
IEIE Transactions on Smart Processing and Computing, vol. 3, no. 1, February 2014  
http://dx.doi.org/10.5573/IEIESPC.2014.3.1.1 

 

1

IEIE Transactions on Smart Processing and Computing

Low-latency SAO Architecture and its SIMD Optimization 
for HEVC Decoder  

Yong-Hwan Kim1,2, Dong-Hyeok Kim2, Joo-Young Yi2, and Je-Woo Kim2 

1 Smart Media Research Center, Korea Electronics Technology Institute / Seoul, 121-835, Korea   yonghwan@keti.re.kr 
2 Multimedia IP Research Center, Korea Electronics Technology Institute / Seongnam-si, Gyeongggi-do 483-816, Korea 

{kdh007, jyyi, jwkim}@keti.re.kr  
 

* Corresponding Author: Yong-Hwan Kim  

Received October 20, 2013; Revised October  31, 2013; Accepted November 15, 2013; Published February 28, 2014       

* Regular Paper 

 

Abstract: This paper proposes a low-latency Sample Adaptive Offset filter (SAO) architecture and 
its Single Instruction Multiple Data (SIMD) optimization scheme to achieve fast High Efficiency 
Video Coding (HEVC) decoding in a multi-core environment. According to the HEVC standard 
and its Test Model (HM), SAO operation is performed only at the picture level. Most realtime 
decoders, however, execute their sub-modules on a Coding Tree Unit (CTU) basis to reduce the 
latency and memory bandwidth. The proposed low-latency SAO architecture has the following 
advantages over picture-based SAO: 1) significantly less memory requirements, and 2) low-latency 
property enabling efficient pipelined multi-core decoding. In addition, SIMD optimization of SAO 
filtering can reduce the SAO filtering time significantly. The simulation results showed that the 
proposed low-latency SAO architecture with significantly less memory usage, produces a similar 
decoding time as a picture-based SAO in single-core decoding. Furthermore, the SIMD 
optimization scheme reduces the SAO filtering time by approximately 509% and increases the total 
decoding speed by approximately 7% compared to the existing look-up table approach of HM.     
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1. Introduction 

HIGH Efficiency Video Coding (HEVC), which is also 
known as the H.265 video codec, is the latest video 
compression standard developed by the Joint Collaborative 
Team on Video Coding (JCT-VC) group, which was 
established by the ISO/IEC Moving Picture Experts Group 
(MPEG) and ITU-T Video Coding Expert Group (VCEG) 
[1, 2]. The HEVC is expected to achieve an up to 50% bit-
rate reduction with the same visual quality relative to the 
former Advanced Video Coding (AVC/H.264) standard [3].  

In HEVC, pictures are divided uniformly into square 
blocks called Coding Tree Units (CTUs), which are similar 
to the Macroblocks used in earlier standards. These CTUs 
are divided further in a quadtree structure to form Coding 
Units (CUs), which form the basic processing unit. In-loop 
filtering of the HEVC consists of two stages. The first 
stage is deblocking filter (DF) and second stage is the 
Sample Adaptive Offset (SAO) filter, as shown in Fig. 1.  

The SAO is a newly adopted tool in HEVC to enhance 

both the subjective and objective quality [4]. The DF 
reduces blocking artifacts, and the SAO reduces both 
ringing and banding artifacts. In addition, the SAO can 
enhance the edge sharpness or smoothing. 

According to the HEVC standard and its Test Model 
(HM), SAO operation is performed only at the picture 
level [1, 5]. That is, SAO filtering is an inherently picture-
based operation because it requires deblocked pixels from 
all of its eight neighbors (left, above, right, below, above-
left, above-right, below-left, and below-right) CTUs. Most 
realtime decoders, however, execute their sub-modules on 
a CTU basis for reducing the latency and memory 
bandwidth. In addition, multi-core decoding is widely used 
since large picture, such as UHD (3840x2160), decoding is 
not possible in single-core decoding. Therefore, a CTU-
based, low-latency SAO filtering architecture is essential 
for utilizing pipelined parallel decoding efficiently. 
Parveen.G.B et al. proposed a low-latency SAO encoding 
architecture for a multi-core encoding environment, where 
method-B appears to be a good trade-off between the 
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latency and compression ratio [6]. P. N. Subramanya et al. 
proposed a low-latency SAO decoding architecture for a 
multi-core HW decoding environment, where method C 
provides CTU-based low-latency SAO filtering [7]. 
Method C has two drawbacks: 1) the side information 
overhead is high because it processes the pixel data from 
four CTUs simultaneously, 2) less efficient in Single 
Instruction Multiple Data (SIMD) optimization, which is 
indispensable to all SW codecs, due to the many 
conditional branches and data alignment problems [8]. 

This paper presents a low-latency CTU-based SAO 
filtering architecture to enable efficently pipelined parallel 
decoding and effective SIMD optimization. In addition, a 
SIMD optimization scheme of SAO filtering is proposed to 
reduce the SAO filtering time significantly. 

This paper is organized as follows. Section 2 explains a 
SAO overview and the existing picture-based SAO 
filtering architecture. The proposed algorithms are 
presented in detail in Section 3. Section 4 reports the 
experimental results and compares those with the existing 
algorithm, and Section 5 concludes the paper. 

2. SAO Overview  

SAO is a non-linear amplitude mapping filter that 
operates on deblocked pixels [1, 2, 4]. Each CTU can have 
one of three types of SAO filtering: (1) No SAO filtering, 
(2) Band Offset (BO), and (3) Edge Offset (EO). Both BO 
and EO add a certain offset value to a sample, where the 
offset value of BO is chosen from the received lookup 
table by the sample magnitude. On the other hand, the 
offset value of EO is chosen from the received lookup 
table by a edge direction and gradient.  

2.1 Band Offset (BO)  
BO classifies all pixels of a CTU into multiple bands, 

where each band contains pixels with the same intensity. 
For example, 8-bit pixel intensities (0-255) are divided into 
32 fixed bands with the width of the band as 8 samples. 
Only four consecutive bands and offsets are selected and 
signaled to a decoder, as shown in Fig. 2. Note that BO 
does not use the pixels of the neighboring CTUs, and four 
band offsets can be wrapped around. The BO filtering 
equation is expressed as Eq. (1). 

 

m = src[x][y]>>(bitDepth-5), 
dst[x][y] = Clip3( 0, (1<<bitDepth)-1,                      (1) 
src[x][y] + BoOffsetTab[m] )  
 

where Clip3(min, max, a) = (a > max) ? max : ((a < min) ? 
min : a). The src[x][y] and dst[x][y] represent a deblocked 
pixel and SAO-filtered pixel, respectively, m means a 
quantized pixel, and BoOffsetTab[0..31] holds four BO 
offset values and 28 zero values. x and y are pixel 
coordinates with a range of values: x=0..CtbWidth, 
y=0..CtbHeight, where CtbWidth and CtbHeight represent 
Coding Tree Block (CTB) width and height in pixel units, 
respectively.  

2.2 Edge Offset (EO) 
EO uses the neighboring pixels including those of 

neighboring CTUs to compute edge directional 
information. Fig. 3 shows four EO classes that specify the 
edge direction, where the c represent current pixel and 
both b and c represent the neighboring pixels. Note that in 
a CTU, one EO class and four edge offset values according 
to pre-defined category are signaled to a decoder.  

Given a EO class, each sample is classified into five 
categories, as shown in Table 1, where category 0 means 
no SAO filtering.  

 
m = Sign(src[x][y] - src[x-1][y]), 
n = Sign(src[x][y] - src[x+1][y]),                        (2) 
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Fig. 1. Block diagram of HEVC decoder. 

 

Fig. 2. Band offsets. 
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Fig. 3. Four EO classes. 
 

Table 1. EO sample classification rule.  

Category 
(Edge Type) Condition Description 

0 c==a && c==b No SAO filtering
1 c < a && c < b Local minima 

2 (c < a && c==b) || 
(c==a && c < b) Negative edge 

3 (c > a && c==b) || 
(c==a && c > b) Positive edge 

4 c > a && c > b Local maxima 
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dst[x][y] = Clip3( 0, (1<<bitDepth)-1,  
src[x][y] + EoOffsetTab[m + n + 2] )  

   
Eq. (2) shows EO class 0 filtering equation, where 

Sign(a) = (a > 0) ? 1 : ((a==0) ? 0 : -1) and EoOffsetTab 
[0..4] has five EO offset values including one zero value. 
The other EO class filtering equations can be derived 
easily by adjusting the x and y coordinates according to the 
angle of Fig. 3. 

2.3 Picture-based SAO Architecture 
A picture-based SAO architecture is the default method 

of performing SAO filtering after decoding and deblocking 
a picture in the HEVC standard and HM [1, 5]. Fig. 4 
shows a flowchart of the architecture, where saoPicBuf is 
the backup buffer for retaining the original deblocked 
pixels. The srcPicBuf holds the original deblocked pixels 
and SAO filtered pixels as a result. Unlike DF, SAO 
filtering always uses the original deblocked pixels, not the 
previously SAO-filtered pixels. This is why the picture-
sized backup buffer is required. The iCtu represents the 
CTU number and iSizeInCtu means the total number of 
CTUs in a picture. The saoPicBuf is the input and the 
srcPicBuf is the output of the SaoFilterCTU_HM() 
function, which filters the current CTU pixels by 
selectively referencing the neighboring CTUs.  

After normal SAO filtering for a picture using iterative 
CTU-based filtering, the PCM samples and losslessly 
coded samples are restored in the RestorePcmSamplesPic() 
function.  

This architecture has two major drawbacks: 1) high 
latency, which makes it difficult to achieve efficiently 
pipelined parallel decoding; and 2) large memory 
requirements due to picture backup buffer (i.e., saoPicBuf).   

3. The Proposed Scheme 

To overcome the drawbacks of a picture-based SAO 
architecture, low-latency CTU-based SAO architecture 
was designed, which also takes into account the following 
two points: 1) SIMD-friendly structure, and 2) Easy 

implementation covering various Tile and slice 
combinations. Finally, SIMD optimization of SAO 
filtering is proposed to reduce significantly the SAO 
filtering time itself.   

3.1 Low-latency SAO Architecture 
Unlike the HM, which executes DF in picture-basis, we 

assume that DF is performed on a CTU-basis. Basically, 
the SAO of the current CTU can begin filtering after 
decoding and deblocking its below-right CTU because it 
requires deblocked pixels of the eight neighboring CTUs. 
For example, after deblocking CTU #10, the SAO of CTU 
#1 can be started, as shown in Fig. 5. The proposed 
architecture follows the basic nature of the SAO precisely, 
unlike previous work [7]. That is, SAO filtering is 
performed on the entire pixels of a CTU after deblocking 
its below-right CTU. Note that last column CTUs are 
processed immediately after its left CTU, and the last CTU 
row is processed separately after deblocking the last CTU 
of a picture. Fig. 6 shows the filtering order in the case of 
the Tile structure. Fig. 7 presents a flowchart of the 
proposed architecture, where iCtuX and iCtuY represent 
the x and y coordinates of a CTU, respectively. The 
iWidthInCtu and iHeightInCtu means the number of CTUs 
in a CTU row and column, respectively. The proposed 
architecture has the following three steps: 1) process an 
above-left CTU if available, 2) process an above CTU if 
the current CTU is the right-most CTU, and 3) process the 
last CTU row if the current CTU is the last one in the 
picture. Note that Fig. 7 explains SAO filtering order of 
Figs. 5 and 6. 

To reduce the backup buffer overhead of the picture-
based SAO and enable low-latency SAO filtering, the 
CTU-based SAO buffer structure was designed. First, the 
proposed CTU-based SAO architecture requires four types 
of buffer, as shown in Fig. 8 and Table 2. That is, the 
original deblocked pixels such as all the internal bottom-
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Fig. 4. Flowchart of picture-based SAO architecture.

 

1 [s1
10
] 2 [s2

11
] 3 [s3

12
] 4 [s4

13
] 5 [s5

14
] 6 [s6

15
] 7 [s7

16
] 8 [s8

16
]

9 [s9
18
] 10 [s10

19
] 11 [s11

20
] 12 [s12

21
] 13 [s13

22
] 14 [s14

23
] 15 [s15

24
] 16 [s16

24
]

17 [s17
26
] 18 [s18

27
] 19 [s19

28
] 20 [s20

29
] 21 [s21

30
] 22 [s22

31
] 23 [s23

32
] 24 [s24

32
]

25 [s25
32
] 26 [s26

32
] 27 [s27

32
] 28 [s28

32
] 29 [s29

32
] 30 [s30

32
] 31 [s31

32
] 32 [s32

32
]

* sN
M 
: SAO filtering order N after M-th CTU decoding and deblocking

CTU

Fig. 5. Low-latency SAO filtering order without a Tile.
 

1 [s1
6
] 2 [s2

7
] 3 [s3

8
] 4 [s4

13
] 9 [s5

14
] 10 [s6

15
] 11 [s7

16
] 12 [s8

16
]

5 [s9
18
] 6 [s10

19
] 7 [s11

20
] 8 [s18

29
] 13 [s19

30
] 14 [s20

31
] 15 [s21

32
] 16 [s22

32
]

17 [s12
22
] 18 [s13

23
] 19 [s14

24
] 20 [s23

33
] 29 [s24

34
] 30 [s25

35
] 31 [s26

36
] 32 [s27

36
]

21 [s15
26
] 22 [s16

27
] 23 [s17

28
] 24 [s28

37
] 33 [s29

38
] 34 [s30

39
] 35 [s31

40
] 36 [s32

40
]

25 [s33
40
] 26 [s34

40
] 27 [s35

40
] 28 [s36

40
] 37 [s37

40
] 38 [s38

40
] 39 [s39

40
] 40 [s40

40
]

Tile boundaryCTU

Fig. 6. Low-latency SAO filtering order with four Tiles.



Kim et al.: Low-latency SAO Architecture and its SIMD Optimization for HEVC Decoder  

 

4 

most (B1) pixels, a external right-bottom (B2) pixel, 
internal right-most (C1) pixels, an external below-right 
(C2) pixel, and an internal bottom-right pixel (A) of 
current CTU should be stored for SAO filtering of the 
other CTUs. Note that A pixel should be stored at separate 
buffer for the below-right CTU because the same pixel in 
the B and C buffers is replaced with other one in the below 
and right CTU. In Table 2, iCtbWidthY and iCtbWidthC 
represent Y and Cb/Cr CTB width, respectively. 

For example, assume the UHD video (3840x2160) 
stream, where typically iCtbWidthY = 64 and iCtbWidthC 

= 32. The picture-based SAO requires a buffer with size 
equal to 3840x2160x1.5=11.9 Mbytes. The proposed low-
latency CTU-based SAO architecture requires a buffer 
with a size equal to 24.3 Kbytes (Table 2), which amounts 
to only 0.2% compared to the picture-based SAO.   

Fig. 9 presents a flowchart of the proposed SAO 
filtering algorithm using the four buffers in Table 2, which 
is SaoFilterCTU() in Fig. 7. In Fig. 9, only Y filtering is 
shown for simplicity. The BackupPixels() function stores 
some pixels of the current, right, and below CTUs before 
SAO filtering, where the A, B, and C buffers are used. The 
SaoBlockCopy() function copies pixels of: (a) current 
CTU from srcPicBuf buffer, (b) right and below CTUs 
from srcPicBuf buffer if available, (c) above-left CTU 
from A buffer, (d) above and above-right CTUs from B 

iCtuY > 0

SaoFilterCTU(iCtuX-1, iCtuY-1 )

iCtuX >= 
(iWidthInCtu-1)

Y

SaoFilterCTU(iCtuX, iCtuY-1)
Y

Start

End

N

N

(iCtuX >= 
(iWidthInCtu-1))
&& (iCtuY >= 
 (iHeightInCtu-1))

(iCtuX < 
iWidthInCtu)

N

iCtuX = iCtuX+1

Y

iCtuX = 0

SaoFilterCTU(iCtuX, iCtuY)

Y

N

(3)Process the last CTU row

(1)Process an above-left CTU

(2)Process an above CTU

iCtuX > 0
Y

N

Fig. 7. Flowchart of the low-latency SAO filtering
architecture.  
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Fig. 8. CTU boundary pixels (a) Neighboring pixels
required for filtering current CTU, (b) Current CTU's
pixels (A, B1, B2, C1, and C2) to be stored for filtering
the other CTUs.   

 

Table 2. Four buffers for the proposed SAO 
architecture. 

Buffer Size Description

A 
Y: iWidthInCtu * (iHeightInCtu-1) 
Cb: the same as above 
Cr: the same as above 

An Above-left 
pixel 

B (B1 
and B2)

Y: iWidthInCtu * (iCtbWidthY+1) 
Cb: iWidthInCtu * (iCtbWidthC+1) 
Cr: the same as above 

Above and 
Above-right 

pixels  
[line buffer] 

C (C1 
and C2)

Y: iHeightInCtu * (iCtbWidthY+1) 
Cb: iHeightInCtu * (iCtbWidthC+1) 
Cr: the same as above 

Left and below-
left pixels  

[line buffer] 

D 
Y:(iCtbWidthY+2)*(iCtbWidthY+2) 
Cb:(iCtbWidthC+2)*(iCtbWidthC+2) 
Cr: the same as above 

Current CTU 
buffer including 
all neighboring 

pixels 
 

saoType==
SAO_MODE_OFF

N

SaoBlockCopy(blkWidth, blkHeight, iBdAvail)

Y

Start 

iBdAvail = Derive boundary availability

End

BackupPixels(iCtuX, iCtuY)

BackupPixels(iCtuX, iCtuY)

SaoFilterCtb(blkWidth, blkHeight, iBdAvail)

bPcmDisable || 
bTrQuantBypass

RestorePcmSamplesCtb(iCtuX, iCtuY)

Y

N

Fig. 9. Flowchart of the SaoFilterCTU(). 
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buffer, (e) left and left-below CTUs from C buffer, to D 
buffer. The SaoFilterCtb() function filters the entire pixels 
of the current CTU from D buffer as the input and 
srcPicBuf buffer as the output using Eq. (1) or (2) 
according to the SAO type and EO class. 

The PCM and lossless samples were restored on a 
CTU-basis. The RestorePcmSamplesCtb() function 
selectively restores the original samples in a CTU.   

Figs. 10 and 11 show the pseudo code of 
BackupPixels() and SaoBlockCopy() functions, respectively. 
The blkWidth and blkHeight of Figs. 9 and 11 represent 
the width and height of the Coding Block (CB) to be 
filtered, respectively, which can be different from 
iCtbWidth in the case of the right-most CTUs and bottom-
most CTUs.   

Picture-based pipelined parallel decoding [9] is 
possible using the proposed low-latency CTU-based SAO 
architecture, as shown in Fig. 12. For example, picture 2 
(core 2) decoding can be started immediately after the 
SAO filtering second CTU row of picture 1 (core 1). In 
addition, picture 3 (core 3) decoding can be started 
immediately after SAO filtering the second CTU row of 
picture 2 (core 2). Therefore, in this example, three cores 
can decode the pictures simultaneously in pipelined 
manner. This property is very efficient for large picture 
decoding, such as a UHD video, because the decoding 
overhead is decentralized to the multi-core CPU. Note that 
the thread syncronization unit between the cores can be 
one out of a CTU, multiple CTUs, or CTU row. 

3.2 SIMD Optimization Scheme 
Eq. (2) was optimized using SIMD instruction [8]. The 

entire pixels of the current CTU are filtered in the 
proposed low-latency SAO architecture.  

Fig. 13 shows the SIMD pseudo code. The proposed 
scheme is composed of seven steps: 1) load left 16 pixels,  

right 16 pixels, and current 16 pixels, 2) conversion from 
8-bit pixels to 16-bit pixels, 3) calculation of the edge type 
per pixel using Table 1, 4) table lookup of 
EoOffsetTab[0...15], 5) add pixels and offset values, 6) 
save 16 pixels to destination buffer, 7) conditional pixel 
restoration. The CALC_ETYPE() macro calculates the 8 
edge types simultaneously using Table 1. Sixteen table 
lookup operations are performed at once using 
_mm_shuffle_epi8() instruction, as shown in Fig. 14. Note 
that the blkWidth value is assumed to be equal to a 
multiple of 16 for simplicity. SIMD optimization of the 
remaining EO class 1-3 can be designed easily by 
adjusting step 1 and proper handling of conditional pixel 

If ((iCtbY+1) < iHeightInCtu) 
{ 
  (1)Store bottom line pixels of current CTU
     to B_buffer[iCtbX][] (B1); 
  If (iCtbX < (iWidthInCtu-1)) 
  { 
    (2)Store an external right-bottom pixel 
       of current CTU to  
       B_buffer[iCtbX][iCtbWidth] (B2); 
    (3)Store an internal bottom-right pixel 
       of current CTU to  
       A_buffer[iCtbY][iCtbX]; 
  } 
} 
If (iCtbX < (iWidthInCtu-1)) 
{ 
  (4)Store internal right-most pixels of  
     current CTU to C_buffer[iCtbY][] (C1); 
  If ((iCtbY+1) < iHeightInCtu) 
  { 
    (5)Store an external below-right pixel  
       of current CTU to  
       C_buffer[iCtbY][iCtbWidth] (C2); 
  } 
} 

Fig. 10. Pseudo code of BackupPixels(). 

 

If (above CTU is available) 
{ 
  If (above-left CTU is available) 
  { 
    (1)Copy A_buffer[iCtbY-1][iCtbX-1] to  
       D_buffer[-1][-1];  
  } 
  (2)Copy B_buffer[iCtbX][] to  
     D_buffer[-1][] (B1); 
} 
if (above-right CTU is available) 
{ 
  (3)Copy B_buffer[iCtbX][blkWidth] to  
     D_buffer[-1][blkWidth] (B2); 
} 
 
If (left CTU is available) 
{ 
  (4)Copy C_buffer[iCtbY][] to  
     D_buffer[][-1] (C1); 
  If ( below-left CTU is available) 
  { 
    (5)Copy C_buffer[iCtbY][blkHeight]  
       to D_buffer[blkHeight][-1] (C2); 
  } 
} 
 
(6)Copy current CTU's pixels to  
   D_buffer[][]; 
 
If (iCtbX < (iWidthInCtu-1)) 
{ 
  (7)Copy right CTU's left pixels to  
     D_buffer[][blkWidth-1]; 
} 
If (below CTU is available) 
{ 
  (8)Copy below CTU's top pixels to  
     D_buffer[blkHeight][]; 
} 

Fig. 11. Pseudo code of SaoBlockCopy(). 
 

(1)

CTU row

(2)

(3)

(4)

(5)

Picture 1 (Core 1)

(3)

(4)

(5)

(6)

(7)

Picture 2 (Core 2)

... ...

(5)

(6)

(7)

(8)

(9)

Picture 3 (Core 3)

...

 

Fig. 12. Picture-based pipelined parallel decoding 
architecture. 
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restoration (i.e., step 7).  
Fig. 15 presents BO filtering optimization of Eq. (1) 

using SIMD instruction. The proposed scheme is 
composed of seven steps: 1) prepare new band offset table, 
in which a zero index has a starting band offset, 2) load 16 

pixels and convert those to 16-bit pixels, 3) quantize the 
pixels by using Eq. (2), 4) reduce the quantized pixel range 
and magnify the unwanted pixel values to over 0x80, 5) 
table lookup with a new band offset table, 6) add pixels 
and offset values, and 7) save 16 pixels to the destination 

#define CALC_ETYPE(srcA, srcC, srcB) { 
  xmm3 = _mm_cmpgt_epi16(srcC, srcA); 
  xmm4  = _mm_cmpgt_epi16(srcC, srcB); 
  srcA = _mm_cmplt_epi16(srcC, srcA); 
  srcB  = _mm_cmplt_epi16(srcC, srcB); 
  xmm3 = _mm_srli_epi16(xmm3, 15);  
  xmm4  = _mm_srli_epi16(xmm4, 15);  
  xmm3  = _mm_or_si128(xmm3, srcA);  
  xmm4  = _mm_or_si128(xmm4, srcB); 
  srcA = _mm_add_epi16(xmm3, xmm4);  
/* srcA => edge_type: -2, -1, 0, 1, or 2 */ 
} 
 
blkWidth16 = blkWidth >> 4; 
xmm7 = _mm_set1_epi8(2); // [2...2] 
xmm8 = _mm_load_si128(EoOffsetTab); 
for (y = 0; y < blkHeight; y++) { 
  for(x = 0; x < blkWidth16; x++) { 
  // (1) load left, current, right pixels 
    xmm1 = _mm_loadu_si128(srcBlk-1); 
    xmm0 = _mm_srli_si128(xmm1, 1);  
    xmm2 = _mm_srli_si128(xmm1, 2); 
  // (2) 16-bit conversion 
    xmm1 = _mm_cvtepu8_epi16(xmm1); 
    xmm0 = _mm_cvtepu8_epi16(xmm0); 
    xmm2 = _mm_cvtepu8_epi16(xmm2); 
  // (3) calculation of 8 edge types 
    CALC_ETYPE(xmm1, xmm0, xmm2); 
  
    xmm5 = _mm_loadu_si128(srcBlk-1 + 8); 
    xmm6 = _mm_srli_si128(xmm5, 1);  
    xmm2 = _mm_srli_si128(xmm5, 2); 
    xmm5 = _mm_cvtepu8_epi16(xmm5); 
    xmm6 = _mm_cvtepu8_epi16(xmm6); 
    xmm2 = _mm_cvtepu8_epi16(xmm2); 
    CALC_ETYPE(xmm5, xmm6, xmm2); 
  
  // (4) 16 edge types and table lookup 
    xmm1 = _mm_packs_epi16(xmm1, xmm5); 
    xmm1 = _mm_add_epi8(xmm1, xmm7);  
    xmm2 = _mm_shuffle_epi8(xmm8, xmm1); 
  // (5) addition of pixels and offsets  
    xmm3 = _mm_cvtepi8_epi16(xmm2); 
    xmm4 = _mm_cvtepi8_epi16( 
             _mm_srli_si128(xmm2, 8)); 
    xmm0 = _mm_add_epi16(xmm0, xmm3); 
    xmm6 = _mm_add_epi16(xmm6, xmm4); 
  // (6)save 16 pixels to destination buffer
    xmm0 = _mm_packus_epi16(xmm0, xmm6); 
    _mm_store_si128(dstBlk, xmm0);  
    srcBlk += 16; 
    dstBlk += 16; 
  } 
  srcBlk -= blkWidth; 
  dstBlk -= blkWidth; 
 
  // (7) conditional pixel restoration 
  If (left CTU is not available) 
    dstBlk[0] = srcBlk[0]; 
  If (right CTU is not available) 
    dstBlk[blkWidth-1] = srcBlk[blkWidth-1];
   
  srcBlk += srcStride; 
  dstBlk += dstStride; 
} 

Fig. 13. SIMD pseudo code of SaoFilterCtb() in the case 
of EO class 0. 

 

o2 0 o3 o4 0o1xmm8:
(EoOffsetTab)

0 0 0 0 0 0 0 0 0 0

1 1 2 2 20 1 3 3 1 4 4 2 1 1 0xmm1:
(Edge type)

o2 o2 0 0 0o1 o2 o3 o3 o2 o4 o4 0 o2 o2 o1
xmm2:

(offset value)

...

Fig. 14. illustration of xmm2 = _mm _shuffle _epi 
(xmm8, xmm1) operation in EO filtering. 

 
If (iBandStartPos <= 28)) 
{ 
  shiftBit = bitDepth - 5; 
  blkWidth16 = blkWidth>>4; 
  // (1) Prepare new band offset table 
  Ofs16[16] = {0}; 
  Ofs16[0] = BoOffsetTab[iBandStartPos+0]; 
  Ofs16[1] = BoOffsetTab[iBandStartPos+1]; 
  Ofs16[2] = BoOffsetTab[iBandStartPos+2]; 
  Ofs16[3] = BoOffsetTab[iBandStartPos+3]; 
 
  xmm7 = _mm_set1_epi16(iBandStartPos); 
  xmm6 = _mm_set1_epi16(iBandStartPos+4); 
  xmm8 = _mm_load_si128(Ofs16); 
  for (y = 0; y < blkHeight; y++) { 
    for (x = 0; x < blkWidth16; x++) { 
 // (2) load pixels and 16-bit conversion 
      xmm0 = _mm_cvtepu8_epi16(*(srcBlk)); 
      xmm1 = _mm_cvtepu8_epi16(*(srcBlk+8));
  // (3) quantize pixels 
      xmm2 = _mm_srli_epi16(xmm0, shiftBit);
      xmm3 = _mm_srli_epi16(xmm1, shiftBit);
  // (4) manipulation of quantized pixels 
      xmm4 = _mm_subs_epi16(xmm2, xmm7); 
      xmm5 = _mm_subs_epi16(xmm3, xmm7); 
      xmm2 = _mm_cmpgt_epi16(xmm2, xmm6); 
      xmm3 = _mm_cmpgt_epi16(xmm3, xmm6); 
      xmm2 = _mm_or_si128(xmm2, xmm4); 
      xmm3 = _mm_or_si128(xmm3, xmm5); 
  // (5) table lookup 
      xmm2 = _mm_packs_epi16(xmm2, xmm3); 
      xmm2 = _mm_shuffle_epi8(xmm8, xmm2);  
  // (6) addition of pixels and offsets  
      xmm3 = _mm_cvtepi8_epi16(xmm2); 
      xmm4 = _mm_cvtepi8_epi16(  
               _mm_srli_si128(xmm2, 8)); 
      xmm0 = _mm_add_epi16(xmm0, xmm3); 
      xmm1 = _mm_add_epi16(xmm1, xmm4); 
  // (7)save 16 pixels to destination buffer
      xmm0 = _mm_packus_epi16(xmm0, xmm1); 
      _mm_store_si128(dstBlk, xmm0); 
      srcBlk += 16; 
      dstBlk += 16; 
    } 
    srcBlk += (srcStride - blkWidth); 
    dstBlk += (dstStride - blkWidth); 
  } 
} 
Else { 
  Fall back to default HM code  
} 

Fig. 15. SIMD pseudo code of SaoFilterCtb() in the case 
of BO. 
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buffer. Note that, in step 4, the quantized pixels are 
manipulated to use the property of the _mm_shuffle_epi() 
instruction, which returns 0 if a value is greater than or 
equal to 0x80, as shown in Fig. 16. In Fig. 15, the 
iBandStartPos represents the first band offset position, 
which is signaled to a decoder. Note that if the 
iBandStartPos has a value greater than 28, the band offsets 
are wrapped around. In such a case, default table lookup 
codes of HM are used.  

4. Performance Evaluation 

For the simulation, the proposed algorithm was applied 
to a sub-optimized Main profile HEVC decoder, which 
heavily uses SIMD instruction. JCT-VC test sequences 
were used and encoded by HM12.1. An experiment was 
performed four times in a row in the workstation1. The 
purpose of the first replication was to load the program 
code and the bitstream into the disk cache and at least 
partially into the L2 cache. The median value of the three 
other replications was reported. We disabled the rendering of 
the video and writing of the output files, and also subtracted 
files reading time from total time to minimize the effect of the 
I/O operations on the execution time. The decoding time was 
measured using the QueryPerformanceCounter() function, 
which is the most precise timer function in the system. All 
the experiments were performed by only exchanging the 
SAO architecture and SAO SIMD functions in the sub-
optimized HEVC decoder. 

Table 3 lists the performance of the proposed low-
latency CTU-based SAO architecture in the single-core 
decoding environment. In the table, two streams (People 
on street, Traffic) were cropped UHD (2560x1600, 30Hz) 
sequences and the others were Full-HD (1920x1080, 
60Hz) sequences. The SAO ratio was calculated using the 
following Eq. (3):  

 
SAO ratio = (NumSAO_Y*4 + NumSAO_C*2)        (3) 
/ (NumCTU*6) * 100      

 
where NumSAO_Y and NumSAO_C represent the number 
of SAO filtered Y CTB and Cb/Cr CTB of all pictures, 
respectively. The NumCTU means the number of CTU of 
all pictures. The dT represents the delta time between 
PicSAO and CtuSAO calculated using Eq. (4): 

                                                 
1 Two Zeon E5-2667@2.9GHz (six-core), 16GB DDR3 

RAM, and Windows 7 SP1  

 dT = (CtuSAO - PicSAO) / PicSAO * 100       (4) 
 
As shown in Table 3, the proposed low-latency CTU-

based SAO architecture has a similar speed to that of the 
picture-based SAO architecture, in spite of additional 
backup and copy operations. Note that the decoding speed 
of Table 3 includes the proposed SAO SIMD scheme.  

Table 4 lists the performance of the SAO SIMD 
scheme for two sequences, where CTL represents the C 
table lookup codes of HM and SIMD represents the 
proposed SAO SIMD schemes. The proposed SIMD 
scheme is approximately 509% faster on average than that 
of HM.  

Table 5 lists the total decoding speed of the decoder 
with the CTL as well as the proposed SIMD SAO scheme, 
combined with the proposed low-latency SAO architecture. 

In Table 5, the speed-up gain (i.e., dT) is quite different 
due to the variable SAO ratio. Generally, a high SAO ratio 
results in a high speed-up. In the total decoding time, the 
proposed SIMD SAO scheme is faster than the HM SAO 
scheme by approximately 6.86% on average.  

Although the proposed low-latency CTU-based SAO 
architecture was not tested in the multi-core HEVC 
decoder, the previous results show the significant decoding 
speed-up ratio up to 295% using four cores [9]. 

o2 o3 o4 0 0o1xmm8:
(BoOffsetTab)

0 0 0 0 0 0 0 0 0 0

1 1 0x80 2 0x910 0 3 0x85 1 3 3 2 0xA0 0 0xC5xmm1:
(Quantized
and manipulated pixels)

o2 o2 0 o3 0o1 o1 o4 0 o2 o4 o4 o3 0 o1 0
xmm2:

(offset value)

...

Fig. 16. Illustration of xmm2 = _mm_shuffle_epi (xmm8,
xmm1) operation in the BO filtering. 

 

Table 3. Total decoding speed comparison between 
picture-based SAO (PicSAO) and the proposed CTU-
based SAO (CtuSAO).  

Sequences Bitrate 
[kbps]

SAO 
ratio 
[%] 

PicSAO 
[fps] 

CtuSAO
[fps] 

dT 
[%]

People on 
street 8390.2 18.6 14.56 14.56 0.00

Traffic 3054.5 11.5 26.10 25.89 -0.80
BQTerrace 11560.8 32.9 33.40 34.57 0.70

BasketballDr
ive 23017.9 52.1 22.67 22.58 -0.40

ParkScene 3912.7 9.4 41.28 41.30 0.05
Tennis 9072.7 49.4 38.80 38.69 -0.28

Average 9834.8 28.98 29.62 29.60 -0.12
 

Table 4. SAO decoding speed comparison between the 
HM's table lookup SAO and the proposed SIMD SAO.  

Sequences SAO type CTL [sec] SIMD 
[sec] 

Gain 
[%] 

EO class 0 0.389 0.079 392.4 
EO class 1 1.331 0.231 476.2 
EO class 2 0.046 0.027 70.4 
EO class 3 0.257 0.052 394.2 

BQTerrace

BO 0.157 0.026 503.8 
EO class 0 0.152 0.021 623.8 
EO class 1 0.141 0.022 540.9 
EO class 2 0.305 0.038 702.6 
EO class 3 0.186 0.016 1062.5 

Tennis 

BO 0.030 0.007 328.6 
Average - 0.299 0.052 509.5 
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Furthermore, the decoding speed-up ratio can be greater 
than the previous result because of two facts: 1) the final 
HEVC standard omits the Adaptive Loop Filter (ALF), 
which increases the inter-frame synchronization latency, 2) 
the proposed SIMD optimization of SAO filtering can 
reduce the latency. The proposed algorithm has advantages 
over a picture-based SAO architecture: 1) significantly less 
memory required as shown in Table 2, 2) low-latency 
property enables efficient multi-core decoding. In addition, 
the proposed SIMD optimization scheme is suitable for the 
low-latency CTU-based SAO architecture.  

The sub-optimized Main profile HEVC decoder with 
the proposed algorithms passed all the HEVC conformance 
bitstreams [10] except for those of the Main10 profile and 
the proprietary 223 test bitstreams including various Tile 
and slice combinations.    

5. Conclusion 

This paper proposed a low-latency CTU-based SAO 
architecture and a SAO filtering optimization scheme by 
SIMD instructions, which can be used for the realtime 
decoding of 4K video in a multi-core environment. The 
proposed architecture showed a similar speed to other 
existing schemes in single-core decoding environment. 
The architecture has two advantages over the existing 
picture-based SAO architecture: 1) significantly less 
memory requirements, and 2) low-latency property 
enabling efficient multi-core decoding. In addition, the 
proposed architecture is suitable for efficient SIMD 
optimization compared to the existing CTU-based SAO 
filtering architecture in the SW codec. The proposed SIMD 
scheme for SAO filtering significantly sped up all SAO 
filtering classes by approximately 509% on average. 
Although we simulated the proposed algorithm in the 
decoder, the proposed methods can also be applied to a 
HEVC encoder without modification.   
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