
IEIE Transactions on Smart Processing and Computing, vol. 3, no. 1, February 2014
http://dx.doi.org/10.5573/IEIESPC.2014.3.1.1

1

IEIE Transactions on Smart Processing and Computing

Low-latency SAO Architecture and its SIMD Optimization
for HEVC Decoder

Yong-Hwan Kim1,2, Dong-Hyeok Kim2, Joo-Young Yi2, and Je-Woo Kim2

1 Smart Media Research Center, Korea Electronics Technology Institute / Seoul, 121-835, Korea yonghwan@keti.re.kr
2 Multimedia IP Research Center, Korea Electronics Technology Institute / Seongnam-si, Gyeongggi-do 483-816, Korea

{kdh007, jyyi, jwkim}@keti.re.kr

* Corresponding Author: Yong-Hwan Kim

Received October 20, 2013; Revised October 31, 2013; Accepted November 15, 2013; Published February 28, 2014

* Regular Paper

Abstract: This paper proposes a low-latency Sample Adaptive Offset filter (SAO) architecture and
its Single Instruction Multiple Data (SIMD) optimization scheme to achieve fast High Efficiency
Video Coding (HEVC) decoding in a multi-core environment. According to the HEVC standard
and its Test Model (HM), SAO operation is performed only at the picture level. Most realtime
decoders, however, execute their sub-modules on a Coding Tree Unit (CTU) basis to reduce the
latency and memory bandwidth. The proposed low-latency SAO architecture has the following
advantages over picture-based SAO: 1) significantly less memory requirements, and 2) low-latency
property enabling efficient pipelined multi-core decoding. In addition, SIMD optimization of SAO
filtering can reduce the SAO filtering time significantly. The simulation results showed that the
proposed low-latency SAO architecture with significantly less memory usage, produces a similar
decoding time as a picture-based SAO in single-core decoding. Furthermore, the SIMD
optimization scheme reduces the SAO filtering time by approximately 509% and increases the total
decoding speed by approximately 7% compared to the existing look-up table approach of HM.

Keywords: HEVC, SAO, Low-latency, Multi-core, SIMD

1. Introduction

HIGH Efficiency Video Coding (HEVC), which is also
known as the H.265 video codec, is the latest video
compression standard developed by the Joint Collaborative
Team on Video Coding (JCT-VC) group, which was
established by the ISO/IEC Moving Picture Experts Group
(MPEG) and ITU-T Video Coding Expert Group (VCEG)
[1, 2]. The HEVC is expected to achieve an up to 50% bit-
rate reduction with the same visual quality relative to the
former Advanced Video Coding (AVC/H.264) standard [3].

In HEVC, pictures are divided uniformly into square
blocks called Coding Tree Units (CTUs), which are similar
to the Macroblocks used in earlier standards. These CTUs
are divided further in a quadtree structure to form Coding
Units (CUs), which form the basic processing unit. In-loop
filtering of the HEVC consists of two stages. The first
stage is deblocking filter (DF) and second stage is the
Sample Adaptive Offset (SAO) filter, as shown in Fig. 1.

The SAO is a newly adopted tool in HEVC to enhance

both the subjective and objective quality [4]. The DF
reduces blocking artifacts, and the SAO reduces both
ringing and banding artifacts. In addition, the SAO can
enhance the edge sharpness or smoothing.

According to the HEVC standard and its Test Model
(HM), SAO operation is performed only at the picture
level [1, 5]. That is, SAO filtering is an inherently picture-
based operation because it requires deblocked pixels from
all of its eight neighbors (left, above, right, below, above-
left, above-right, below-left, and below-right) CTUs. Most
realtime decoders, however, execute their sub-modules on
a CTU basis for reducing the latency and memory
bandwidth. In addition, multi-core decoding is widely used
since large picture, such as UHD (3840x2160), decoding is
not possible in single-core decoding. Therefore, a CTU-
based, low-latency SAO filtering architecture is essential
for utilizing pipelined parallel decoding efficiently.
Parveen.G.B et al. proposed a low-latency SAO encoding
architecture for a multi-core encoding environment, where
method-B appears to be a good trade-off between the

Kim et al.: Low-latency SAO Architecture and its SIMD Optimization for HEVC Decoder

2

latency and compression ratio [6]. P. N. Subramanya et al.
proposed a low-latency SAO decoding architecture for a
multi-core HW decoding environment, where method C
provides CTU-based low-latency SAO filtering [7].
Method C has two drawbacks: 1) the side information
overhead is high because it processes the pixel data from
four CTUs simultaneously, 2) less efficient in Single
Instruction Multiple Data (SIMD) optimization, which is
indispensable to all SW codecs, due to the many
conditional branches and data alignment problems [8].

This paper presents a low-latency CTU-based SAO
filtering architecture to enable efficently pipelined parallel
decoding and effective SIMD optimization. In addition, a
SIMD optimization scheme of SAO filtering is proposed to
reduce the SAO filtering time significantly.

This paper is organized as follows. Section 2 explains a
SAO overview and the existing picture-based SAO
filtering architecture. The proposed algorithms are
presented in detail in Section 3. Section 4 reports the
experimental results and compares those with the existing
algorithm, and Section 5 concludes the paper.

2. SAO Overview

SAO is a non-linear amplitude mapping filter that
operates on deblocked pixels [1, 2, 4]. Each CTU can have
one of three types of SAO filtering: (1) No SAO filtering,
(2) Band Offset (BO), and (3) Edge Offset (EO). Both BO
and EO add a certain offset value to a sample, where the
offset value of BO is chosen from the received lookup
table by the sample magnitude. On the other hand, the
offset value of EO is chosen from the received lookup
table by a edge direction and gradient.

2.1 Band Offset (BO)
BO classifies all pixels of a CTU into multiple bands,

where each band contains pixels with the same intensity.
For example, 8-bit pixel intensities (0-255) are divided into
32 fixed bands with the width of the band as 8 samples.
Only four consecutive bands and offsets are selected and
signaled to a decoder, as shown in Fig. 2. Note that BO
does not use the pixels of the neighboring CTUs, and four
band offsets can be wrapped around. The BO filtering
equation is expressed as Eq. (1).

m = src[x][y]>>(bitDepth-5),
dst[x][y] = Clip3(0, (1<<bitDepth)-1, (1)
src[x][y] + BoOffsetTab[m])

where Clip3(min, max, a) = (a > max) ? max : ((a < min) ?
min : a). The src[x][y] and dst[x][y] represent a deblocked
pixel and SAO-filtered pixel, respectively, m means a
quantized pixel, and BoOffsetTab[0..31] holds four BO
offset values and 28 zero values. x and y are pixel
coordinates with a range of values: x=0..CtbWidth,
y=0..CtbHeight, where CtbWidth and CtbHeight represent
Coding Tree Block (CTB) width and height in pixel units,
respectively.

2.2 Edge Offset (EO)
EO uses the neighboring pixels including those of

neighboring CTUs to compute edge directional
information. Fig. 3 shows four EO classes that specify the
edge direction, where the c represent current pixel and
both b and c represent the neighboring pixels. Note that in
a CTU, one EO class and four edge offset values according
to pre-defined category are signaled to a decoder.

Given a EO class, each sample is classified into five
categories, as shown in Table 1, where category 0 means
no SAO filtering.

m = Sign(src[x][y] - src[x-1][y]),
n = Sign(src[x][y] - src[x+1][y]), (2)

Intra
Prediction

Motion
Compensation

Decoded
Picture Buffer

Reconstruction
Inverse

Quantization/
Transform

Entropy
Decoding

Intra mode info.

Inter mode info.
SAO info.
Residuals

Deblocking
Filter

SAO

Loop Filter

Bitstream

Display
or File

Fig. 1. Block diagram of HEVC decoder.

Fig. 2. Band offsets.

EO class 0
(Horizontal: 0o)

EO class 1
(Vertical: 90o)

EO class 2
(135o diagonal)

EO class 3
(45o diagonal)

Fig. 3. Four EO classes.

Table 1. EO sample classification rule.

Category
(Edge Type) Condition Description

0 c==a && c==b No SAO filtering
1 c < a && c < b Local minima

2 (c < a && c==b) ||
(c==a && c < b) Negative edge

3 (c > a && c==b) ||
(c==a && c > b) Positive edge

4 c > a && c > b Local maxima

IEIE Transactions on Smart Processing and Computing, vol. 3, no. 1, February 2014

3

dst[x][y] = Clip3(0, (1<<bitDepth)-1,
src[x][y] + EoOffsetTab[m + n + 2])

Eq. (2) shows EO class 0 filtering equation, where

Sign(a) = (a > 0) ? 1 : ((a==0) ? 0 : -1) and EoOffsetTab
[0..4] has five EO offset values including one zero value.
The other EO class filtering equations can be derived
easily by adjusting the x and y coordinates according to the
angle of Fig. 3.

2.3 Picture-based SAO Architecture
A picture-based SAO architecture is the default method

of performing SAO filtering after decoding and deblocking
a picture in the HEVC standard and HM [1, 5]. Fig. 4
shows a flowchart of the architecture, where saoPicBuf is
the backup buffer for retaining the original deblocked
pixels. The srcPicBuf holds the original deblocked pixels
and SAO filtered pixels as a result. Unlike DF, SAO
filtering always uses the original deblocked pixels, not the
previously SAO-filtered pixels. This is why the picture-
sized backup buffer is required. The iCtu represents the
CTU number and iSizeInCtu means the total number of
CTUs in a picture. The saoPicBuf is the input and the
srcPicBuf is the output of the SaoFilterCTU_HM()
function, which filters the current CTU pixels by
selectively referencing the neighboring CTUs.

After normal SAO filtering for a picture using iterative
CTU-based filtering, the PCM samples and losslessly
coded samples are restored in the RestorePcmSamplesPic()
function.

This architecture has two major drawbacks: 1) high
latency, which makes it difficult to achieve efficiently
pipelined parallel decoding; and 2) large memory
requirements due to picture backup buffer (i.e., saoPicBuf).

3. The Proposed Scheme

To overcome the drawbacks of a picture-based SAO
architecture, low-latency CTU-based SAO architecture
was designed, which also takes into account the following
two points: 1) SIMD-friendly structure, and 2) Easy

implementation covering various Tile and slice
combinations. Finally, SIMD optimization of SAO
filtering is proposed to reduce significantly the SAO
filtering time itself.

3.1 Low-latency SAO Architecture
Unlike the HM, which executes DF in picture-basis, we

assume that DF is performed on a CTU-basis. Basically,
the SAO of the current CTU can begin filtering after
decoding and deblocking its below-right CTU because it
requires deblocked pixels of the eight neighboring CTUs.
For example, after deblocking CTU #10, the SAO of CTU
#1 can be started, as shown in Fig. 5. The proposed
architecture follows the basic nature of the SAO precisely,
unlike previous work [7]. That is, SAO filtering is
performed on the entire pixels of a CTU after deblocking
its below-right CTU. Note that last column CTUs are
processed immediately after its left CTU, and the last CTU
row is processed separately after deblocking the last CTU
of a picture. Fig. 6 shows the filtering order in the case of
the Tile structure. Fig. 7 presents a flowchart of the
proposed architecture, where iCtuX and iCtuY represent
the x and y coordinates of a CTU, respectively. The
iWidthInCtu and iHeightInCtu means the number of CTUs
in a CTU row and column, respectively. The proposed
architecture has the following three steps: 1) process an
above-left CTU if available, 2) process an above CTU if
the current CTU is the right-most CTU, and 3) process the
last CTU row if the current CTU is the last one in the
picture. Note that Fig. 7 explains SAO filtering order of
Figs. 5 and 6.

To reduce the backup buffer overhead of the picture-
based SAO and enable low-latency SAO filtering, the
CTU-based SAO buffer structure was designed. First, the
proposed CTU-based SAO architecture requires four types
of buffer, as shown in Fig. 8 and Table 2. That is, the
original deblocked pixels such as all the internal bottom-

 iCtu < iSizeInCtu

SaoFilterCTU_HM(iCtu)

Y

iCtu = iCtu + 1

Start (iCtu=0)

End

memcpy(saoPicBuf, srcPicBuf, sizeofPic)

N

RestorePcmSamplesPic()

Fig. 4. Flowchart of picture-based SAO architecture.

1 [s1
10
] 2 [s2

11
] 3 [s3

12
] 4 [s4

13
] 5 [s5

14
] 6 [s6

15
] 7 [s7

16
] 8 [s8

16
]

9 [s9
18
] 10 [s10

19
] 11 [s11

20
] 12 [s12

21
] 13 [s13

22
] 14 [s14

23
] 15 [s15

24
] 16 [s16

24
]

17 [s17
26
] 18 [s18

27
] 19 [s19

28
] 20 [s20

29
] 21 [s21

30
] 22 [s22

31
] 23 [s23

32
] 24 [s24

32
]

25 [s25
32
] 26 [s26

32
] 27 [s27

32
] 28 [s28

32
] 29 [s29

32
] 30 [s30

32
] 31 [s31

32
] 32 [s32

32
]

* sN
M
: SAO filtering order N after M-th CTU decoding and deblocking

CTU

Fig. 5. Low-latency SAO filtering order without a Tile.

1 [s1
6
] 2 [s2

7
] 3 [s3

8
] 4 [s4

13
] 9 [s5

14
] 10 [s6

15
] 11 [s7

16
] 12 [s8

16
]

5 [s9
18
] 6 [s10

19
] 7 [s11

20
] 8 [s18

29
] 13 [s19

30
] 14 [s20

31
] 15 [s21

32
] 16 [s22

32
]

17 [s12
22
] 18 [s13

23
] 19 [s14

24
] 20 [s23

33
] 29 [s24

34
] 30 [s25

35
] 31 [s26

36
] 32 [s27

36
]

21 [s15
26
] 22 [s16

27
] 23 [s17

28
] 24 [s28

37
] 33 [s29

38
] 34 [s30

39
] 35 [s31

40
] 36 [s32

40
]

25 [s33
40
] 26 [s34

40
] 27 [s35

40
] 28 [s36

40
] 37 [s37

40
] 38 [s38

40
] 39 [s39

40
] 40 [s40

40
]

Tile boundaryCTU

Fig. 6. Low-latency SAO filtering order with four Tiles.

Kim et al.: Low-latency SAO Architecture and its SIMD Optimization for HEVC Decoder

4

most (B1) pixels, a external right-bottom (B2) pixel,
internal right-most (C1) pixels, an external below-right
(C2) pixel, and an internal bottom-right pixel (A) of
current CTU should be stored for SAO filtering of the
other CTUs. Note that A pixel should be stored at separate
buffer for the below-right CTU because the same pixel in
the B and C buffers is replaced with other one in the below
and right CTU. In Table 2, iCtbWidthY and iCtbWidthC
represent Y and Cb/Cr CTB width, respectively.

For example, assume the UHD video (3840x2160)
stream, where typically iCtbWidthY = 64 and iCtbWidthC

= 32. The picture-based SAO requires a buffer with size
equal to 3840x2160x1.5=11.9 Mbytes. The proposed low-
latency CTU-based SAO architecture requires a buffer
with a size equal to 24.3 Kbytes (Table 2), which amounts
to only 0.2% compared to the picture-based SAO.

Fig. 9 presents a flowchart of the proposed SAO
filtering algorithm using the four buffers in Table 2, which
is SaoFilterCTU() in Fig. 7. In Fig. 9, only Y filtering is
shown for simplicity. The BackupPixels() function stores
some pixels of the current, right, and below CTUs before
SAO filtering, where the A, B, and C buffers are used. The
SaoBlockCopy() function copies pixels of: (a) current
CTU from srcPicBuf buffer, (b) right and below CTUs
from srcPicBuf buffer if available, (c) above-left CTU
from A buffer, (d) above and above-right CTUs from B

iCtuY > 0

SaoFilterCTU(iCtuX-1, iCtuY-1)

iCtuX >=
(iWidthInCtu-1)

Y

SaoFilterCTU(iCtuX, iCtuY-1)
Y

Start

End

N

N

(iCtuX >=
(iWidthInCtu-1))
&& (iCtuY >=
 (iHeightInCtu-1))

(iCtuX <
iWidthInCtu)

N

iCtuX = iCtuX+1

Y

iCtuX = 0

SaoFilterCTU(iCtuX, iCtuY)

Y

N

(3)Process the last CTU row

(1)Process an above-left CTU

(2)Process an above CTU

iCtuX > 0
Y

N

Fig. 7. Flowchart of the low-latency SAO filtering
architecture.

CTU

A B1 B2

C1

C2

CTU boundary

pixel

(a)

CTU

AB1 B2

C1

C2

CTU boundary

(b)

Fig. 8. CTU boundary pixels (a) Neighboring pixels
required for filtering current CTU, (b) Current CTU's
pixels (A, B1, B2, C1, and C2) to be stored for filtering
the other CTUs.

Table 2. Four buffers for the proposed SAO
architecture.

Buffer Size Description

A
Y: iWidthInCtu * (iHeightInCtu-1)
Cb: the same as above
Cr: the same as above

An Above-left
pixel

B (B1
and B2)

Y: iWidthInCtu * (iCtbWidthY+1)
Cb: iWidthInCtu * (iCtbWidthC+1)
Cr: the same as above

Above and
Above-right

pixels
[line buffer]

C (C1
and C2)

Y: iHeightInCtu * (iCtbWidthY+1)
Cb: iHeightInCtu * (iCtbWidthC+1)
Cr: the same as above

Left and below-
left pixels

[line buffer]

D
Y:(iCtbWidthY+2)*(iCtbWidthY+2)
Cb:(iCtbWidthC+2)*(iCtbWidthC+2)
Cr: the same as above

Current CTU
buffer including
all neighboring

pixels

saoType==
SAO_MODE_OFF

N

SaoBlockCopy(blkWidth, blkHeight, iBdAvail)

Y

Start

iBdAvail = Derive boundary availability

End

BackupPixels(iCtuX, iCtuY)

BackupPixels(iCtuX, iCtuY)

SaoFilterCtb(blkWidth, blkHeight, iBdAvail)

bPcmDisable ||
bTrQuantBypass

RestorePcmSamplesCtb(iCtuX, iCtuY)

Y

N

Fig. 9. Flowchart of the SaoFilterCTU().

IEIE Transactions on Smart Processing and Computing, vol. 3, no. 1, February 2014

5

buffer, (e) left and left-below CTUs from C buffer, to D
buffer. The SaoFilterCtb() function filters the entire pixels
of the current CTU from D buffer as the input and
srcPicBuf buffer as the output using Eq. (1) or (2)
according to the SAO type and EO class.

The PCM and lossless samples were restored on a
CTU-basis. The RestorePcmSamplesCtb() function
selectively restores the original samples in a CTU.

Figs. 10 and 11 show the pseudo code of
BackupPixels() and SaoBlockCopy() functions, respectively.
The blkWidth and blkHeight of Figs. 9 and 11 represent
the width and height of the Coding Block (CB) to be
filtered, respectively, which can be different from
iCtbWidth in the case of the right-most CTUs and bottom-
most CTUs.

Picture-based pipelined parallel decoding [9] is
possible using the proposed low-latency CTU-based SAO
architecture, as shown in Fig. 12. For example, picture 2
(core 2) decoding can be started immediately after the
SAO filtering second CTU row of picture 1 (core 1). In
addition, picture 3 (core 3) decoding can be started
immediately after SAO filtering the second CTU row of
picture 2 (core 2). Therefore, in this example, three cores
can decode the pictures simultaneously in pipelined
manner. This property is very efficient for large picture
decoding, such as a UHD video, because the decoding
overhead is decentralized to the multi-core CPU. Note that
the thread syncronization unit between the cores can be
one out of a CTU, multiple CTUs, or CTU row.

3.2 SIMD Optimization Scheme
Eq. (2) was optimized using SIMD instruction [8]. The

entire pixels of the current CTU are filtered in the
proposed low-latency SAO architecture.

Fig. 13 shows the SIMD pseudo code. The proposed
scheme is composed of seven steps: 1) load left 16 pixels,

right 16 pixels, and current 16 pixels, 2) conversion from
8-bit pixels to 16-bit pixels, 3) calculation of the edge type
per pixel using Table 1, 4) table lookup of
EoOffsetTab[0...15], 5) add pixels and offset values, 6)
save 16 pixels to destination buffer, 7) conditional pixel
restoration. The CALC_ETYPE() macro calculates the 8
edge types simultaneously using Table 1. Sixteen table
lookup operations are performed at once using
_mm_shuffle_epi8() instruction, as shown in Fig. 14. Note
that the blkWidth value is assumed to be equal to a
multiple of 16 for simplicity. SIMD optimization of the
remaining EO class 1-3 can be designed easily by
adjusting step 1 and proper handling of conditional pixel

If ((iCtbY+1) < iHeightInCtu)
{
 (1)Store bottom line pixels of current CTU
 to B_buffer[iCtbX][] (B1);
 If (iCtbX < (iWidthInCtu-1))
 {
 (2)Store an external right-bottom pixel
 of current CTU to
 B_buffer[iCtbX][iCtbWidth] (B2);
 (3)Store an internal bottom-right pixel
 of current CTU to
 A_buffer[iCtbY][iCtbX];
 }
}
If (iCtbX < (iWidthInCtu-1))
{
 (4)Store internal right-most pixels of
 current CTU to C_buffer[iCtbY][] (C1);
 If ((iCtbY+1) < iHeightInCtu)
 {
 (5)Store an external below-right pixel
 of current CTU to
 C_buffer[iCtbY][iCtbWidth] (C2);
 }
}

Fig. 10. Pseudo code of BackupPixels().

If (above CTU is available)
{
 If (above-left CTU is available)
 {
 (1)Copy A_buffer[iCtbY-1][iCtbX-1] to
 D_buffer[-1][-1];
 }
 (2)Copy B_buffer[iCtbX][] to
 D_buffer[-1][] (B1);
}
if (above-right CTU is available)
{
 (3)Copy B_buffer[iCtbX][blkWidth] to
 D_buffer[-1][blkWidth] (B2);
}

If (left CTU is available)
{
 (4)Copy C_buffer[iCtbY][] to
 D_buffer[][-1] (C1);
 If (below-left CTU is available)
 {
 (5)Copy C_buffer[iCtbY][blkHeight]
 to D_buffer[blkHeight][-1] (C2);
 }
}

(6)Copy current CTU's pixels to
 D_buffer[][];

If (iCtbX < (iWidthInCtu-1))
{
 (7)Copy right CTU's left pixels to
 D_buffer[][blkWidth-1];
}
If (below CTU is available)
{
 (8)Copy below CTU's top pixels to
 D_buffer[blkHeight][];
}

Fig. 11. Pseudo code of SaoBlockCopy().

(1)

CTU row

(2)

(3)

(4)

(5)

Picture 1 (Core 1)

(3)

(4)

(5)

(6)

(7)

Picture 2 (Core 2)

... ...

(5)

(6)

(7)

(8)

(9)

Picture 3 (Core 3)

...

Fig. 12. Picture-based pipelined parallel decoding
architecture.

Kim et al.: Low-latency SAO Architecture and its SIMD Optimization for HEVC Decoder

6

restoration (i.e., step 7).
Fig. 15 presents BO filtering optimization of Eq. (1)

using SIMD instruction. The proposed scheme is
composed of seven steps: 1) prepare new band offset table,
in which a zero index has a starting band offset, 2) load 16

pixels and convert those to 16-bit pixels, 3) quantize the
pixels by using Eq. (2), 4) reduce the quantized pixel range
and magnify the unwanted pixel values to over 0x80, 5)
table lookup with a new band offset table, 6) add pixels
and offset values, and 7) save 16 pixels to the destination

#define CALC_ETYPE(srcA, srcC, srcB) {
 xmm3 = _mm_cmpgt_epi16(srcC, srcA);
 xmm4 = _mm_cmpgt_epi16(srcC, srcB);
 srcA = _mm_cmplt_epi16(srcC, srcA);
 srcB = _mm_cmplt_epi16(srcC, srcB);
 xmm3 = _mm_srli_epi16(xmm3, 15);
 xmm4 = _mm_srli_epi16(xmm4, 15);
 xmm3 = _mm_or_si128(xmm3, srcA);
 xmm4 = _mm_or_si128(xmm4, srcB);
 srcA = _mm_add_epi16(xmm3, xmm4);
/* srcA => edge_type: -2, -1, 0, 1, or 2 */
}

blkWidth16 = blkWidth >> 4;
xmm7 = _mm_set1_epi8(2); // [2...2]
xmm8 = _mm_load_si128(EoOffsetTab);
for (y = 0; y < blkHeight; y++) {
 for(x = 0; x < blkWidth16; x++) {
 // (1) load left, current, right pixels
 xmm1 = _mm_loadu_si128(srcBlk-1);
 xmm0 = _mm_srli_si128(xmm1, 1);
 xmm2 = _mm_srli_si128(xmm1, 2);
 // (2) 16-bit conversion
 xmm1 = _mm_cvtepu8_epi16(xmm1);
 xmm0 = _mm_cvtepu8_epi16(xmm0);
 xmm2 = _mm_cvtepu8_epi16(xmm2);
 // (3) calculation of 8 edge types
 CALC_ETYPE(xmm1, xmm0, xmm2);

 xmm5 = _mm_loadu_si128(srcBlk-1 + 8);
 xmm6 = _mm_srli_si128(xmm5, 1);
 xmm2 = _mm_srli_si128(xmm5, 2);
 xmm5 = _mm_cvtepu8_epi16(xmm5);
 xmm6 = _mm_cvtepu8_epi16(xmm6);
 xmm2 = _mm_cvtepu8_epi16(xmm2);
 CALC_ETYPE(xmm5, xmm6, xmm2);

 // (4) 16 edge types and table lookup
 xmm1 = _mm_packs_epi16(xmm1, xmm5);
 xmm1 = _mm_add_epi8(xmm1, xmm7);
 xmm2 = _mm_shuffle_epi8(xmm8, xmm1);
 // (5) addition of pixels and offsets
 xmm3 = _mm_cvtepi8_epi16(xmm2);
 xmm4 = _mm_cvtepi8_epi16(
 _mm_srli_si128(xmm2, 8));
 xmm0 = _mm_add_epi16(xmm0, xmm3);
 xmm6 = _mm_add_epi16(xmm6, xmm4);
 // (6)save 16 pixels to destination buffer
 xmm0 = _mm_packus_epi16(xmm0, xmm6);
 _mm_store_si128(dstBlk, xmm0);
 srcBlk += 16;
 dstBlk += 16;
 }
 srcBlk -= blkWidth;
 dstBlk -= blkWidth;

 // (7) conditional pixel restoration
 If (left CTU is not available)
 dstBlk[0] = srcBlk[0];
 If (right CTU is not available)
 dstBlk[blkWidth-1] = srcBlk[blkWidth-1];

 srcBlk += srcStride;
 dstBlk += dstStride;
}

Fig. 13. SIMD pseudo code of SaoFilterCtb() in the case
of EO class 0.

o2 0 o3 o4 0o1xmm8:
(EoOffsetTab)

0 0 0 0 0 0 0 0 0 0

1 1 2 2 20 1 3 3 1 4 4 2 1 1 0xmm1:
(Edge type)

o2 o2 0 0 0o1 o2 o3 o3 o2 o4 o4 0 o2 o2 o1
xmm2:

(offset value)

...

Fig. 14. illustration of xmm2 = _mm _shuffle _epi
(xmm8, xmm1) operation in EO filtering.

If (iBandStartPos <= 28))
{
 shiftBit = bitDepth - 5;
 blkWidth16 = blkWidth>>4;
 // (1) Prepare new band offset table
 Ofs16[16] = {0};
 Ofs16[0] = BoOffsetTab[iBandStartPos+0];
 Ofs16[1] = BoOffsetTab[iBandStartPos+1];
 Ofs16[2] = BoOffsetTab[iBandStartPos+2];
 Ofs16[3] = BoOffsetTab[iBandStartPos+3];

 xmm7 = _mm_set1_epi16(iBandStartPos);
 xmm6 = _mm_set1_epi16(iBandStartPos+4);
 xmm8 = _mm_load_si128(Ofs16);
 for (y = 0; y < blkHeight; y++) {
 for (x = 0; x < blkWidth16; x++) {
 // (2) load pixels and 16-bit conversion
 xmm0 = _mm_cvtepu8_epi16(*(srcBlk));
 xmm1 = _mm_cvtepu8_epi16(*(srcBlk+8));
 // (3) quantize pixels
 xmm2 = _mm_srli_epi16(xmm0, shiftBit);
 xmm3 = _mm_srli_epi16(xmm1, shiftBit);
 // (4) manipulation of quantized pixels
 xmm4 = _mm_subs_epi16(xmm2, xmm7);
 xmm5 = _mm_subs_epi16(xmm3, xmm7);
 xmm2 = _mm_cmpgt_epi16(xmm2, xmm6);
 xmm3 = _mm_cmpgt_epi16(xmm3, xmm6);
 xmm2 = _mm_or_si128(xmm2, xmm4);
 xmm3 = _mm_or_si128(xmm3, xmm5);
 // (5) table lookup
 xmm2 = _mm_packs_epi16(xmm2, xmm3);
 xmm2 = _mm_shuffle_epi8(xmm8, xmm2);
 // (6) addition of pixels and offsets
 xmm3 = _mm_cvtepi8_epi16(xmm2);
 xmm4 = _mm_cvtepi8_epi16(
 _mm_srli_si128(xmm2, 8));
 xmm0 = _mm_add_epi16(xmm0, xmm3);
 xmm1 = _mm_add_epi16(xmm1, xmm4);
 // (7)save 16 pixels to destination buffer
 xmm0 = _mm_packus_epi16(xmm0, xmm1);
 _mm_store_si128(dstBlk, xmm0);
 srcBlk += 16;
 dstBlk += 16;
 }
 srcBlk += (srcStride - blkWidth);
 dstBlk += (dstStride - blkWidth);
 }
}
Else {
 Fall back to default HM code
}

Fig. 15. SIMD pseudo code of SaoFilterCtb() in the case
of BO.

IEIE Transactions on Smart Processing and Computing, vol. 3, no. 1, February 2014

7

buffer. Note that, in step 4, the quantized pixels are
manipulated to use the property of the _mm_shuffle_epi()
instruction, which returns 0 if a value is greater than or
equal to 0x80, as shown in Fig. 16. In Fig. 15, the
iBandStartPos represents the first band offset position,
which is signaled to a decoder. Note that if the
iBandStartPos has a value greater than 28, the band offsets
are wrapped around. In such a case, default table lookup
codes of HM are used.

4. Performance Evaluation

For the simulation, the proposed algorithm was applied
to a sub-optimized Main profile HEVC decoder, which
heavily uses SIMD instruction. JCT-VC test sequences
were used and encoded by HM12.1. An experiment was
performed four times in a row in the workstation1. The
purpose of the first replication was to load the program
code and the bitstream into the disk cache and at least
partially into the L2 cache. The median value of the three
other replications was reported. We disabled the rendering of
the video and writing of the output files, and also subtracted
files reading time from total time to minimize the effect of the
I/O operations on the execution time. The decoding time was
measured using the QueryPerformanceCounter() function,
which is the most precise timer function in the system. All
the experiments were performed by only exchanging the
SAO architecture and SAO SIMD functions in the sub-
optimized HEVC decoder.

Table 3 lists the performance of the proposed low-
latency CTU-based SAO architecture in the single-core
decoding environment. In the table, two streams (People
on street, Traffic) were cropped UHD (2560x1600, 30Hz)
sequences and the others were Full-HD (1920x1080,
60Hz) sequences. The SAO ratio was calculated using the
following Eq. (3):

SAO ratio = (NumSAO_Y*4 + NumSAO_C*2) (3)
/ (NumCTU*6) * 100

where NumSAO_Y and NumSAO_C represent the number
of SAO filtered Y CTB and Cb/Cr CTB of all pictures,
respectively. The NumCTU means the number of CTU of
all pictures. The dT represents the delta time between
PicSAO and CtuSAO calculated using Eq. (4):

1 Two Zeon E5-2667@2.9GHz (six-core), 16GB DDR3

RAM, and Windows 7 SP1

 dT = (CtuSAO - PicSAO) / PicSAO * 100 (4)

As shown in Table 3, the proposed low-latency CTU-

based SAO architecture has a similar speed to that of the
picture-based SAO architecture, in spite of additional
backup and copy operations. Note that the decoding speed
of Table 3 includes the proposed SAO SIMD scheme.

Table 4 lists the performance of the SAO SIMD
scheme for two sequences, where CTL represents the C
table lookup codes of HM and SIMD represents the
proposed SAO SIMD schemes. The proposed SIMD
scheme is approximately 509% faster on average than that
of HM.

Table 5 lists the total decoding speed of the decoder
with the CTL as well as the proposed SIMD SAO scheme,
combined with the proposed low-latency SAO architecture.

In Table 5, the speed-up gain (i.e., dT) is quite different
due to the variable SAO ratio. Generally, a high SAO ratio
results in a high speed-up. In the total decoding time, the
proposed SIMD SAO scheme is faster than the HM SAO
scheme by approximately 6.86% on average.

Although the proposed low-latency CTU-based SAO
architecture was not tested in the multi-core HEVC
decoder, the previous results show the significant decoding
speed-up ratio up to 295% using four cores [9].

o2 o3 o4 0 0o1xmm8:
(BoOffsetTab)

0 0 0 0 0 0 0 0 0 0

1 1 0x80 2 0x910 0 3 0x85 1 3 3 2 0xA0 0 0xC5xmm1:
(Quantized
and manipulated pixels)

o2 o2 0 o3 0o1 o1 o4 0 o2 o4 o4 o3 0 o1 0
xmm2:

(offset value)

...

Fig. 16. Illustration of xmm2 = _mm_shuffle_epi (xmm8,
xmm1) operation in the BO filtering.

Table 3. Total decoding speed comparison between
picture-based SAO (PicSAO) and the proposed CTU-
based SAO (CtuSAO).

Sequences Bitrate
[kbps]

SAO
ratio
[%]

PicSAO
[fps]

CtuSAO
[fps]

dT
[%]

People on
street 8390.2 18.6 14.56 14.56 0.00

Traffic 3054.5 11.5 26.10 25.89 -0.80
BQTerrace 11560.8 32.9 33.40 34.57 0.70

BasketballDr
ive 23017.9 52.1 22.67 22.58 -0.40

ParkScene 3912.7 9.4 41.28 41.30 0.05
Tennis 9072.7 49.4 38.80 38.69 -0.28

Average 9834.8 28.98 29.62 29.60 -0.12

Table 4. SAO decoding speed comparison between the
HM's table lookup SAO and the proposed SIMD SAO.

Sequences SAO type CTL [sec] SIMD
[sec]

Gain
[%]

EO class 0 0.389 0.079 392.4
EO class 1 1.331 0.231 476.2
EO class 2 0.046 0.027 70.4
EO class 3 0.257 0.052 394.2

BQTerrace

BO 0.157 0.026 503.8
EO class 0 0.152 0.021 623.8
EO class 1 0.141 0.022 540.9
EO class 2 0.305 0.038 702.6
EO class 3 0.186 0.016 1062.5

Tennis

BO 0.030 0.007 328.6
Average - 0.299 0.052 509.5

Kim et al.: Low-latency SAO Architecture and its SIMD Optimization for HEVC Decoder

8

Furthermore, the decoding speed-up ratio can be greater
than the previous result because of two facts: 1) the final
HEVC standard omits the Adaptive Loop Filter (ALF),
which increases the inter-frame synchronization latency, 2)
the proposed SIMD optimization of SAO filtering can
reduce the latency. The proposed algorithm has advantages
over a picture-based SAO architecture: 1) significantly less
memory required as shown in Table 2, 2) low-latency
property enables efficient multi-core decoding. In addition,
the proposed SIMD optimization scheme is suitable for the
low-latency CTU-based SAO architecture.

The sub-optimized Main profile HEVC decoder with
the proposed algorithms passed all the HEVC conformance
bitstreams [10] except for those of the Main10 profile and
the proprietary 223 test bitstreams including various Tile
and slice combinations.

5. Conclusion

This paper proposed a low-latency CTU-based SAO
architecture and a SAO filtering optimization scheme by
SIMD instructions, which can be used for the realtime
decoding of 4K video in a multi-core environment. The
proposed architecture showed a similar speed to other
existing schemes in single-core decoding environment.
The architecture has two advantages over the existing
picture-based SAO architecture: 1) significantly less
memory requirements, and 2) low-latency property
enabling efficient multi-core decoding. In addition, the
proposed architecture is suitable for efficient SIMD
optimization compared to the existing CTU-based SAO
filtering architecture in the SW codec. The proposed SIMD
scheme for SAO filtering significantly sped up all SAO
filtering classes by approximately 509% on average.
Although we simulated the proposed algorithm in the
decoder, the proposed methods can also be applied to a
HEVC encoder without modification.

Acknowledgement

This study was supported by a grant from the Seoul
R&BD program (SS110004M0229111).

References

[1] ITU-T Rec. H.265, High Efficiency Video Coding,
ITU-T, March 2013. Article (CrossRefLink)

[2] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand,
“Overview of the High Efficiency Video Coding
(HEVC) standard,” IEEE Trans. CSVT, Vol. 22, No.
12, pp. 1649-1668, December 2012. Article
(CrossRefLink)

[3] J.-R. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan, and
T. Wiegand, “Comparison of the coding efficiency of
video coding standards-including High Efficiency
Video Coding (HEVC),” IEEE Trans. CSVT, Vol. 22,
No. 12, pp. 1669-1684, December 2012. Article
(CrossRefLink)

[4] C.-M. Fu, et al, “Sample adaptive offset in the HEVC
standard,” IEEE Trans. CSVT, Vol. 22, No. 12, pp.
1755-1764, December 2012. Article (CrossRefLink)

[5] JCT-VC, HEVC Test Model (HM) reference
software 12.1. Article (CrossRefLink)

[6] Parveen.G.B and R. Adireddy, “Analysis and
approximation of SAO estimation for CTU-level
HEVC encoder,” Proc. Int. Conf. VCIP, Nov. 2013.
Article (CrossRefLink)

[7] P. N. Subramanya, R. Adireddy, and D. Anand,
“SAO in CTU decoding loop for HEVC video
decoder,” Proc. Int. Conf. Signal Processing and
Communication, December 2013. Article
(CrossRefLink)

[8] Intel, Intel 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2, June 2013. Article
(CrossRefLink)

[9] J.-Y. Yi, Y.-H. Kim, J. Park, and J.-W. Kim,
“Implementation of HEVC decoder S/W using frame-
based multi-threading method,” Proc. ITC-CSCC,
Sapporo, Japan, July 2012.

[10] T. Suzuki, G. Sullivan, and W. Wan, HEVC
conformance draft 5, JCTVC-O1004, 15th meeting,
Geneva, CH, October 2013. Article (CrossRefLink)

Yonghwan Kim received his B.S. and
M.S. degrees in electrical engineering
from Chung-Ang University, Seoul,
Korea in 1996 and 1998, respectively,
and a Ph.D. degree in image
engineering from Chung-Ang
University, Seoul, Korea, in 2008.
From 1999 to 2001, he had worked for

SungJin C&C, Seoul, Korea, where he optimized the
MPEG-1/2 Video CODEC for DVR. Since 2001 he has
worked for Korea Electronics Technology Institute (KETI),
Seongnam, Korea. He is currently a managerial researcher
in the Multimedia IP Research Center, KETI. His current
research interests are in the area of 2D and 3D video
coding including HEVC, SHVC, and RGB video coding,
and its implementation.

Table 5. Total decoding speed comparison between
HM's table lookup SAO and the proposed SIMD SAO.

Sequences Bitrate
[kbps]

SAO
ratio
[%]

CTL
[fps]

SIMD
[fps]

dT
[%]

People on
street 8390.2 18.6 14.02 14.56 3.85

Traffic 3054.5 11.5 24.91 25.89 3.93
BQTerrace 11560.8 32.9 32.07 34.57 7.80
Basketball

Drive 23017.9 52.1 20.92 22.58 7.93

ParkScene 3912.7 9.4 40.10 41.30 2.99
Tennis 9072.7 49.4 33.74 38.69 14.67

Average 9834.8 28.98 27.63 29.60 6.86

IEIE Transactions on Smart Processing and Computing, vol. 3, no. 1, February 2014

9

Donghyeok Kim received his B.S. and
M.S. degrees in the Department of
Information and Communication
Engin-eering, Dongguk University in
Seoul, South Korea, in 2008 and 2010,
respectively. In 2014, he joined the
Multimedia IP Research Center of
Korea Electronics Technology Institute

(KETI), Seongnam, Korea. His research interests include
High Efficiency Video Coding (HEVC), filter banks and
wavelets, image processing.

Jooyoung Yi received her B.S. and
M.S. degrees in electronic engineering
from Chonbuk National University,
Jeonju, Korea, in 2005 and 2007,
respectively. In 2007, she joined the
Multimedia IP Research Center of
Korea Electronics Technology Institute
(KETI), Seongnam, Korea. She is

currently involved in the development of video codec, such
as HEVC and SHVC.

Jewoo Kim received his B.S. and M.S.
degree in control and instrument
engineering from the University of
Seoul, Seoul, Korea in 1997 and 1999.
Since 1999 he has worked for Korea
Electronics Technology Institute
(KETI), Seongnam, Korea. He is
currently a managerial researcher in

the Multimedia IP Research Center, KETI. He has been
involved in various projects including Multi-view 3D
video system, video transcoding system, UHD recording
system, etc. His current interests are in the area of UHD
broadcasting and realistic media processing including
HEVC video coding, UHD contents production system,
and audio signal processing, and its implementation.

Copyrights © 2014 The Institute of Electronics and Information Engineers

