• 제목/요약/키워드: monotonicity

검색결과 142건 처리시간 0.024초

ON THE ORBITAL STABILITY OF INHOMOGENEOUS NONLINEAR SCHRÖDINGER EQUATIONS WITH SINGULAR POTENTIAL

  • Cho, Yonggeun;Lee, Misung
    • 대한수학회보
    • /
    • 제56권6호
    • /
    • pp.1601-1615
    • /
    • 2019
  • We show the existence of ground state and orbital stability of standing waves of nonlinear $Schr{\ddot{o}}dinger$ equations with singular linear potential and essentially mass-subcritical power type nonlinearity. For this purpose we establish the existence of ground state in $H^1$. We do not assume symmetry or monotonicity. We also consider local and global well-posedness of Strichartz solutions of energy-subcritical equations. We improve the range of inhomogeneous coefficient in [5, 12] slightly in 3 dimensions.

Evolution of the First Eigenvalue of Weighted p-Laplacian along the Yamabe Flow

  • Azami, Shahroud
    • Kyungpook Mathematical Journal
    • /
    • 제59권2호
    • /
    • pp.341-352
    • /
    • 2019
  • Let M be an n-dimensional closed Riemannian manifold with metric g, $d{\mu}=e^{-{\phi}(x)}d{\nu}$ be the weighted measure and ${\Delta}_{p,{\phi}}$ be the weighted p-Laplacian. In this article we will study the evolution and monotonicity for the first nonzero eigenvalue problem of the weighted p-Laplace operator acting on the space of functions along the Yamabe flow on closed Riemannian manifolds. We find the first variation formula of it along the Yamabe flow. We obtain various monotonic quantities and give an example.

STEFFENSEN'S INEQUALITY ON TIME SCALES FOR CONVEX FUNCTIONS

  • Iddrisu, Mohammed Muniru
    • 호남수학학술지
    • /
    • 제41권1호
    • /
    • pp.89-99
    • /
    • 2019
  • The Steffensen's Inequality was discovered in 1918 by Johan Frederic Steffensen (1873-1961). This inequality is very popular in the research environment and attracted the attention of many people working in similar area. Various extensions and generalisations have been provided concerning the inequality. This paper presents some further refinements of the Steffensen's Inequality on Time scales using methods of convexity, differentiability and monotonicity.

STABILITY IN THE ENERGY SPACE OF THE SUM OF N PEAKONS FOR A CAMASSA-HOLM-TYPE EQUATION WITH QUARTIC NONLINEARITY

  • Liu, Xingxing
    • 대한수학회보
    • /
    • 제56권3호
    • /
    • pp.703-728
    • /
    • 2019
  • Considered herein is the orbital stability in the energy space $H^1({\mathbb{R}})$ of a decoupled sum of N peakons for a Camassa-Holm-type equation with quartic nonlinearity, which admits single peakon and multi-peakons. Based on our obtained result of the stability of a single peakon, then combining modulation argument with monotonicity of local energy $H^1$-norm, we get the stability of the sum of N peakons.

ERROR BOUNDS FOR NONLINEAR MIXED VARIATIONAL-HEMIVARIATIONAL INEQUALITY PROBLEMS

  • A. A. H. Ahmadini;Salahuddin;J. K. Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • 제29권1호
    • /
    • pp.15-33
    • /
    • 2024
  • In this article, we considered a class of nonlinear variational hemivariational inequality problems and investigated a gap function and regularized gap function for the problems. We discussed the global error bounds for such inequalities in terms of gap function and regularized gap functions by utilizing the Clarke generalized gradient, relaxed monotonicity, and relaxed Lipschitz continuous mappings. Finally, as applications, we addressed an application to non-stationary non-smooth semi-permeability problems.

GENERAL MIXED HARMONIC VARIATIONAL INEQUALITIES

  • Jong Kyu Kim;Avinash Lakhnotra;Tirth Ram
    • Nonlinear Functional Analysis and Applications
    • /
    • 제29권2호
    • /
    • pp.517-526
    • /
    • 2024
  • In this paper, some iterative methods are used to discuss the behavior of general mixed-harmonic variational inequalities. We employ the auxiliary principle technique and g-strongly harmonic monotonicity of the operator to obtain results on the existence of solutions to a generalized class of mixed harmonic variational inequality.

THE SYMMETRIZED LOG-DETERMINANT DIVERGENCE

  • SEJONG KIM;VATSALKUMAR N. MER
    • Journal of applied mathematics & informatics
    • /
    • 제42권4호
    • /
    • pp.985-995
    • /
    • 2024
  • We see fundamental properties of the log-determinant α-divergence including the convexity of weighted geometric mean and the reversed sub-additivity under tensor product. We introduce a symmetrized divergence and show its properties including the boundedness and monotonicity on parameters. Finally, we discuss the barycenter minimizing the weighted sum of symmetrized divergences.

주파수 영역에서 반복 학습 제어의 수렴 조건 (Convergence Conditions of Iterative Learning Control in the Frequency Domain)

  • 도태용;문정호
    • 한국지능시스템학회논문지
    • /
    • 제13권2호
    • /
    • pp.175-179
    • /
    • 2003
  • 반복 학습 제어에서 수렴 조건은 수렴 속도와 잔존 오차와 같은 성능을 결정한다. 따라서, 덜 신중한 수렴 조건을 구할 수 있다면, 그 성능은 향상될 것이고 사용 적합한 학습 제어기의 수는 증가된다. 주파수 영역에서, 연속적인 오차들간의 전달 함수의 $H_{\infty}$ 놈(norm)을 학습 시스템의 수렴성을 조사하기 위해 사용해왔다. 그러나, $H_{\infty}$ 놈을 바탕으로 한 수렴 조건이 단조 수렴성에 대하여 명확한 특성을 가진다하더라도, 특히, 다중 입출력 시스템에서 몇 가지 단점을 가진다. 본 논문에서 는 수렴 조건과 수렴의 단조성간의 관계를 밝힌다. 또한 주파수 영역에서 기존의 수렴 조건을 대신할 수 있는 수정된 수렴 조건을 주파수 영역 리아프노프(Lyapunov) 방정식을 이용하여 구한다.

TRAVELING WAVES OF AN SIRS EPIDEMIC MODEL WITH SPATIAL DIFFUSION AND TIME DELAY

  • Du, Yanke;Xu, Rui
    • Journal of applied mathematics & informatics
    • /
    • 제30권3_4호
    • /
    • pp.635-646
    • /
    • 2012
  • This paper is concerned with an SIRS epidemic model with spatial diffusion and time delay representing the length of the immunity period. By using a new cross iteration scheme and Schauder's fixed point theorem, we reduce the existence of traveling wave solutions to the existence of a pair of upper-lower solutions. By constructing a newfashioned pair of upper-lower solutions, we derive the existence of a traveling wave solution connecting the uninfected steady state and the infected steady state.

MEAN-VALUE PROPERTY AND CHARACTERIZATIONS OF SOME ELEMENTARY FUNCTIONS

  • Matkowski, Janusz
    • 대한수학회보
    • /
    • 제50권1호
    • /
    • pp.263-273
    • /
    • 2013
  • A mean-value result, saying that the difference quotient of a differentiable function in a real interval is a mean value of its derivatives at the endpoints of the interval, leads to the functional equation $$\frac{f(x)-F(y)}{x-y}=M(g(x),\;G(y)),\;x{\neq}y$$, where M is a given mean and $f$, F, $g$, G are the unknown functions. Solving this equation for the arithmetic, geometric and harmonic means, we obtain, respectively, characterizations of square polynomials, homographic and square-root functions. A new criterion of the monotonicity of a real function is presented.