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THE SYMMETRIZED LOG-DETERMINANT

DIVERGENCE†
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Abstract. We see fundamental properties of the log-determinant α-divergence

including the convexity of weighted geometric mean and the reversed sub-
additivity under tensor product. We introduce a symmetrized divergence

and show its properties including the boundedness and monotonicity on

parameters. Finally, we discuss the barycenter minimizing the weighted
sum of symmetrized divergences.
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1. Introduction

The notion of a divergence is a kind of statistical distance in information
theory. In other words, it is a binary function which separates one probability
distribution to another on a statistical manifold. A divergence over a set X is
an almost distance function except that it needs not to be symmetric and not to
satisfy the triangle inequality. In some literature, a divergence can be considered
as a generalization of squared distance.

One of the important divergences is the Kullback-Leibler divergence [7]: for
two positive definite (Hermitian) matrices A and B, which represents covariance
matrices of two zero-mean Gaussian distributions,

DKL(A,B) = tr(AB−1 − I)− log det(AB−1).

See the reference [4] for the derivation of Kullback-Leibler divergence between
two Gaussian distributions. Throughout the paper, log is the natural logarithmic
map. Various versions of the Kullback-Leibler divergence are used in several
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research areas, including applied statistics, machine learning, neuroscience, and
signal processing [10, 11, 12, 14]. There are numerous types of divergences and
classes of divergences, for instance, f -divergence and Bregman divergence.

We study in this paper the log-determinant α-divergence, introduced by Chebbi
and Moakher [3]: for any α ∈ (−1, 1)

Dα(A|B) :=
4

1− α2
log

det
(
1−α
2 A+ 1+α

2 B
)

(detA)(1−α)/2(detB)(1+α)/2
.

This is a one-parameter family of Kullback-Leibler divergences which is related
with the Stein’s loss. We prove its fundamental properties including the con-
vexity of weighted geometric mean and see effects of tensor product on the
log-determinant α-divergence in Section 2.

A symmetrized Kullback-Leibler divergence with parameter µ(≥ 0) has been
introduced [6]:

Dµ
s (A,B) =

1

2
[Dµ

KL(A,B) +Dµ
KL(B,A)],

where Dµ
KL(A,B) = tr((A−B)(B+µI)−1)− log det(A+µI)+ log det(B+µI).

Furthermore, the authors have defined a new multivariable mean by solving the
optimization problem aimed at minimizing a weighted sum of the symmetrized
Kullback-Leibler divergences. In Section 3, we also introduce the symmetrized
log-determinant α-divergence and prove its properties including the monotonic-
ity on parameters. Finally in Section 4, we discuss some open question on the
(symmetrized) log-determinant α-divergence and its minimization problem.

2. Log-determinant divergence

Let A,B ∈ Pm, the open convex cone of allm×m positive definite (Hermitian)
matrices. The log-determinant α-divergence Dα(A|B) for α ∈ (−1, 1) is defined
by

Dα(A|B) :=
4

1− α2
log

det
(
1−α
2 A+ 1+α

2 B
)

(detA)(1−α)/2(detB)(1+α)/2
. (1)

We can rewrite it as

Dα(A|B) =
4

1− α2
tr

[
log

(
1− α

2
A+

1 + α

2
B

)
− 1− α

2
logA− 1 + α

2
logB

]
.

(2)
One can see that

D−1(A|B) := lim
α→−1

Dα(A|B) = tr(A−1B − I)− log det(A−1B),

D1(A|B) := lim
α→1

Dα(A|B) = tr(B−1A− I)− log det(B−1A).

We have

D−1(A|B) = ∥X − logX − I∥1 and D1(A|B) = ∥X−1 + logX − I∥1,
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where X = A−1/2BA−1/2 and ∥Z∥1 := tr((Z∗Z)1/2) denotes the Schatten 1-
norm of Z ∈ Mm, the set of all m × m complex matrices. Indeed, since X −
logX − I is positive semi-definite,

∥X − logX − I∥1 = tr(X − logX − I).

Similarly, ∥X−1 + logX − I∥1 = tr(X−1 + logX − I).
We provide fundamental properties of the log-determinant α-divergence Dα.

We denote as GLm the general linear group of all m×m invertible matrices.

Proposition 2.1. Let A,B ∈ Pm and α ∈ [−1, 1]. Then

(i) Dα(PAQ|PBQ) = Dα(A|B) for any P,Q ∈ GLm,
(ii) Dα(A

−1|B−1) = Dα(B|A), and
(iii) Dα(A

t|Bt) ≤ tDα(A|B) for any t ∈ [0, 1].
(iv) Dα(A

s|At) ≤ (t− s)Dα(I|A) for 0 ≤ s ≤ t ≤ 1, and
Dα(A

s|At) ≤ (s− t)Dα(A|I) for 0 ≤ t ≤ s ≤ 1.

Proof. All properties (i)-(iii) have been proved in [9, Lemma 5.3]. It remains to
show (iv). We first assume 0 ≤ s ≤ t ≤ 1. Since

det
(
1−α
2 As + 1+α

2 At
)

(detAs)(1−α)/2(detAt)(1+α)/2
=

det
(
1−α
2 I + 1+α

2 At−s
)

(detAt−s)(1+α)/2
,

we have Dα(A
s|At) = Dα(I|At−s) ≤ (t − s)Dα(I|A) from (iii). The second

assertion follows similarly. □

Remark 2.1. Note from [13] that

dS(A,B) :=
1

2

√
D0(A|B) =

√
log det

(
A+B

2

)
− 1

2
log det(AB)

is a distance on Pm. Since log detA = tr logA for any A ∈ Pm, we have an
alternative expression of dS(A,B) such as

dS(A,B) =

√
tr

[
log

(
A+B

2

)
− logA+ logB

2

]
.

By Proposition 2.1 we obtain the following properties for dS ;

(1) dS(MAM∗,MBM∗) = dS(A,B) for any M ∈ GLm,
(2) dS(A

−1, B−1) = dS(A,B),
(3) dS(A

t, Bt) ≤
√
tdS(A,B) for any t ∈ [0, 1],

(4) dS(A
s, At) ≤

√
|s− t|dS(A, I) for any s, t ∈ [0, 1].

The weighted geometric mean of A,B ∈ Pm is given by

A#tB = A1/2(A−1/2BA−1/2)tA1/2, t ∈ [0, 1],

which is the unique geodesic for Riemannian trace metric: see [2, Chapter 6] for
more information. We see certain convexity of the weighted geometric mean for
dS .
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Theorem 2.2. Let A,B,C,D ∈ Pm and s, t ∈ [0, 1]. Then

dS(A#sB,C#tD) ≤
√
1− sdS(A,C) +

√
sdS(B,D) +

√
|s− t|dS(C,D).

Proof. By (1) and (3) in Remark 2.1, we have the following inequality of the
weighted geometric mean for dS :

dS(A#tB,A#tC) ≤
√
tdS(B,C)

for A,B,C ∈ Pm and t ∈ [0, 1]. Thus, by the triangle inequality for dS and
A#tB = B#1−tA

dS(A#sB,C#tD) ≤ dS(A#sB,A#sD) + dS(A#sD,C#sD) + dS(C#sD,C#tD)

≤
√
sdS(B,D) +

√
1− sdS(A,C) +

√
|s− t|dS(C,D).

Indeed, by Remark 2.1 (1), (4)

dS(C#sD,C#tD) = dS((C
−1/2DC−1/2)s, (C−1/2DC−1/2)t)

≤
√
|s− t|dS(I, C−1/2DC−1/2) =

√
|s− t|dS(C,D).

□

Let A = [aij ] and B = [bij ] be arbitrary matrices with certain sizes. The
tensor product (or Kronecker product) A⊗B of A and B is the matrix given by

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB
...

...
. . .

...
am1B am2B · · · amnB

 .

One can see easily that the tensor product is bilinear and associative, but not
commutative. Moreover, it preserves the positivity: the tensor product of two
positive semi-definite (positive definite) matrices is positive semi-definite (posi-
tive definite, respectively).

The following provides a useful formula of the logarithmic map log : Pm → Hm

with tensor product, where Hm denotes the real vector space of all m × m
Hermitian matrices.

Lemma 2.3. Let A,B ∈ Pm. Then log(A⊗B) = (logA)⊗ I + I ⊗ (logB).

Proof. Note that (A⊗B)t = At ⊗Bt for any t ∈ R. Taking derivative on both
sides yield

(A⊗B)t log(A⊗B) = (At logA)⊗Bt +At ⊗ (Bt logB).

Putting t = 0 we obtain the desired property. □

We see the effect of tensor product on the log-determinant α-divergence. In
the following, the relation ≤ means the Loewner partial order on Hm.

Theorem 2.4. Let A,B,C,D ∈ Pm and α ∈ [−1, 1]. Then
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(i) if either A ≥ B,C ≥ D or A ≤ B,C ≤ D then

Dα(A⊗ C|B ⊗D) ≥ m [Dα(A|B) +Dα(C|D)] ,

(ii) if either A ≥ B,C ≤ D or A ≤ B,C ≥ D then

Dα(A⊗ C|B ⊗D) ≤ m [Dα(A|B) +Dα(C|D)] .

Proof. We first assume either A ≥ B,C ≥ D or A ≤ B,C ≤ D. Then(
1− α

2
A+

1 + α

2
B

)
⊗
(
1− α

2
C +

1 + α

2
D

)
≤ 1− α

2
A⊗C+

1 + α

2
B⊗D. (3)

Indeed, by the linearity of tensor product

1− α

2
A⊗ C +

1 + α

2
B ⊗D −

(
1− α

2
A+

1 + α

2
B

)
⊗
(
1− α

2
C +

1 + α

2
D

)
=

1− α2

4
(A−B)⊗ (C −D).

So the assumption implies that the right-hand side is positive semi-definite.
Since the logarithmic map is monotone increasing and the trace map is linear,

we obtain from (2) that

Dα(A⊗ C|B ⊗D)

≥ 4

1− α2
tr log

[(
1− α

2
A+

1 + α

2
B

)
⊗
(
1− α

2
C +

1 + α

2
D

)]
− 1 + α

2
tr log(A⊗ C)− 1− α

2
tr log(B ⊗D)

=
4m

1− α2

[
tr log

(
1− α

2
A+

1 + α

2
B

)
+ tr log

(
1− α

2
C +

1 + α

2
D

)]
− (1 + α)m

2
[tr logA+ tr logC]− (1− α)m

2
[tr logB + tr logD]

= m [Dα(A|B) +Dα(C|D)]

for α ∈ (−1, 1). The second equality follows from Lemma 2.3 and the fact that
tr(A ⊗ B) = (trA)(trB). Taking limit as α → ±1 on the above inequality, we
obtain (i) for α ∈ [−1, 1].

With the assumption that either A ≥ B,C ≤ D or A ≤ B,C ≥ D, the
inequality (3) is reversed. So we can obtain (ii) by the similar process as above.

□

Remark 2.2. Since Dα(A|B) ≥ 0 for any A,B ∈ Pm by [3, Proposition 3.5],
Theorem 2.4 (i) implies

Dα(A⊗ C|B ⊗D) ≥ Dα(A|B) +Dα(C|D)

when either A ≥ B,C ≥ D or A ≤ B,C ≤ D. This can be considered as a
reversed sub-additivity of the log-determinant α-divergence under tensor prod-
uct. On the other hand, it is an interesting question what happens between
Dα(A⊗ C|B ⊗D) and Dα(A|B), Dα(C|D) for general A,B,C,D ∈ Pm.
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3. Symmetrized log-determinant divergence

We naturally define a symmetrized log-determinant α-divergence by

Sα(A,B) :=
1

2
[Dα(A|B) +Dα(B|A)] . (4)

It is obvious from Remark 2.1 that S0(A,B) = D0(A|B) and dS(A,B) =
1
2

√
S0(A,B).

Proposition 3.1. For any α ∈ (−1, 1) and A,B ∈ Pm,

Sα(A,B) =
2

1− α2
tr log

[
1 + α2

2
I +

1− α2

2

(
X +X−1

2

)]
,

where X = A−1/2BA−1/2.

Proof. Note that

Dα(A|B) =
4

1− α2
tr

[
log

(
1− α

2
I +

1 + α

2
X

)
− 1 + α

2
logX

]
and

Dα(B|A) =
4

1− α2
tr

[
log

(
1− α

2
X +

1 + α

2
I

)
− 1− α

2
logX

]
,

where X = A−1/2BA−1/2. So by direct calculation

Sα(A,B)

=
2

1− α2
tr

[
log

(
1− α

2
I +

1 + α

2
X

)
+ log

(
1− α

2
X +

1 + α

2
I

)
− logX

]
=

2

1− α2
tr log

[(
1− α

2
I +

1 + α

2
X

)
X−1

(
1− α

2
X +

1 + α

2
I

)]
=

2

1− α2
tr log

[(
1− α

2

)2

I +

(
1− α2

2

)(
X +X−1

2

)
+

(
1 + α

2

)2

I

]

=
2

1− α2
tr log

[
1 + α2

2
I +

1− α2

2

(
X +X−1

2

)]
.

□

Remark 3.1. Alternatively, we have

Sα(A,B) =
2

1− α2
tr log

[
1 + α2

2
I +

1− α2

2

(
A−1B +B−1A

2

)]
. (5)
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Indeed,

tr log

[
1 + α2

2
I +

1− α2

2

(
X +X−1

2

)]
= tr log

[
1 + α2

2
I +

1− α2

2
A1/2

(
A−1B +B−1A

2

)
A−1/2

]
= tr

[
A1/2 log

[
1 + α2

2
I +

1− α2

2

(
A−1B +B−1A

2

)]
A−1/2

]
= tr log

[
1 + α2

2
I +

1− α2

2

(
A−1B +B−1A

2

)]
.

Remark 3.2. By equation (5), we have Sα(A,B) = S−α(A,B) for any α ∈
(−1, 1). So the symmetrized log-determinant α-divergence Sα can be defined
only for α ∈ [0, 1).

The following provides the lower and upper bounds for the symmetrized log-
determinant α-divergence. The (weighted) arithmetic-geometric-harmonic mean
inequalities are useful: for A,B ∈ Pm and t ∈ [0, 1]

[(1− t)A−1 + tB−1]−1 ≤ A#tB ≤ (1− t)A+ tB. (6)

We denote as λi(X) eigenvalues of X ∈ Hm in decreasing order: λ1(X) ≥
λ2(X) ≥ · · · ≥ λm(X).

Lemma 3.2. Let A,B ∈ Pm and α ∈ [0, 1). Then

tr log

(
A−1B +B−1A

2

)
≤ Sα(A,B) ≤ 2

1− α2
tr log

(
A−1B +B−1A

2

)
. (7)

Moreover,

2

1− α2
tr log

(
A−1B +B−1A

2

)
≤ 2m

1− α2
log

(
R+ r

2
√
Rr

)
,

where R = λ1(A
−1B) and r = λm(A−1B).

Proof. Let X = A−1/2BA−1/2 ∈ Pm. Since the logarithmic map log : Pm → Hm

is operator concave and log I = O, which is a zero matrix,

log

[
1 + α2

2
I +

1− α2

2

(
X +X−1

2

)]
≥ 1− α2

2
log

(
X +X−1

2

)
.

Taking the trace on both sides and applying Proposition 3.1 yield the first in-
equality of (7).

Since
X +X−1

2
≥ X#X−1 = I

by (6) and the logarithmic map log : Pm → Hm is operator monotone,

log

[
1 + α2

2
I +

1− α2

2

(
X +X−1

2

)]
≤ log

(
X +X−1

2

)
.
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So we obtain the second inequality of (7).

Since the map Φ(X) =
X +X−1

2
is strictly positive and unital, we have the

following by applying [2, Proposition 2.7.8] with rI ≤ X = A−1/2BA−1/2 ≤ RI
and (6)

X +X−1

2
≤ (R+ r)2

4Rr

(
X +X−1

2

)−1

≤ (R+ r)2

4Rr
X#X−1 =

(R+ r)2

4Rr
I.

Since
(R+ r)2

4Rr
≥ 1,

1 + α2

2
I +

1− α2

2

(
X +X−1

2

)
≤ (R+ r)2

4Rr
I.

Since the logarithmic map and trace map are monotone increasing, we obtain
the last assertion. □

Corollary 3.3. For any α ∈ [0, 1), Sα : Pm×Pm → R is a symmetric divergence.
That is, for A,B ∈ Pm

Sα(A,B) ≥ 0,

and the equality holds if and only if A = B.

Proof. Note from (6) that
X +X−1

2
≥ X#X−1 = I for any X ∈ Pm. Applying

the first inequality of (7) in Lemma 3.2 we obtain

Sα(A,B) ≥ 2

1− α2
tr log

(
X +X−1

2

)
≥ tr log I = 0.

If A = B, then X = I, so it is easy to see Sα(A,B) = 0. Conversely, assume

Sα(A,B) = 0. Then
X +X−1

2
= I from the above. It is satisfied only when

X = I, that is, A = B. □

Remark 3.3. The symmetrized log-determinant α-divergence Sα is a semi-
metric on Pm. In other words, it satisfies all axioms of metric but not necessarily
the triangle inequality. The following is such an example: let α = 1

2 ,

A =

[
1 1

2
1
2 3

]
, B =

[
3 0
0 1

]
and C =

[
2 1
1 3

]
.

Then Sα(A,B) ≈ 0.67888 > 0.49853 ≈ Sα(A,C) + Sα(C,B). On the other
hand, it is an interesting question to find the condition of A,B,C to fulfill the
triangle inequality or the subset of Pm such that Sα is a metric.

Theorem 3.4. Let A,B ∈ Pm. For any α, β such that 0 ≤ α ≤ β < 1,

(1− α2)Sα(A,B) ≥ (1− β2)Sβ(A,B).
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Proof. Let Y, Z ∈ Pm such that Y ≤ Z. For 0 < p ≤ q ≤ 1 and any monotone
increasing function f ,

f(Y ) ≤ f((1− p)Y + pZ) ≤ f((1− q)Y + qZ) ≤ f(Z).

Let us replace Y,Z, p, and q by I,
X +X−1

2
,
1− β2

2
, and

1− α2

2
. Then 0 < p ≤

q ≤ 1

2
, and moreover, from (6)

Z =
X +X−1

2
≥ X#X−1 = I = Y.

So taking a logarithmic map which is monotone increasing yields

log

[
1 + α2

2
I +

1− α2

2

(
Y + Y −1

2

)]
≥ log

[
1 + β2

2
I +

1− β2

2

(
Y + Y −1

2

)]
≥ O.

Since A ≥ B ≥ O implies trA ≥ trB ≥ 0, we obtain the desired inequality. □

Remark 3.4. Theorem 3.4 with Remark 2.1 implies

2dS(A,B) ≥
√
(1− α2)Sα(A,B)

for α ∈ (0, 1).

4. Discussion on divergence and barycenter

The Hadamard (or Schur) product A ◦B of A = [aij ] and B = [bij ] in Mm,k

is the m× k matrix, which is defined by the entrywise product:

A ◦B := [aijbij ].

Note that Hadamard product is bilinear, commutative, and associative. More-
over, the Hadamard product also preserves positivity; the Hadamard product of
two positive definite (positive semidefinite, respectively) matrices is positive def-
inite (positive semidefinite, respectively) matrices. This is known as the Schur
product theorem [5, 15]. There is a canonical relationship between the tensor
product and Hadamard product via a positive unital linear map.

Lemma 4.1. [1, Lemma 4] There exists a strictly positive and unital linear map
Ψ such that for any A,B ∈ Mm

Ψ(A⊗B) = A ◦B.

Theorem 2.4 tells us how tensor product effects to the log-determinant α-
divergence Dα. We can naturally ask the relationship between Dα(A ◦C|B ◦D)
and Dα(A|B), Dα(C|D) for A,B,C,D ∈ Pm.

Note that

S(A,B) := lim
α→1

Sα(A,B) = tr

(
X +X−1

2
− I

)
= tr

(
A−1B +B−1A

2
− I

)
,
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which is known as the symmetrized Kullback-Leibler divergence. LetA1, . . . , An ∈
Pm and (w1, . . . , wn) be a positive probability vector. By [6, Theorem 5.3]

argmin
X∈Pm

n∑
i=1

wiS(X,Ai) =

(
n∑

i=1

wiAi

)
#

(
n∑

i=1

wiA
−1
i

)−1

, (8)

where the right-hand side of (8) is called the weighted A#H-mean (See [8]).
Here, A andH denote the weighted arithmetic and harmonic means, respectively,
and

A#B = A1/2(A−1/2BA−1/2)1/2A1/2

is the unique midpoint of A,B ∈ Pm for the Riemannian trace metric, as well
as the unique solution X ∈ Pm of Riccati equation XA−1X = B. In particular,
for n = 2 and ω = (1/2, 1/2)

A#B = argmin
X∈Pm

S(X,A) + S(X,B)

since the following holds from the Riccati equation:(
A+B

2

)
#

(
A−1 +B−1

2

)−1

= A#B.

In this point of view, it is an interesting question whether the following mini-
mization problem

min

n∑
i=1

wiSα(X,Ai)

for α ∈ (0, 1) has a unique minimizer in Pm.
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