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THE SYMMETRIZED LOG-DETERMINANT

DIVERGENCE†
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Abstract. We see fundamental properties of the log-determinant α-divergence

including the convexity of weighted geometric mean and the reversed sub-
additivity under tensor product. We introduce a symmetrized divergence

and show its properties including the boundedness and monotonicity on

parameters. Finally, we discuss the barycenter minimizing the weighted
sum of symmetrized divergences.
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1. Introduction

The notion of a divergence is a kind of statistical distance in information
theory. In other words, it is a binary function which separates one probability
distribution to another on a statistical manifold. A divergence over a set X is
an almost distance function except that it needs not to be symmetric and not to
satisfy the triangle inequality. In some literature, a divergence can be considered
as a generalization of squared distance.

One of the important divergences is the Kullback-Leibler divergence [7]: for
two positive definite (Hermitian) matrices A and B, which represents covariance
matrices of two zero-mean Gaussian distributions,

DKL(A,B) = tr(AB−1 − I)− log det(AB−1).

See the reference [4] for the derivation of Kullback-Leibler divergence between
two Gaussian distributions. Throughout the paper, log is the natural logarithmic
map. Various versions of the Kullback-Leibler divergence are used in several
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research areas, including applied statistics, machine learning, neuroscience, and
signal processing [10, 11, 12, 14]. There are numerous types of divergences and
classes of divergences, for instance, f -divergence and Bregman divergence.

We study in this paper the log-determinant α-divergence, introduced by Chebbi
and Moakher [3]: for any α ∈ (−1, 1)

Dα(A|B) :=
4

1− α2
log

det
(
1−α
2 A+ 1+α

2 B
)

(detA)(1−α)/2(detB)(1+α)/2
.

This is a one-parameter family of Kullback-Leibler divergences which is related
with the Stein’s loss. We prove its fundamental properties including the con-
vexity of weighted geometric mean and see effects of tensor product on the
log-determinant α-divergence in Section 2.

A symmetrized Kullback-Leibler divergence with parameter µ(≥ 0) has been
introduced [6]:

Dµ
s (A,B) =

1

2
[Dµ

KL(A,B) +Dµ
KL(B,A)],

where Dµ
KL(A,B) = tr((A−B)(B+µI)−1)− log det(A+µI)+ log det(B+µI).

Furthermore, the authors have defined a new multivariable mean by solving the
optimization problem aimed at minimizing a weighted sum of the symmetrized
Kullback-Leibler divergences. In Section 3, we also introduce the symmetrized
log-determinant α-divergence and prove its properties including the monotonic-
ity on parameters. Finally in Section 4, we discuss some open question on the
(symmetrized) log-determinant α-divergence and its minimization problem.

2. Log-determinant divergence

Let A,B ∈ Pm, the open convex cone of allm×m positive definite (Hermitian)
matrices. The log-determinant α-divergence Dα(A|B) for α ∈ (−1, 1) is defined
by

Dα(A|B) :=
4

1− α2
log

det
(
1−α
2 A+ 1+α

2 B
)

(detA)(1−α)/2(detB)(1+α)/2
. (1)

We can rewrite it as

Dα(A|B) =
4

1− α2
tr

[
log

(
1− α

2
A+

1 + α

2
B

)
− 1− α

2
logA− 1 + α

2
logB

]
.

(2)
One can see that

D−1(A|B) := lim
α→−1

Dα(A|B) = tr(A−1B − I)− log det(A−1B),

D1(A|B) := lim
α→1

Dα(A|B) = tr(B−1A− I)− log det(B−1A).

We have

D−1(A|B) = ∥X − logX − I∥1 and D1(A|B) = ∥X−1 + logX − I∥1,
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where X = A−1/2BA−1/2 and ∥Z∥1 := tr((Z∗Z)1/2) denotes the Schatten 1-
norm of Z ∈ Mm, the set of all m × m complex matrices. Indeed, since X −
logX − I is positive semi-definite,

∥X − logX − I∥1 = tr(X − logX − I).

Similarly, ∥X−1 + logX − I∥1 = tr(X−1 + logX − I).
We provide fundamental properties of the log-determinant α-divergence Dα.

We denote as GLm the general linear group of all m×m invertible matrices.

Proposition 2.1. Let A,B ∈ Pm and α ∈ [−1, 1]. Then

(i) Dα(PAQ|PBQ) = Dα(A|B) for any P,Q ∈ GLm,
(ii) Dα(A

−1|B−1) = Dα(B|A), and
(iii) Dα(A

t|Bt) ≤ tDα(A|B) for any t ∈ [0, 1].
(iv) Dα(A

s|At) ≤ (t− s)Dα(I|A) for 0 ≤ s ≤ t ≤ 1, and
Dα(A

s|At) ≤ (s− t)Dα(A|I) for 0 ≤ t ≤ s ≤ 1.

Proof. All properties (i)-(iii) have been proved in [9, Lemma 5.3]. It remains to
show (iv). We first assume 0 ≤ s ≤ t ≤ 1. Since

det
(
1−α
2 As + 1+α

2 At
)

(detAs)(1−α)/2(detAt)(1+α)/2
=

det
(
1−α
2 I + 1+α

2 At−s
)

(detAt−s)(1+α)/2
,

we have Dα(A
s|At) = Dα(I|At−s) ≤ (t − s)Dα(I|A) from (iii). The second

assertion follows similarly. □

Remark 2.1. Note from [13] that

dS(A,B) :=
1

2

√
D0(A|B) =

√
log det

(
A+B

2

)
− 1

2
log det(AB)

is a distance on Pm. Since log detA = tr logA for any A ∈ Pm, we have an
alternative expression of dS(A,B) such as

dS(A,B) =

√
tr

[
log

(
A+B

2

)
− logA+ logB

2

]
.

By Proposition 2.1 we obtain the following properties for dS ;

(1) dS(MAM∗,MBM∗) = dS(A,B) for any M ∈ GLm,
(2) dS(A

−1, B−1) = dS(A,B),
(3) dS(A

t, Bt) ≤
√
tdS(A,B) for any t ∈ [0, 1],

(4) dS(A
s, At) ≤

√
|s− t|dS(A, I) for any s, t ∈ [0, 1].

The weighted geometric mean of A,B ∈ Pm is given by

A#tB = A1/2(A−1/2BA−1/2)tA1/2, t ∈ [0, 1],

which is the unique geodesic for Riemannian trace metric: see [2, Chapter 6] for
more information. We see certain convexity of the weighted geometric mean for
dS .



988 Sejong Kim and Vatsalkumar N. Mer

Theorem 2.2. Let A,B,C,D ∈ Pm and s, t ∈ [0, 1]. Then

dS(A#sB,C#tD) ≤
√
1− sdS(A,C) +

√
sdS(B,D) +

√
|s− t|dS(C,D).

Proof. By (1) and (3) in Remark 2.1, we have the following inequality of the
weighted geometric mean for dS :

dS(A#tB,A#tC) ≤
√
tdS(B,C)

for A,B,C ∈ Pm and t ∈ [0, 1]. Thus, by the triangle inequality for dS and
A#tB = B#1−tA

dS(A#sB,C#tD) ≤ dS(A#sB,A#sD) + dS(A#sD,C#sD) + dS(C#sD,C#tD)

≤
√
sdS(B,D) +

√
1− sdS(A,C) +

√
|s− t|dS(C,D).

Indeed, by Remark 2.1 (1), (4)

dS(C#sD,C#tD) = dS((C
−1/2DC−1/2)s, (C−1/2DC−1/2)t)

≤
√
|s− t|dS(I, C−1/2DC−1/2) =

√
|s− t|dS(C,D).

□

Let A = [aij ] and B = [bij ] be arbitrary matrices with certain sizes. The
tensor product (or Kronecker product) A⊗B of A and B is the matrix given by

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB
...

...
. . .

...
am1B am2B · · · amnB

 .

One can see easily that the tensor product is bilinear and associative, but not
commutative. Moreover, it preserves the positivity: the tensor product of two
positive semi-definite (positive definite) matrices is positive semi-definite (posi-
tive definite, respectively).

The following provides a useful formula of the logarithmic map log : Pm → Hm

with tensor product, where Hm denotes the real vector space of all m × m
Hermitian matrices.

Lemma 2.3. Let A,B ∈ Pm. Then log(A⊗B) = (logA)⊗ I + I ⊗ (logB).

Proof. Note that (A⊗B)t = At ⊗Bt for any t ∈ R. Taking derivative on both
sides yield

(A⊗B)t log(A⊗B) = (At logA)⊗Bt +At ⊗ (Bt logB).

Putting t = 0 we obtain the desired property. □

We see the effect of tensor product on the log-determinant α-divergence. In
the following, the relation ≤ means the Loewner partial order on Hm.

Theorem 2.4. Let A,B,C,D ∈ Pm and α ∈ [−1, 1]. Then
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(i) if either A ≥ B,C ≥ D or A ≤ B,C ≤ D then

Dα(A⊗ C|B ⊗D) ≥ m [Dα(A|B) +Dα(C|D)] ,

(ii) if either A ≥ B,C ≤ D or A ≤ B,C ≥ D then

Dα(A⊗ C|B ⊗D) ≤ m [Dα(A|B) +Dα(C|D)] .

Proof. We first assume either A ≥ B,C ≥ D or A ≤ B,C ≤ D. Then(
1− α

2
A+

1 + α

2
B

)
⊗
(
1− α

2
C +

1 + α

2
D

)
≤ 1− α

2
A⊗C+

1 + α

2
B⊗D. (3)

Indeed, by the linearity of tensor product

1− α

2
A⊗ C +

1 + α

2
B ⊗D −

(
1− α

2
A+

1 + α

2
B

)
⊗
(
1− α

2
C +

1 + α

2
D

)
=

1− α2

4
(A−B)⊗ (C −D).

So the assumption implies that the right-hand side is positive semi-definite.
Since the logarithmic map is monotone increasing and the trace map is linear,

we obtain from (2) that

Dα(A⊗ C|B ⊗D)

≥ 4

1− α2
tr log

[(
1− α

2
A+

1 + α

2
B

)
⊗
(
1− α

2
C +

1 + α

2
D

)]
− 1 + α

2
tr log(A⊗ C)− 1− α

2
tr log(B ⊗D)

=
4m

1− α2

[
tr log

(
1− α

2
A+

1 + α

2
B

)
+ tr log

(
1− α

2
C +

1 + α

2
D

)]
− (1 + α)m

2
[tr logA+ tr logC]− (1− α)m

2
[tr logB + tr logD]

= m [Dα(A|B) +Dα(C|D)]

for α ∈ (−1, 1). The second equality follows from Lemma 2.3 and the fact that
tr(A ⊗ B) = (trA)(trB). Taking limit as α → ±1 on the above inequality, we
obtain (i) for α ∈ [−1, 1].

With the assumption that either A ≥ B,C ≤ D or A ≤ B,C ≥ D, the
inequality (3) is reversed. So we can obtain (ii) by the similar process as above.

□

Remark 2.2. Since Dα(A|B) ≥ 0 for any A,B ∈ Pm by [3, Proposition 3.5],
Theorem 2.4 (i) implies

Dα(A⊗ C|B ⊗D) ≥ Dα(A|B) +Dα(C|D)

when either A ≥ B,C ≥ D or A ≤ B,C ≤ D. This can be considered as a
reversed sub-additivity of the log-determinant α-divergence under tensor prod-
uct. On the other hand, it is an interesting question what happens between
Dα(A⊗ C|B ⊗D) and Dα(A|B), Dα(C|D) for general A,B,C,D ∈ Pm.



990 Sejong Kim and Vatsalkumar N. Mer

3. Symmetrized log-determinant divergence

We naturally define a symmetrized log-determinant α-divergence by

Sα(A,B) :=
1

2
[Dα(A|B) +Dα(B|A)] . (4)

It is obvious from Remark 2.1 that S0(A,B) = D0(A|B) and dS(A,B) =
1
2

√
S0(A,B).

Proposition 3.1. For any α ∈ (−1, 1) and A,B ∈ Pm,

Sα(A,B) =
2

1− α2
tr log

[
1 + α2

2
I +

1− α2

2

(
X +X−1

2

)]
,

where X = A−1/2BA−1/2.

Proof. Note that

Dα(A|B) =
4

1− α2
tr

[
log

(
1− α

2
I +

1 + α

2
X

)
− 1 + α

2
logX

]
and

Dα(B|A) =
4

1− α2
tr

[
log

(
1− α

2
X +

1 + α

2
I

)
− 1− α

2
logX

]
,

where X = A−1/2BA−1/2. So by direct calculation

Sα(A,B)

=
2

1− α2
tr

[
log

(
1− α

2
I +

1 + α

2
X

)
+ log

(
1− α

2
X +

1 + α

2
I

)
− logX

]
=

2

1− α2
tr log

[(
1− α

2
I +

1 + α

2
X

)
X−1

(
1− α

2
X +

1 + α

2
I

)]
=

2

1− α2
tr log

[(
1− α

2

)2

I +

(
1− α2

2

)(
X +X−1

2

)
+

(
1 + α

2

)2

I

]

=
2

1− α2
tr log

[
1 + α2

2
I +

1− α2

2

(
X +X−1

2

)]
.

□

Remark 3.1. Alternatively, we have

Sα(A,B) =
2

1− α2
tr log

[
1 + α2

2
I +

1− α2

2

(
A−1B +B−1A

2

)]
. (5)
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Indeed,

tr log

[
1 + α2

2
I +

1− α2

2

(
X +X−1

2

)]
= tr log

[
1 + α2

2
I +

1− α2

2
A1/2

(
A−1B +B−1A

2

)
A−1/2

]
= tr

[
A1/2 log

[
1 + α2

2
I +

1− α2

2

(
A−1B +B−1A

2

)]
A−1/2

]
= tr log

[
1 + α2

2
I +

1− α2

2

(
A−1B +B−1A

2

)]
.

Remark 3.2. By equation (5), we have Sα(A,B) = S−α(A,B) for any α ∈
(−1, 1). So the symmetrized log-determinant α-divergence Sα can be defined
only for α ∈ [0, 1).

The following provides the lower and upper bounds for the symmetrized log-
determinant α-divergence. The (weighted) arithmetic-geometric-harmonic mean
inequalities are useful: for A,B ∈ Pm and t ∈ [0, 1]

[(1− t)A−1 + tB−1]−1 ≤ A#tB ≤ (1− t)A+ tB. (6)

We denote as λi(X) eigenvalues of X ∈ Hm in decreasing order: λ1(X) ≥
λ2(X) ≥ · · · ≥ λm(X).

Lemma 3.2. Let A,B ∈ Pm and α ∈ [0, 1). Then

tr log

(
A−1B +B−1A

2

)
≤ Sα(A,B) ≤ 2

1− α2
tr log

(
A−1B +B−1A

2

)
. (7)

Moreover,

2

1− α2
tr log

(
A−1B +B−1A

2

)
≤ 2m

1− α2
log

(
R+ r

2
√
Rr

)
,

where R = λ1(A
−1B) and r = λm(A−1B).

Proof. Let X = A−1/2BA−1/2 ∈ Pm. Since the logarithmic map log : Pm → Hm

is operator concave and log I = O, which is a zero matrix,

log

[
1 + α2

2
I +

1− α2

2

(
X +X−1

2

)]
≥ 1− α2

2
log

(
X +X−1

2

)
.

Taking the trace on both sides and applying Proposition 3.1 yield the first in-
equality of (7).

Since
X +X−1

2
≥ X#X−1 = I

by (6) and the logarithmic map log : Pm → Hm is operator monotone,

log

[
1 + α2

2
I +

1− α2

2

(
X +X−1

2

)]
≤ log

(
X +X−1

2

)
.
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So we obtain the second inequality of (7).

Since the map Φ(X) =
X +X−1

2
is strictly positive and unital, we have the

following by applying [2, Proposition 2.7.8] with rI ≤ X = A−1/2BA−1/2 ≤ RI
and (6)

X +X−1

2
≤ (R+ r)2

4Rr

(
X +X−1

2

)−1

≤ (R+ r)2

4Rr
X#X−1 =

(R+ r)2

4Rr
I.

Since
(R+ r)2

4Rr
≥ 1,

1 + α2

2
I +

1− α2

2

(
X +X−1

2

)
≤ (R+ r)2

4Rr
I.

Since the logarithmic map and trace map are monotone increasing, we obtain
the last assertion. □

Corollary 3.3. For any α ∈ [0, 1), Sα : Pm×Pm → R is a symmetric divergence.
That is, for A,B ∈ Pm

Sα(A,B) ≥ 0,

and the equality holds if and only if A = B.

Proof. Note from (6) that
X +X−1

2
≥ X#X−1 = I for any X ∈ Pm. Applying

the first inequality of (7) in Lemma 3.2 we obtain

Sα(A,B) ≥ 2

1− α2
tr log

(
X +X−1

2

)
≥ tr log I = 0.

If A = B, then X = I, so it is easy to see Sα(A,B) = 0. Conversely, assume

Sα(A,B) = 0. Then
X +X−1

2
= I from the above. It is satisfied only when

X = I, that is, A = B. □

Remark 3.3. The symmetrized log-determinant α-divergence Sα is a semi-
metric on Pm. In other words, it satisfies all axioms of metric but not necessarily
the triangle inequality. The following is such an example: let α = 1

2 ,

A =

[
1 1

2
1
2 3

]
, B =

[
3 0
0 1

]
and C =

[
2 1
1 3

]
.

Then Sα(A,B) ≈ 0.67888 > 0.49853 ≈ Sα(A,C) + Sα(C,B). On the other
hand, it is an interesting question to find the condition of A,B,C to fulfill the
triangle inequality or the subset of Pm such that Sα is a metric.

Theorem 3.4. Let A,B ∈ Pm. For any α, β such that 0 ≤ α ≤ β < 1,

(1− α2)Sα(A,B) ≥ (1− β2)Sβ(A,B).
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Proof. Let Y, Z ∈ Pm such that Y ≤ Z. For 0 < p ≤ q ≤ 1 and any monotone
increasing function f ,

f(Y ) ≤ f((1− p)Y + pZ) ≤ f((1− q)Y + qZ) ≤ f(Z).

Let us replace Y,Z, p, and q by I,
X +X−1

2
,
1− β2

2
, and

1− α2

2
. Then 0 < p ≤

q ≤ 1

2
, and moreover, from (6)

Z =
X +X−1

2
≥ X#X−1 = I = Y.

So taking a logarithmic map which is monotone increasing yields

log

[
1 + α2

2
I +

1− α2

2

(
Y + Y −1

2

)]
≥ log

[
1 + β2

2
I +

1− β2

2

(
Y + Y −1

2

)]
≥ O.

Since A ≥ B ≥ O implies trA ≥ trB ≥ 0, we obtain the desired inequality. □

Remark 3.4. Theorem 3.4 with Remark 2.1 implies

2dS(A,B) ≥
√
(1− α2)Sα(A,B)

for α ∈ (0, 1).

4. Discussion on divergence and barycenter

The Hadamard (or Schur) product A ◦B of A = [aij ] and B = [bij ] in Mm,k

is the m× k matrix, which is defined by the entrywise product:

A ◦B := [aijbij ].

Note that Hadamard product is bilinear, commutative, and associative. More-
over, the Hadamard product also preserves positivity; the Hadamard product of
two positive definite (positive semidefinite, respectively) matrices is positive def-
inite (positive semidefinite, respectively) matrices. This is known as the Schur
product theorem [5, 15]. There is a canonical relationship between the tensor
product and Hadamard product via a positive unital linear map.

Lemma 4.1. [1, Lemma 4] There exists a strictly positive and unital linear map
Ψ such that for any A,B ∈ Mm

Ψ(A⊗B) = A ◦B.

Theorem 2.4 tells us how tensor product effects to the log-determinant α-
divergence Dα. We can naturally ask the relationship between Dα(A ◦C|B ◦D)
and Dα(A|B), Dα(C|D) for A,B,C,D ∈ Pm.

Note that

S(A,B) := lim
α→1

Sα(A,B) = tr

(
X +X−1

2
− I

)
= tr

(
A−1B +B−1A

2
− I

)
,
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which is known as the symmetrized Kullback-Leibler divergence. LetA1, . . . , An ∈
Pm and (w1, . . . , wn) be a positive probability vector. By [6, Theorem 5.3]

argmin
X∈Pm

n∑
i=1

wiS(X,Ai) =

(
n∑

i=1

wiAi

)
#

(
n∑

i=1

wiA
−1
i

)−1

, (8)

where the right-hand side of (8) is called the weighted A#H-mean (See [8]).
Here, A andH denote the weighted arithmetic and harmonic means, respectively,
and

A#B = A1/2(A−1/2BA−1/2)1/2A1/2

is the unique midpoint of A,B ∈ Pm for the Riemannian trace metric, as well
as the unique solution X ∈ Pm of Riccati equation XA−1X = B. In particular,
for n = 2 and ω = (1/2, 1/2)

A#B = argmin
X∈Pm

S(X,A) + S(X,B)

since the following holds from the Riccati equation:(
A+B

2

)
#

(
A−1 +B−1

2

)−1

= A#B.

In this point of view, it is an interesting question whether the following mini-
mization problem

min

n∑
i=1

wiSα(X,Ai)

for α ∈ (0, 1) has a unique minimizer in Pm.

Conflicts of interest : The authors declare no conflict of interest.

Data availability : Not applicable

Acknowledgments : We thank to anonymous reviewers for valuable com-
ments.

References

1. T. Ando, Concavity of certain maps on positive definite matrices and applications to

Hadamard products, Linear Algebra Appl. 26 (1979), 203-241.

2. R. Bhatia, Positive Definite Matrices, Princeton Series in Applied Mathematics, 2007.
3. Z. Chebbi and M. Moakher, Means of hermitian positive-definite matrices based on the

log-determinant α-divergence function, Linear Algebra Appl. 436 (2012), 1872-1889.

4. John Duchi, Derivations for Linear Algebra and Optimization, Berkeley, California 3.1
(2007): 2325-5870.

5. R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, 2009.
6. S. Kim, J. Lawson and Y. Lim, The matrix geometric mean of parameterized, weighted

arithmetic and harmonic means, Linear Algebra Appl. 435 (2011), 2114-2131.
7. S. Kullback and R. A. Leibler, On information and sufficiency, Ann. Math. Statistics 22

(1951), 79-86.



The symmetrized log-determinant divergence 995

8. S. Kum and Y. Lim, A geometric mean of parameterized arithmetic and harmonic means

of convex functions, Abstr. Appl. Anal. 15 (2012), Art. ID 836804.
9. V.N. Mer and S. Kim, New multivariable mean from nonlinear matrix equation associated

to the harmonic mean, Acta Sci. Math. (Szeged) (2024). https://doi.org/10.1007/s44146-

024-00132-y
10. Ignacio Montes, Neighbourhood models induced by the euclidean distance and the Kullback-

Leibler divergence, Proc. Mach. Learn. Res. 215 (2023), 367-378.

11. Dunbiao Niu, Enbin Song, Zhi Li, Linxia Zhang, Ting Ma, Juping Gu and Qingjiang
Shi, A marginal distributionally robust MMSE estimation for a multisensor system with

Kullback-Leibler divergence constraints, IEEE Trans. Signal Process 71 (2023), 3772-3787.

12. F.J. Pinski, G. Simpson, A.M. Stuart and H. Weber, Kullback-Leibler approximation for
probability measures on infinite dimensional spaces, SIAM J. Math. Anal. 47 (2015), 4091-

4122.
13. S. Sra, A new metric on the manifold of kernel matrices with application to matrix geo-

metric means, NIPS (2012), 144-152.

14. J. Watson, L. Nieto-Barajas and C. Holmes, Characterizing variation of nonparametric
random probability measures using the Kullback-Leibler divergence, Statistics 51 (2017),

558-571.

15. F. Zhang, Matrix Theory: Basic Results and Techniques, 2nd edition, Springer, 2011.

Sejong Kim received Master of Science from Kyungpook National University, and Ph.D.

from Louisiana State University, USA. He is currently a professor at Chungbuk National
University since 2013. His research interests are operator mean and quantum information.

Department of Mathematics, Chungbuk National University, Cheongju 28644, Korea.
e-mail: skim@chungbuk.ac.kr

Vatsalkumar N. Mer received Master of Science from Sardar Patel University and Ph.D.

from IISER Thiruvananthapuram, India. He is currently a postdoc at Institute for Industrial
and Applied Mathematics, Chungbuk National University. His research interests include

matrix analysis and preserver problem.

Institute for Industrial and Applied Mathematics, Chungbuk National University, Cheongju

28644, Korea.

e-mail: vnm232657@gmail.com




