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요 약

본 논문에서는 DVFS 기능을 제공하는 멀티코어 프로세서 상에서 실시간 비디오 태스크의 에너지 소모량을 최

소화하는 최적 스케쥴링 기법을 제안한다. 제안된 스케쥴링 기법은 멀티코어의 병렬처리 기법을 활용하도록 적절한

수의 멀티코어들을 태스크의 수행에 할당하고, 사용되지 않는 코어들의 전원을 끄며, 실시간 태스크의 데드라인을

만족하는 최저 클락 주파수를 배정한다. 단일 코어에서 태스크를 실행하는 기존 방법과 그리고 모든 코어들에서 태

스크를 실행하는 기존 방법을 제안된 스케쥴링 기법과 비교하는 실험 결과에서, 제안된 스케쥴링 기법이 기존 방법

들의 에너지 소모량을 각각 최대 67%, 89% 감소시킴을 확인하였다.
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Abstract

In this paper, we propose an optimal scheduling scheme that minimizes the energy consumption

of a real-time video task on the multi-core platform supporting dynamic voltage and frequency

scaling. Exploiting parallel execution on multiple cores for less energy consumption, the propose

scheme allocates an appropriate number of cores to the task execution, turns off the power of

unused cores, and assigns the lowest clock frequency meeting the deadline. Our experiments show

that the proposed scheme saves a significant amount of energy, up to 67% and 89% of energy

consumed by two previous methods that execute the task on a single core and on all cores

respectively.
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ⅠIntroduction

"Video on mobile"[1,16] is becoming the norm for

on-demand TV. The limited battery life on mobile

devices becomes a burning issue, as demand for

video playing time increases. Therefore, an

energy-efficient solution specifically tailored to a

long-lived video task running on mobile devices must

be explored. In devising an appropriate solution, an

emerging trend in processor design that draws out

attention is the multi-core platform. A chip

containing tens of processing cores is commercialized

and viable processing cores in a chip will increase

rapidly with advances in microprocessor design [2].

Another processor design trend, which coalesces

with the multi-core platform to improve energy

efficiency, is advanced energy management with

dynamic voltage and frequency scaling (DVFS)

[3,4,17]. The speed of the DVFS-enabled processor

is linearly proportional to the clock frequency,

whereas the energy consumption increases

proportionally to a polynomial function of the clock

frequency. The degree of this polynomial function is

typically not less than two, even though the exact

relationship between the energy consumption rate

and the clock frequency depends on the hardware

[3-5]. Consequently, putting more cores into a

real-time task, while lowering the clock frequency,

can open a rich possibility of reducing the total

energy consumption of the task.

In this paper, we consider the problem of

energy-efficient video processing based on the

aforementioned trends in processor design. While the

multi-core platform has been intensively

investigated for energy-efficient processing of many

real-time tasks, it has been rarely considered for a

single real-time task due to its overabundant

hardware. This paper addresses how to exploit these

overabundant resources with the DVFS capability.

Specifically, we propose an energy-efficient off-line

scheduling designed for a periodic long-lived video

task on the DVFS-enabled multi-core platform; the

video task represents the most popular and

energy-demanding application for current and future

mobile devices. The application of the proposal is not

limited to the video tasks, but may be applicable to

other long-lived periodic real-time tasks.

The main contribution of this paper is to

introduce an optimal off-line scheduling that

minimizes energy consumption of a periodic

real-time task by fully exploiting the architectural

benefits of multiple cores and DVFS capability.

Considering the non-linearly scaling property of

parallel execution and the irregular energy

consumptions of discrete frequencies, the proposed

scheduling determines both the number of cores

allocated to parallel execution and the frequency

executing each computation cycle under the deadline

constraint. This is analogous to the 3-D bin-packing

problem to determine a triple input: number of

cores, frequency value and execution time, whereas

previous scheduling studies [3-5,7-9,10,11] are

restricted to the 2-D bin-packing problem to

determine a duplex input: number of processors and

execution time, or frequency value and execution

time. The proposed scheduling allocates a pertinent

number of cores to task execution, turns off the

power of the other unused cores, and assigns the

lowest frequency meeting the deadline. If the lowest

frequency is not one of the available discrete

frequencies, it is generated with two adjacent

discrete frequencies. Our evaluation shows that the

proposed scheduling saves significant energy, up to

67% and 89% of the energy consumed by two greedy

approaches: executing the task on a single core

while turning off the other cores, and executing the

task in parallel on all available cores, respectively.

Numerous previous studies [3-5,7-10] have

investigated the energy minimization of real-time

tasks on multiple processing elements (PLs).

However, they missed the rich energy-saving

capability of parallel execution exploiting o

verabundant PLs. Yang et al. [11] addressed an
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assignment problem of interdependent subtasks to

heterogeneous processors working on different but

fixed frequencies (speeds), whose combination is

equivalent to a virtually single DVFS-enabled

processor. Only a few recent studies [12,13]

considered the parallel execution on multiple

DVFS-enabled PLs. Li et al. [12] addressed an

on-line adaptation that dynamically changes the

activated cores executing subtasks of an application

and the frequency supplied to the cores. Our

previous work [13] addressed a greedy scheduling

that distributes all available cores evenly to

independent concurrent tasks. However, these

methods do not achieve the minimal energy

consumption and include impractical assumptions or

severe runtime overhead: infinitely continuous

frequencies with their enforced energy consumption

formulas [13], frequent power on/off of cores during

idle time [12], and parallel execution on changeable

cores [12,13]. In contrast, this paper addresses an

optimal scheduling that achieves the minimal energy

consumption of a real-time parallel task under

practical restrictions discretely available frequencies

with their arbitrary energy consumptions, one-time

power off of unused cores, and parallel execution on

fixed cores.

Ⅱ PRELIMINARIES

1. Task Model

A real-time video task consists of consecutive

image frames arriving from the network or being

retrieved from the disk. Because image frames

require different computation cycles, task scheduler

accounts for the worst case, i.e., the maximum

computation cycles, for simplicity. The computation

cycles of each frame must be completed within a

given time limit, i.e., deadline D. The deadline

depends on the type of media and coding. For

instance, NTSC DVD quality MPEG-2 video can be

transmitted at approximately 30 or 24 frames per

second, for such cases the deadline is given by

≈ and ≈ , respectively.
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Fig. 1. Four Speedup vectors of parallel processing

Video decoding tasks can be partitioned into

multiple computational components, e.g., separate

groups of image pictures and disjoint partitions of

each image picture [6]. These components can be

computed concurrently and independently on

multiple processing cores. The speedup of parallel

execution is approximately proportional to the

number of allocated cores, but usually less than the

number of allocated cores due to inefficiency factors

of parallel execution, such as intrinsically sequential

processing portion, conflict of concurrent memory

accesses, unbalanced load of subtasks, and

additional communication between subtasks. To

examine the impact of various speedups of parallel

execution, we use four speedup models depicted in

Fig. 1. The first two speedup models are drawn from

the experimental data generated in the parallel

MPEG-2 video task on the Silicon Graphics

Challenge multiprocessor [6]. They are 1408 × 960

and 352 × 240 resolution video tasks, and we call

them MPEG-heavy and MPEG-light, respectively.

We synthetically generate the other two that

represent the tasks including severe inefficiency

factors of parallel execution; The task, whose

inefficiency factors occupy half the total

computation, is called Sublinear. The speedup of
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Sublinear task with  allocated cores is

 ×    for ≥ . The task,

whose portion of the inefficiency factors to the total

computation increases along the number of allocated cores,

is called Concave. The speedup of Concave task with 

allocated cores is     for ≥ .

2. Processor Model

An identical frequency is supplied to all activated

cores in the processor. The unused cores are

powered off to save energy [9,10]. Core processing

speed is proportional to the supplied clock

frequency. In terms of execution time, the

completion time is the required computation cycles

divided by the clock frequency. The K discrete

frequencies available to these processors are denoted

as    in increasing order. For a given frequency 

where ≤ ≤  , the power consumption is denoted as

 . Then, the energy consumption and execution time of

each cycle are 


and 


, respectively. If  <  , then 

<  and  < . Even when a processor has no

computation to execute, the power consumption in the idle

status, i.e., leakage power consumption, is strictly positive

[5,10]. The power consumption in the idle status is denoted

as  For convenience, we additionally define a virtual

frequency of the idle status as  and set its value to zero,

because its computation speed is semantically equivalent to

zero.

Table 1. Processor Model

k 0 1 2 3 4 5

 (MHz) 0 150 400 600 800 1000

Voltage (V) 0.75 0.75 1.0 1.3 1.6 1.8

 (mW) 40 80 170 400 900 1600

For the practical DVFS evaluation, we use the

data obtained from a well-known DVFS processor,

the Intel XScale [5]. Table I shows the available

frequencies, their voltages and power consumptions

(energy consumption rates) of the processor for the

instruction execution.

3. Problem Formulation

The problem tackled in this paper is to minimize

the total power consumption of a real-time task on

 homogeneous cores. If  cores are assigned to the

parallel execution, the other   cores are powered

off to save energy. The task requires at most  cycles and

should be completed within the deadline . Speedup values

  of parallel executions on  cores for ≤ ≤

are given in advance. When  cycles are executed in

parallel on  cores with a speedup of  , the task can

be executed within at most ⌈ 

 ⌉ cycles. If the

completion time of all ⌈ 

 ⌉ cycles under the minimum

frequency   is earlier than the deadline , the power 

of the idle status is consumed for the slack time

 ⌈ 

 ⌉ 


 .

We do not turn off the power of the activated

cores during the slack time, because the time delay

and extra energy required to turn off/on the power

[14] are relatively large, compared with the tight

deadline of image frames. In addition, we do not

change the number of cores allocated to a task

during execution, because it incurs severe overhead

such as subtask preemption, migrations of

suspended subtasks and synchronization. A schedule

is referred to as n-feasible if it allocates  cores to the task

execution and completes the task execution within the

deadline . An n-feasible schedule is called n-Optimal

Schedule if it consumes the minimum energy amongst all 

-feasible schedules.

Ⅲ Proposed Scheduling Scheme

First, the proposed scheduling scheme excludes

the defective frequency  that violates the convex function
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of power consumption. That is, 

 
> 

 
for

any    . Based on Lemma 1, the defective

frequency is discarded henceforth. Calculation results of

 

  
> 

  
for 1 <  < K can select all

defective frequencies. Note there is no defective frequency

in Table I.

Lemma 1: If 

 
> 

 
for    ,

the frequency  is not used in any n-Optimal Schedule.

Proof: Let us assume that any n-Optimal

Schedule uses the frequency  to execute  cycles. If



  
 


 


where   , then ·

 


= ·


. If 


> 


and

·  


= ·


, then ·(


- 


) - ·

(


- 


) = (


· + 


·) - 


·( + ) < 0.

That is, the energy consumption using  to execute ( +

) cycles, 


· ( + ), is larger than that using 

to execute  cycles and  to execute  cycles, (


·

 + 


·). Consequently, the frequency  is not used

in any n-Optimal Schedule. ▣

Next, the proposed scheme calculates the energy

consumptions of all n-Optimal Schedules for

≤ ≤  , and selects the best schedule with the least

energy consumption from the n-Optimal Schedule. Each

n-Optimal Schedule chooses a frequency  that is nearest

to and no smaller than ⌈ ⌉·

, from    . If

⌈ ⌉·


=  , it is clear that the schedule executing

the task on  cores with the frequency  completes the

 cycles within the time  and consumes the minimum

energy among n-feasible schedules. In case ⌈ ⌉·



< , the slack time ( - ⌈ ⌉·


) can be utilized

to save more energy using a combination of another

frequency . Namely, the n-Optimal Schedule assigns

two different frequencies  and , where  is the

smallest available frequency satisfying  ≥ ⌈ ⌉·



. It attempts to find the transition point  ′ that

satisfies 

 ′
 

⌈ ⌉  ′
= . The transition point

 ′ can be found as follows:

 ′ 

·⌈ ⌉  ·

. (1)

Because 

⌈ ′⌉
 

⌈ ⌉⌈ ′⌉
≤  when

     , it assigns the frequency  to execute

⌈ ′⌉cycles and the frequency    to execute the

remaining ⌈ ⌉ ⌈ ′⌉ cycles. The following

theorem shows that the n-Optimal Schedule assigns  to

⌈ ′⌉ cycles and  to ⌈ ⌉ ⌈ ′⌉

cycles.

Theorem 1: The n-Optimal Schedule assigns  to

⌈ ′⌉cycles and    to ⌈ ⌉ ⌈ ′⌉

cycles.

Proof: We refer to the schedule, which assigns  to

⌈ ′⌉cycles and    to ⌈ ⌉ ⌈ ′⌉

cycles, as Original Schedule. Let us assume that there is

another n-Optimal Schedule other than the Original

Schedule. Then, the assumed n-Optimal Schedule assigns

other frequencies, except  and    , to execute some

cycles from the  cycles. If the frequency  , such that

   , substitutes for  or    , then the
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assumed n-Optimal Schedule consumes more energy than

the Original Schedule. If the frequency  , such that

     , substitutes for  or    , then the

assumed  -Optimal Schedule cannot meet the deadline.

Finally consider the case where  and  are used to

execute some  cycles from the  ′ cycles and  cycles

from the ⌈ ⌉ ⌈ ′⌉ cycles, respectively. When



 


 
 


  


, the assumed n-Optimal

Schedule consumes the minimum energy. If



 


 
 


  


and

   

   
≤   

   
≤  

 
, then

(


· +


·) ≥ (


· + 

 
·). Then the

energy consumption of the assumed n-Optimal Schedule,

(


· +


·), is no smaller than that of the

Original Schedule, (


· + 

 
·). Consequently, no

other n-Optimal Schedule consumes less energy than the

Original Schedule. ▣

In the n-Optimal Schedule, the total energy

consumption of each activated core for the time  is

( ′ ·


+ (⌈ ⌉- ′ )· 

 
), and its average

power consumption (the average energy consumption rate)

for the time  is



 ′ ·


 ⌈ 
 ⌉  ′  ·



≃

   

   · ⌈ 
 ⌉ ·


 

(2)

In summary, the value of ⌈ ⌉·


determines the

values of  and  ′ , and the power consumption of the

n-Optimal Schedule. We denote the value of ⌈ ⌉·


as  , and refer to it as Core Load. We also denote the

average power consumption of each activated core as a

function      . Then     can be formulated as

follows:










  i f   

    

    ·     i f   

(3)

which is a convexly increasing and piece-wisely

linear function, as shown in Fig.2.
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Fig. 2. Average power consumption of an activated core

If    , no schedule can complete this task before

the deadline. Exploiting the function of     , we can

readily calculate the average power consumption of each

n-Optimal Schedule, i.e.,     · . Comparing the values

of     · for ≤ ≤  derives the best

schedule with the least energy consumption. The number of

activated cores in the best schedule is denoted as  and

determined as

  ·  min ≤ ≤    · . (4)

The proposed scheduling, called Minimum-Energy

Multi-core Scheduling (MEMS), requires at most

one frequency transition per image frame from  to 

or from  to  . If the previous frame completes its

execution with , the next frame starts its execution

with  and completes it with  in a reverse manner

to minimize the frequency transitions.
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Ⅳ Evaluation

We compare the proposed off-line scheduling with

two greedy methods: single-core scheduling and

all-cores scheduling. The single-core scheduling

[3-5,7-10] executes the real-time task on a single

core and turns off the power of the other cores. The

all-cores scheduling [13] executes the task on all

available cores. For a fair comparison, these two

greedy methods use the respective minimum-energy

feasible schedules on a single core and on all cores.

1. Impacts of Task Workload, Available Cores

and Speedup

In the first set of comparisons, we examine the

performance of the relative computation amount to

the deadline and the number of cores available in

the system. To measure the relative computation

amount to the deadline, we define the ratio of the

completion time of given computation cycles under

the maximum frequency to the deadline as Task

Load, i.e., ·


×  . Here we do not consider the time

delay and the extra energy required to change the frequency

at runtime.

Fig. 3 show the average power consumptions of

the three methods, where  denotes the number of all

available cores. The speedup model of the MPEG-heavy

task is used to evaluate parallel execution. Given Task

Load, the single-core scheduling consumes the same power

regardless of the number of available cores. The proposed

scheduling consumes less power as available cores increase.

The values on the top of bars in Fig. 3(b) indicate the

number  of cores activated by the proposed scheme,

determined in Eq. (4). The all-cores scheduling consumes

less power as the number of available cores becomes closer

to  but consumes more power as the number of cores

becomes larger than . Compared with the single-core

scheduling, the proposed scheduling saves a significant

amount of power when the Task Load is heavy. For

instance, the power saving ratio of the proposed scheduling

is 67% when `Task Load' = 90% on 4 or more cores.

Compared with the all-cores scheduling, the proposed

scheduling saves a significant amount of power when the

Task Load is light or the number of available cores is large.

For instance, the power saving ratio of the proposed

scheduling is 89% when ‘Task Load’ = 10% on 14 cores.

In the second set of comparison, we examine the

performance of three different speedup models

described in Section Ⅱ­1 : MPEG-light task,

Sublinear task, and Concave task. To directly

compare the proposed scheduling with the two

greedy methods, we measure the ratio of the average

power consumption of the proposed scheduling to

that of a greedy method, referred to as Normalized

Power Consumption (NPC).

Fig. 4(a) and (b) show NPC values against the

single-core scheduling and the all-cores scheduling

respectively, where β in ‘=β’ denotes the value of Task

Load. In Fig. 4(a), NPC values of the three tasks decrease

as there are more available cores, but eventually reaches the

bound, because  ≤  for ≥  . The task with a

higher speedup shows a smaller NPC than the task with a

lower speedup on a given number of cores. If the task has

a lower speedup of parallel execution, its completion time

becomes closer to the deadline and thus the proposed

scheduling has little chance to assign a lower frequency to

the activated cores. In Fig. 4(b), NPC values of the three

tasks also decrease, as there are more available cores,

because  is the same for a large . Fig. 4 show that the

proposed scheduling saves a manifest amount of energy for

the tasks with a low speedup of parallel execution.

2. Overhead and Implementation Issues

The operation to exclude all defective frequencies

requires O(K) steps. The operation to find the

number  of activated cores and the frequency  requires

O(N·logK) steps. It is a one-time cost, incurred at

compilation time. The proposed method requires at most one

frequency transition during the execution of each frame.

The frequency transition incurs extra energy and time

delay. The extra energy is relatively small, compared with
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Fig.4. Normalized power consumption of the proposed scheduling against (a) the single-core scheduling and (b)
the all-cores scheduling

Fig.3. Average power consumptions of (a) the single-core scheduling, (b) the proposed scheduling, and
(c) the all-cores scheduling

huge computation amount of each image frame [8]. To

accommodate the time delay, denoted as τ. incurred when

changing the supplied frequency at runtime, the deadline 

is replaced with  ′     . The transition overhead is

also required by the single-core scheduling and the

all-cores scheduling.

The proposed method needs information about the

parallel execution speedup on various numbers of

cores, the maximum cycles to be computed within

each frame, and the time limit between two adjacent

frames in advance. Approximate values of the

speedup, computation cycles, and the deadline are

obtained from the type of media codec, analysis tool

[15] and accumulated statistics [5,8]. Although

their worst-case values are adopted for simplicity in

this paper, the statistical distribution of varying

computation cycles can be exploited for further

energy saving [5,8]. This stochastic approach

assigns a lower frequency to earlier cycles being

executed with a higher probability, and a higher

frequency to later cycles being executed with a lower

probability. Similar to the MEMS algorithm, it finds

feasible schedules consuming the minimum mean

energy for parallel executions on each number of

allocated cores, and selects the best schedule from

the found schedules.

The proposed off-line scheduling minimizes the

energy consumption of a periodic real-time task on

the DVFS-enabled multi-core platform. Compared

with its counterparts assigning either a single core

or all cores to the task execution, the proposed

scheduling achieves as high as 67% and 89% energy
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saving, respectively. As long-lived multi-media tasks

such as video playing are becoming increasingly

popular, such high potential gain warrants further

serious investigation for the emerging multi-core

mobile processor.

Ⅴ Conclusions

The proposed off-line scheduling scheme

minimizes the energy consumption of a periodic

real-time task on the DVFS-enabled multi-core

platform. The proposed scheme activates the best

number of cores and inactivates the other unused

cores, in order to minimize the energy consumption.

Compared with its counterparts assigning either a

single core or all cores to the task execution, the

proposed scheme achieves as high as 67% and 89%

energy saving, respectively. As long-lived

multi-media tasks such as video playing are

becoming increasingly popular, such high potential

gain warrants further serious investigation for the

emerging multi-core mobile processor.

In future study, we will investigate an

energy-efficient on-line scheme that dynamically

makes an adaptive schedule for the periodic real-time

task with varying computation amount and minimizes

the energy consumption of the multi-core processor

while meeting the deadline.
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