyang University, Seoul, Korea, in 2011. Since 2011, he has undertaken a unified

M.S. and Ph.D. course at Hanyang University, Seoul, Korea. His research interests

include software parallelization, heterogeneous computing, and embedded multi-core

architecture.

Joo-Yul Park received his B.S. in Electronic Engineering from Ajou University,

Suwon, Korea, in 2004, and his Ph.D. in Electronics, Computer, and Communication

from Hanyang University, Seoul, Korea, in 2013. He was an engineer at LG Electronics

Corp. in Seoul from 2005 to 2007. Since 2013, he has been an Adjunct Professor at

Hanyang University, Seoul, Korea. His research interests include reconfigurable

processor and DSP design, channel coding, and system software for MPSoC.

Ki-Seok Chung received his B.E. degree in Computer Engineering from Seoul

National University, Seoul, Korea, in 1989 and his Ph.D. in Computer Science from the

University of Illinois at Urbana-Champaign in 1998. He was a Senior R&D Engineer at

Synopsys, Inc. in Mountain View, CA, from 1998 to 2000 and was a Staff Engineer at

Intel Corp. in Santa Clara, CA, from 2000 to 2001. He also worked as an Assistant

Professor at Hongik University, Seoul, Korea, from 2001 to 2004. Currently, he is a

Professor at Hanyang University, Seoul, Korea. His research interests include low-power

embedded system design, multi-core architecture, image processing, reconfigurable

processor and DSP design, SoC-platform-based verification, and system software for

MPSoC.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6498531
http://dx.doi.org/10.1109/99.660313
http://dx.doi.org/10.1109/ISCAS.2007.378835
https://www.cilkplus.org/sites/default/files/open_specifications/cilk_plus_language_specification_0_9.pdf
http://dx.doi.org/10.1109/ICEAC.2012.6471008
http://dx.doi.org/10.1016/j.vlsi.2013.01.001

