DOI QR코드

DOI QR Code

Efficiency Low-Power Signal Processing for Multi-Channel LiDAR Sensor-Based Vehicle Detection Platform

멀티채널 LiDAR 센서 기반 차량 검출 플랫폼을 위한 효율적인 저전력 신호처리 기법

  • Received : 2021.06.08
  • Accepted : 2021.06.15
  • Published : 2021.07.31

Abstract

The LiDAR sensor is attracting attention as a key sensor for autonomous driving vehicle. LiDAR sensor provides measured three-dimensional lengths within range using LASER. However, as much data is provided to the external system, it is difficult to process such data in an external system or processor of the vehicle. To resolve these issues, we develop integrated processing system for LiDAR sensor. The system is configured that client receives data from LiDAR sensor and processes data, server gathers data from clients and transmits integrated data in real-time. The test was carried out to ensure real-time processing of the system by changing the data acquisition, processing method and process driving method of process. As a result of the experiment, when receiving data from four LiDAR sensors, client and server process was operated using background or multi-core processing, the system response time of each client was about 13.2 ms and the server was about 12.6 ms.

자율주행 차량이 주목받게 되면서 LiDAR 센서가 대두되었다. LiDAR 센서는 LASER를 이용하여 범위 내에서 특정 지점까지 측정된 거리 값을 3차원 정보로 제공한다. 3차원 거리 값인 만큼 방대한 데이터를 전송하게 되고, 차량의 메인 프로세서 등에서 다른 데이터와 같이 이를 실시간으로 처리하기에는 무리가 있다. 이러한 이슈를 해결하기 위해 통합처리 시스템을 개발하고자 한다. 시스템은 센서로부터 데이터를 받아 처리하는 client와 각 client로부터 데이터를 취합하여 이를 외부로 전송하는 server 프로세스로 구성된다. 각 프로세스의 데이터 수신 및 처리 방법, 프로세스 구동 방법을 변화시켜가며 시스템의 실시간성 확보를 위한 테스트를 진행하였다. 실험 결과, 4대의 LiDAR 센서로 데이터를 수신 받도록 하였으며, background 나 multi-core processing을 적용하여 프로세스를 동작시켰을 때, 각 client는 약 13.2 ms, server는 약 12.6 ms의 응답시간을 확인할 수 있었다.

Keywords

Acknowledgement

This work was supported by the Technology Innovation Program (P0013847, 10%, Development of automatic steering-based accident avoidance system for electric-driven port yard tractors operating at low speed (less than 30 km/h)) funded By the Ministry of Trade, Industry & Energy(MOTIE, Korea) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2019R1A2C2005099, 10%), Ministry of Education (NRF-2018R1A6A1A03025109, 10%), and partly supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2021-0-00944, Metamorphic approach of unstructured validation/verification for analyzing binary code, 70%)

References

  1. J. Giacalone, L. Bourgeois, and A. Ancora, "Challenges in aggregation of heterogeneous sensors for Autonomous Driving Systems," IEEE Sensors Applications Symposium (SAS), pp. 1-5, 2019. doi: 10.1109/SAS.2019.8706005.
  2. L. Xiaoming, Q Tian, C Wanchun, and Y. Xingliang, "Real-time distance measurement using a modified camera," IEEE Sensors Applications Symposium (SAS), pp. 54-58, 2010. doi: 10.1109/SAS.2010.5439423.
  3. L. Zhaohua and G. Bochao, "Radar Sensors in Automatic Driving Cars," 5th International Conference on Electromechanical Control Technology and Transportation (ICECTT), pp. 239-242, 2020. doi: 10.1109/ICECTT50890.2020.00061.
  4. A. U. Kulkarni, A. M. Potdar, S. Hegde, and V. P. Baligar, "RADAR based Object Detector using Ultrasonic Sensor," 1st International Conference on Advances in Information Technology (ICAIT), pp. 204-209, 2019. doi: 10.1109/ICAIT47043.2019.8987259.
  5. S. Lee, D. Lee, P. Choi, and D. Park, "Accuracy-Power Controllable LiDAR Sensor System with 3d Object Recognition for Autonomous Vehicle," Sensors, vol. 20, no. 19, 2020.
  6. R. O. Chavez-Garcia and O. Aycard, "Multiple Sensor Fusion and Classification for Moving Object Detection and Tracking," in IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 2, pp. 525-534, Feb. 2016. doi:10.1109/TITS.2015.2479925.
  7. V. Venugopal and S. Kannan, "Accelerating Real-Time LiDAR Data Processing using GPUs," IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 1168-1171, 2013. doi: 10.1109/MWSCAS.2013.6674861.
  8. NXP. Layerscape LS1028A Family of Industrial Applications Processors [Internet]. Available: https://www.nxp.com/docs/en/fact-sheet/ls1028afs.pdf.
  9. J. Dybedal, A. Aalerud, and G. Hovland, "Embedded Processing and Compression of 3d Sensor Data for Large Scale Industrial Environments," Sensors, vol. 19, no. 3, 2019.
  10. K. M. Lee, T. H. Song, S. H. Yoon, K. H. Kwon, and J. W. Jeon, "OpenMP Parallel Programming using Dual-Core Embedded System," 11th International Conference on Control, Automation and Systems, pp. 762-766, 2011.
  11. S. Zhou, M. Xie, Y. Jin, F. Miao, and C. Ding, "An End-to-end Multi-task Object Detection Using Embedded GPU in Autonomous Driving," 22nd International Symposium on Quality Electronic Design (ISQED), pp. 122-128, 2021. doi: 10.1109/ISQED51717.2021.9424308.