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Abstract. In this article, we considered a class of nonlinear variational hemivariational in-

equality problems and investigated a gap function and regularized gap function for the prob-

lems. We discussed the global error bounds for such inequalities in terms of gap function

and regularized gap functions by utilizing the Clarke generalized gradient, relaxed mono-

tonicity, and relaxed Lipschitz continuous mappings. Finally, as applications, we addressed

an application to non-stationary non-smooth semi-permeability problems.

1. Introduction

The theory of variational inequality problems was first introduced by Stam-
pacchia [19] for modeling problems arising from mechanics to study the reg-
ularity problem for partial differential equations. Thus, the variational in-
equality problem can be considered as a central problem in optimization and
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nonlinear analysis to study various complementarity and equilibrium prob-
lems occurring in operation research, mechanics, mathematical programming,
we often naturally meet the variational inequality problem for finding x ∈ Ω
such that

〈N(x), y − x〉X ≥ 0, ∀y ∈ Ω, (1.1)

where Ω is a nonempty closed convex subset of a normed space X, N : X → X∗

is a given operator, and 〈·, ·〉X denotes the duality pairing between X and its
dual X∗.

It is well known that the variational inequality (1.1) can be solved by trans-
forming it into an equivalent optimization problem with so-called merit func-
tion π(·;α) : X → R ∪ {+∞} defined by

π(x;α) = sup{〈N(x), x− z〉X − α‖x− z‖2X | z ∈ Ω} for x ∈ Ω, (1.2)

where α is a nonnegative parameter.

Remark 1.1. (i) If α = 0, then (1.2) was first studied in [3].
(ii) If α > 0, then (1.2) was studied in [7].

The function π(·, 0) is usually known as the gap function, and the function
π(·, α) for α > 0 is a regularized gap function. Furthermore, we see that for
all α > 0, the function π(·, α) is nonnegative on Ω, and π(x∗, α) = 0 whenever
x∗ satisfies the variational inequality (1.1), see [8].

The theory of variational hemivariational inequalities is known as a general-
ization of variational inequalities and hemivariational inequalities to the case
involving both convex and nonconvex potentials, and based on the notion of
the Clarke generalized gradient for locally Lipschitz continuous functions, see,
[1, 6, 12, 13, 14, 15, 16, 17].

The theory of gap functions is a very effective tool to investigate the con-
ditions of existence, a method for a solution, and conditions of equilibrium
for optimization-related problems to simplify the computational aspects. The
concept of the regularized function has been introduced by Yamashita and
Fukushima in [21]. They also suggested the so-called error bounds for vari-
ational inequalities via the regularized gap functions. The concept of error
bounds is referred to as an upper estimate of the distance between an ar-
bitrary feasible point and a particular problem’s solution set. Such error
estimates have played a crucial role in the convergence analysis of iterative
algorithms for solving variational inequalities, see, [2, 9, 10, 20].

The Chang et al. [4, 5] introduce the mixed set-valued vector inverse quasi-
variational inequality problem and to obtain error bounds for mixed set-valued
vector inverse quasi-variational inequality problems in terms of the residual
gap function, the regularized gap function, and the D-gap function, see [11].
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In this paper, we consider a class of nonlinear mixed variationalhemivaria-
tional inequality problems and suggest the gap function and regularized gap
function. We treated the gap functions for the Minty version of these inequali-
ties by utilizing the relaxed monotone mapping and relaxed Lipschitz continu-
ous mapping. Next, we studied the gap function, regularized gap function and
Moreau-Yosida type regularized gap function and provided two new global
error bounds for the nonlinear mixed variational hemivariational inequality
problems. Finally, we illustrate the abstract results of a nonsmooth semi-
permeability obstacle problem described by a nonlinear mixed variational-
hemivariational inequality problem for which we deliver global error bounds.

2. Preliminaries

Let (X, ‖ · ‖X) be a real Banach space and 〈·, ·〉X be the duality pairing
between X and its dual X∗.

Definition 2.1. ([5]) A function F : X → R ∪ {+∞} is said to be

(a) convex, if F (tx+(1− t)y) ≤ tF (x)+(1− t)F (y), for all x, y ∈ X, t ∈
[0, 1].

(b) lower semicontinuous (l.s.c.) at x ∈ X, if for any sequence {xn} ⊂ X
such that

xn → x,

it holds
F (x) ≤ lim inf F (xn).

(c) upper semicontinuous (u.s.c.) at x ∈ X, if for any sequence {xn} ⊂ X
such that

xn → x,

it holds
lim supF (xn) ≤ F (x).

(d) l.s.c (resp. u.s.c.) on X, if F is l.s.c (resp. u.s.c.) at every x ∈ X.

Definition 2.2. ([6]) Let g : X → R ∪ {+∞} be a proper, convex and lower
semicontinuous function. The convex subdifferential ∂cg : X → X∗ of g is
defined by

∂cg(x) =
{
x∗ ∈ X∗

∣∣〈x∗, y − x〉X ≤ g(y)− g(x), ∀ y ∈ X
}
, ∀ x ∈ X.

An element x∗ ∈ ∂cg(x) is a subgradient of g at x ∈ X.

Definition 2.3. ([16]) A function F : X → R is said to be locally Lipschitz
continuous, if for every x ∈ X, there exist a neighbourhood U of x and a
constant Lx > 0 such that

|F (z1)− F (z2)| ≤ Lx‖z1 − z2‖X , ∀ z1, z2 ∈ U .
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Let F : X → R be a locally Lipschitz continuous function. The Clark
generalized directional derivative of F at the point x ∈ X in the direction
y ∈ X dened by

F ◦(x; y) = lim sup
z→x,t→0+

F (z + ty)− F (z)

t
.

The generalized gradient of F at x ∈ X is a subset of X defined by

∂F (x) = {x∗ ∈ X∗|F ◦(x; y) ≥ 〈x∗, y〉X , ∀ y ∈ X} .

We can easily prove the following lemma from the definition of the Clark
generalized directional derivative of F .

Lemma 2.4. Let F : X → R be a locally Lipschitz continuous function. Then
the following assumptions are satisfied:

(a) For each x ∈ X, the function X 3 y � F ◦(x; y) ∈ R is finite, subad-
ditive, positively homogeneous and

|F ◦(x; y)| ≤ Lx‖y‖X , ∀ y ∈ X,

where Lx > 0 is a Lipschitz constant of F near x.
(b) The function X×X 3 (x, y)� F ◦(x; y) ∈ R is upper semicontinuous.
(c) For every x, y ∈ X, it holds

F ◦(x; y) = max{〈ζ, y〉X | ζ ∈ ∂F (x)}.

Definition 2.5. ([11]) An operator N : X × X → X∗ is said to be pseu-
domonotone, if N is a bounded operator and for every sequence {xn} ⊆ X
converging weakly to x ∈ X such that

lim sup〈N(xn, xn), xn − x〉 ≤ 0,

we have

〈N(x, x), x− y〉 ≤ lim inf〈N(xn, xn), xn − y〉, ∀ y ∈ X.

Let Ω be a nonempty closed convex subset of a reflexive Banach space X.
Let N : Ω×Ω→ X∗, ϕ : Ω×Ω→ R and J : X → R be the functions, and f ∈
X. Then we consider the following nonlinear mixed variational hemivatiational
inequality problem for finding x ∈ Ω such that

〈N(x, x)− f, y − x〉X + ϕ(x, y)− ϕ(x, x) + J◦(x; y − x) ≥ 0, ∀ y ∈ Ω, (2.1)

together with the following hypotheses:

(A) N : X ×X → X∗ is satisfying
(i) N is pseudomonotone.
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(ii) N is relaxed monotone with respect to the first variable with
constant αN > 0 such that

〈N(y1, x)−N(y2, x), y1 − y2〉X ≥ −αN‖y1 − y2‖2X , ∀ y1, y2 ∈ X. (2.2)

(iii)) N is relaxed Lipschitz continuous with respect to the second vari-
able with constant βN > 0 such that

〈N(x, y1)−N(x, y2), y1 − y2〉X ≤ −βN‖y1 − y2‖2X , ∀ y1, y2 ∈ X. (2.3)

(B) ϕ : Ω× Ω→ R is such that
(i) for each x ∈ Ω, ϕ(x, ·) : Ω→ R is convex and lower semicontinu-

ous.
(ii) for all x1, x2, y1, y2 ∈ Ω, there exists αϕ > 0 such that

ϕ(x1, y2)−ϕ(x1, y1) +ϕ(x2, y1)−ϕ(x2, y2) ≤ αϕ‖x1−x2‖X‖y1−y2‖X . (2.4)

(C) J : X → R is a locally Lipschitz function such that
(i) ‖∂J(y)‖X∗ ≤ f0 +f1‖y‖X , for all y ∈ X and f0,f1 ≥ 0.
(ii) there exists αJ ≥ 0 such that

J◦(y1; y2 − y1) + J◦(y2; y1 − y2) ≤ αJ‖y1 − y2‖2X , ∀ y1, y2 ∈ Ω. (2.5)

(D) Ω is a nonempty, closed and convex subset of X and

f ∈ X. (2.6)

3. Main results

First, we prove the existing result of equation (2.1).

Theorem 3.1. Assume that (A)-(D) hold and the following condition is sat-
isfied

αj + αϕ + αN − βN < 1. (3.1)

Then (2.1) has the unique solution. Moreover, x solves (2.1) if and only
if it solves the following Minty nonlinear mixed variational-hemivariational
inequality problem for finding x ∈ Ω such that

〈N(y, y)− f, y − x〉X + ϕ(x, y)− ϕ(x, x) + J◦(y; y − x) ≥ 0, ∀ y ∈ Ω. (3.2)

Proof. Let x ∈ Ω be the unique solution of (2.1). We note that (C(ii)) is
equivalent to the following relaxed monotonicity condition of the generalized
gradient

〈∂J(y)− ∂J(x), y − x〉X ≥ −αj‖y − x‖2X , ∀ y, x ∈ X. (3.3)

Next, from (3.1), (3.3), and (A(ii))-(A(iii)), we have

〈N(y, y)−N(x, x), y − x〉X + 〈ζy − ζx, y − x〉X ≥ (−αN + βN − αj)‖y − x‖2X ,
(3.4)
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for all x, y ∈ Ω, ζy ∈ ∂J(y), ζx ∈ ∂J(x).
Let y ∈ Ω be arbitrary. From (3.4), Lemma 2.4(c) and from the concept of

generalized gradient, we have

〈N(y, y)− f,y − x〉X + ϕ(x, y)− ϕ(x, x) + J◦(y; y − x)

≥ 〈N(y, y)− f + ζy, y − x〉X + ϕ(x, y)− ϕ(x, x)

≥ 〈N(x, x)− f + ζx, y − x〉X + ϕ(x, y)

− ϕ(x, x) + (−αN + βN − αj)‖y − x‖2X
≥ 〈N(x, x)− f + ζx, y − x〉X + ϕ(x, y)− ϕ(x, x)

= 〈N(x, x)− f, y − x〉X + ϕ(x, y)− ϕ(x, x) + J◦(x; y − x)

≥ 0,

for all ζy ∈ ∂J(y), ζx ∈ ∂J(x). Therefore,

J◦(x; y − x) = 〈ζx, y − x〉X , ∀y ∈ Ω, ζx ∈ ∂J(x).

Hence, x ∈ Ω is a unique solution of (3.2).
Now we prove the uniqueness of (2.1). Let x1, x2 be the two solutions of

(2.1). Then

〈N(x1, x1)−f, y−x1〉X+ϕ(x1, y)−ϕ(x1, x1)+J◦(x1; y−x1) ≥ 0, ∀ y ∈ Ω, (∗)

〈N(x2, x2)− f, y − x2〉X + ϕ(x2, y)− ϕ(x2, x2) + J◦(x2; y − x2) ≥ 0, ∀ y ∈ Ω.
(∗∗)

Putting y = x2 in (∗) and y = x1 in (∗∗), and adding those inequalities, we
have

〈N(x1, x1)−N(x2, x2), x2−x1〉X +ϕ(x1, x2)−ϕ(x1, x1)+ϕ(x2, x1)−ϕ(x2, x2)

+J◦(x1;x2 − x1) + J◦(x2;x1 − x2) ≥ 0.

Using the (A(ii)), (A(iii)), (B(ii)) and (C(ii)), we have

−(αj + αϕ + αN − βN‖x1 − x2‖2 ≥ 0,

it implies that

‖x1 − x2‖ = 0.

Hence, x1 = x2 and the solution is unique.

Conversely, let x ∈ Ω be a solution of (3.2). For y ∈ Ω and t ∈ (0, 1), we
denote yt = ty + (1− t)x ∈ Ω. Inserting yt into (3.2), we have

0 ≤ t〈N(yt, yt)− f, y − x〉X + ϕ(x, yt)− ϕ(x, x) + J◦(yt; yt − x)

≤ t〈N(yt, yt)− f, y − x〉X + tϕ(x, y)− tϕ(x, x) + tJ◦(yt; y − x).

Now, from the convexity of

y� ϕ(x, y)
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and the positive homogeneity of

y� J◦(x; y),

we have

〈N(yt, yt)− f, y − x〉X + ϕ(x, y)− ϕ(x, x) + J◦(yt; y − x) ≥ 0. (3.5)

Since N is pseudomonotone, it is demicontinuous, see ([13], Theorem 3.69).
Passing to the upper limit as t→ 0+ in (3.5), we have

〈N(x, x)− f, y − x〉X + ϕ(x, y)− ϕ(x, x) + J◦(x; y − x)

≥ lim sup
t→0+

〈N(yt, yt)− f, y − x〉X + ϕ(x, y)

− ϕ(x, x) + lim sup
t→0+

J◦(yt; y − x)

≥ lim sup
t→0+

{〈N(yt, yt)− f, y − x〉X + ϕ(x, y)

− ϕ(x, x) + J◦(yt; y − x)} ≥ 0, ∀y ∈ Ω.

Therefore, from Lemma 3.1(b), we conclude that x ∈ Ω is a solution to (2.1)
and the proof is completed. �

Definition 3.2. ([3]) A function π : Ω → R is said to be a gap function for
(2.1), if it satisfies the following assertions:

(a) π(x) ≥ 0, ∀x ∈ Ω.
(b) x∗ ∈ Ω is such that

π(x∗) = 0

if and only if x∗ is a solution of (2.1).

Consider the functions Λf , Λf∗ : Ω→ R defined by for all x ∈ Ω,

Λf (x) = sup
y∈Ω
{〈N(x, x)− f, x− y〉X + ϕ(x, x)− ϕ(x, y)− J◦(x; y − x)} ,

(3.6)

Λf∗(x) = sup
y∈Ω
{〈N(y, y)− f, x− y〉X + ϕ(x, x)− ϕ(x, y)− J◦(y; y − x)} .

(3.7)

The following lemma shows that the functions Λf and Λf∗ are gap functions
for (2.1).

Lemma 3.3. Assume that the assumptions of Theorem 3.1 hold. Then, the

functions Λf and Λf∗ dened by (3.6) and (3.7) are two gap functions for (2.1).

Proof. First of all, we prove that Λf is a gap function for (2.1). It is not

difficult to demonstrate analogously that the function Λf∗ is also a gap function
for (2.1). We will review the two conditions of Definition 3.2.
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(a) In fact, it is obvious that

Λf (x) ≥ 0,∀ x ∈ Ω.

Since this property has been retained for all x ∈ Ω,

Λf (x) ≥ 〈N(x, x)− f, x− x〉X + ϕ(x, x)− ϕ(x, x)− J◦(x;x− x)

= −j◦(x; 0)

= 0. (3.8)

(b) Suppose that x∗ ∈ Ω is such that

Λf (x∗) = 0,

that is,

sup
y∈Ω
{〈N(x∗, x∗)−f, x∗−y〉X+ϕ(x∗, x∗)−ϕ(x∗, y)−J◦(x∗; y−x∗)} = 0. (3.9)

This together with the fact

〈N(x∗, x∗)− f, x∗ − x∗〉X + ϕ(x∗, x∗)− ϕ(x∗, x∗)− J◦(x∗;x∗ − x∗) = 0

implies that (3.9) is equivalent to

〈N(x∗, x∗)− f, y − x∗〉X + ϕ(x∗, y)− ϕ(x∗, x∗)− J◦(x∗; y − x∗) ≥ 0, ∀ y ∈ Ω.

Therefore, x∗ is a solution of (2.1) if and only if

Λf (x∗) = 0.

�

Let γ > 0 be a fixed parameter. We consider the following functions

Λf,γ ,Λf,γ∗ : Ω→ R defined by for all x ∈ Ω,

Λf,γ(x)=sup
y∈Ω

{
〈N(x, x)−f, x−y〉X+ϕ(x, x)−ϕ(x, y)−J◦(x; y−x)− 1

2γ
‖x−y‖2X

}
,

(3.10)

Λf,γ∗ (x)=sup
y∈Ω

{
〈N(y, y)−f, x−y〉X+ϕ(x, x)−ϕ(x, y)−J◦(y; y−x)− 1

2γ
‖x−y‖2X

}
.

(3.11)
The functions defined by (3.10) and (3.11) are called the regularized gap func-
tions for (2.1).

Theorem 3.4. Suppose the assertions of Theorem 3.1 hold. Then, for any

γ > 0, the functions Λf,γ and Λf,γ∗ are two gap functions for (2.1).

Proof. Now, we prove that Λf,γ is a gap function for (2.1). Applying the

analogous techniques, it is not difficult to show that Λf,γ∗ is also a gap function
for (2.1). We will verify the two assumptions of Definition 3.2.
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(a) For fixed γ > 0, it is trivial that for each x ∈ Ω and holds

Λf,γ(x) ≥ 0.

Therefore, for all x ∈ Ω,

Λf,γ(x) = 〈N(x, x)−f, x− x〉X + ϕ(x, x)−ϕ(x, x)

−J◦(x;x− x)− 1

2γ
‖x− x‖2X

= −J◦(x; 0)

= 0.

(b) Assume that x∗ ∈ Ω is such that

Λf,γ(x∗) = 0,

and

sup
y∈Ω

{
〈N(x∗, x∗)− f, x∗ − y〉X + ϕ(x∗, x∗)− ϕ(x∗, y)

− J◦(x∗; y − x∗)− 1

2γ
‖x∗ − y‖2X

}
= 0.

This implies that

〈N(x∗, x∗)− f,y − x∗〉X − ϕ(x∗, x∗) + ϕ(x∗, y) + J◦(x∗; y − x∗)

≥ − 1

2γ
‖x∗ − y‖2X , ∀y ∈ Ω. (3.12)

For any z ∈ Ω and t ∈ (0, 1), we put y = yt = (1− t)x∗ + tz ∈ Ω in (3.12) to
obtain

t〈N(x∗, x∗)− f, z − x∗〉X − tϕ(x∗, x∗) + tϕ(x∗, z) + tJ◦(x∗; z − x∗)
≥ 〈N(x∗, x∗)− f, yt − x∗〉X − ϕ(x∗, x∗) + ϕ(x∗, yt) + J◦(x∗; yt − x∗)

≥ − 1

2γ
‖x∗ − yt‖2X

= − t
2

2γ
‖x∗ − z‖2X ,

where y� ϕ(x, y) and y� J◦(x; y). Hence, we have

〈N(x∗, x∗)− f,z − x∗〉X − ϕ(x∗, x∗) + ϕ(x∗, z)− J◦(x∗; z − x∗)

≥ − t

2γ
‖x∗ − z‖2X , ∀z ∈ Ω.

If t→ 0+, then

〈N(x∗, x∗)− f, z − x∗〉X − ϕ(x∗, x∗) + ϕ(x∗, z) + J◦(x∗; z − x∗) ≥ 0, ∀z ∈ Ω.

Hence, x∗ is a solution of (2.1).
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Conversely, suppose that x∗ ∈ Ω is a solution of (2.1). Then

〈N(x∗, x∗)−f, y − x∗〉X−ϕ(x∗, x∗)+ϕ(x∗, y) + J◦(x∗; y − x∗) ≥ 0, ∀y ∈ Ω.

This ensures that

sup
y∈Ω

{
〈N(x∗, x∗)−f, x∗−y〉X+ϕ(x∗, x∗)−ϕ(x∗, y)−J◦(x∗; y−x∗)− 1

2γ
‖x∗−y‖2X

}
≤0.

The latter combined with the fact

Λf,γ(x) ≥ 0, ∀x ∈ Ω,

then, we conclude that

Λf,γ(x∗) = 0,

and the proof is completed. �

Later on, we will prove that the regularized gap functions Λf,γ and Λf,γ∗ are
lower semicontinuous.

Lemma 3.5. Assume that the assumptions of Theorem 3.1 are satisfied. If
ϕ : Ω × Ω → R is continuous, then, for each γ > 0, the functions Λf,γ and

Λf,γ∗ are both lower semicontinuous.

Proof. We can prove that Λf,γ is lower semicontinuous for each γ > 0. It is not

difficult to use a similar argument to verify that Λf,γ∗ has the same property.
Consider the function Λ̂f,γ : Ω× Ω→ R dened by

Λ̂f,γ(x, y) = 〈N(x, x)−f, x−y〉X+ϕ(x, x)−ϕ(x, y)−J◦(x; y−x)− 1

2γ
‖x−y‖2X .

Since the operator N : X×X → X∗ is demicontinuous being pseudomonotone,
the function

x� 〈N(x, x), x〉X
is continuous. The latter together with the lower semicontinuity of

(x, y)� −J◦(x; y),

and the continuity of

(x, y)� ϕ(x, y) and x� ‖x‖X
guarantees that

x� Λ̂f,γ(x, y)

is lower semicontinuous for all y ∈ Ω.
Next, we see that

Λf,γ(x) = sup
y∈Ω

Λ̂f,γ(x, y), ∀ x ∈ Ω.
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Let {xn} ⊂ Ω be such that

xn → x as n→∞.

Then, we have

lim inf
n→∞

Λf,γ(xn) = lim inf
n→∞

sup
y∈Ω

Λ̂f,γ(xn, y)

≥ lim inf
n→∞

Λ̂f,γ(xn, z)

≥ Λ̂f,γ(x, z), ∀z ∈ Ω.

Passing to supremum on z ∈ Ω for the above inequality, given

lim inf
n→∞

Λf,γ(xn) ≥ sup
z∈Ω

Λ̂f,γ(x, z)

= Λf,γ(x).

Therefore, the function Λf,γ is lower semicontinuous and the proof is com-
pleted. �

Let γ, ρ > 0 be two parameters. Moreover, let us consider the following
functions:

Λf,γ,ρג , ∗Λf,γ,ρג
: Ω→ R

defined by

Λf,γ,ρ(x)ג = inf
z∈Ω

{
Λf,γ(z) + ρ‖x− z‖2X

}
, ∀x ∈ Ω, (3.13)

ג
Λf,γ,ρ∗

(x) = inf
z∈Ω

{
Λf,γ∗ (z) + ρ‖x− z‖2X

}
, ∀x ∈ Ω. (3.14)

The Λf,γ,ρג and ג
Λf,γ,ρ∗

are the Moreau-Yosida regularized gap functions. Sub-

sequently, we will verify that these functions are two gap functions for (2.1).

Theorem 3.6. Assume that the assumptions of Lemma 3.5 are satisfied. The
two gap functions for (2.1) are Λf,γ,ρג and ג

Λf,γ,ρ∗
, for all γ, ρ > 0.

Proof. We can show that the gap function for (2.1) is Λf,γ,ρג . An analogous
proof can be made that ג

Λf,γ,ρ∗
is also a gap function for (2.1).

(a) Recall that Λf,γ,ρ is a gap function for (2.1), so for any γ, ρ > 0 is
fixed,

Λf,γ,ρ(x) ≥ 0, ∀ x ∈ Ω.

In consequence,

Λf,γ,ρ(x)ג ≥ 0, ∀ x ∈ Ω.
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(b) Suppose that x ∈ Ω is a solution of (2.1). Theorem 3.4 show that

Λf,γ,ρ(x∗) = 0.

Moreover, the inequality

Λf,γ,ρ(xג
∗) = inf

z∈Ω

{
Λf,γ(z) + ρ‖x∗ − z‖2X

}
≤ Λf,γ(x∗) + ρ‖x∗ − x∗‖2X
= 0

with

Λf,γ,ρ(xג
∗) ≥ 0

imply that

Λf,γ,ρ(xג
∗) = 0.

Conversely, let x∗ ∈ Ω be such that

Λf,γ,ρ(xג
∗) = 0,

and

inf
z∈Ω

{
Λf,γ(z) + ρ‖x∗ − z‖2X

}
= 0.

Therefore, there exists a minimizing sequence {zn} in Ω such that

0 ≤ Λf,γ(zn) + ρ‖x∗ − zn‖2X <
1

n
. (3.15)

It is obvious that

Λf,γ(zn)→ 0

and

‖u∗ − zn‖X → 0 as n→∞,
implies

zn → x∗ as n→ +∞.
From Lemma 3.5 and the nonnegativity of Λf,γ , we have

0 ≤ Λf,γ(x∗) ≤ lim inf
n→+∞

Λf,γ(zn) = 0. (3.16)

Thus

Λf,γ(x∗) = 0,

because the gap function Λf,γ . Therefore, x∗ is a solution of (2.1), and the
proof is completed. �
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4. The global error bounds

In this section, we look at two global error bounds for (2.1), one for the
regularized gap functions Λf,γ,ρ and the other for the Moreau-Yosida regular-
ized gap function Λf,γ,ρג . These global error estimates measure the distance
between any admissible point and the unique solution of (2.1).

Theorem 4.1. Let x∗ ∈ Ω be the unique solution of (2.1) and γ > 0 be such
that

βN − αN − αϕ − αJ >
1

2γ
. (4.1)

Assume that the assertions of Theorem 3.1 hold. Then, for each x ∈ Ω, we
have

‖x− x∗‖X ≤

√√√√√ Λf,γ(x)

βN − αN − αϕ − αJ −
1

2γ

. (4.2)

Proof. Let x∗ ∈ Ω be the unique solution of (2.1), that is,

〈N(x∗, x∗)− f, y − x∗〉X + ϕ(x∗, y)− ϕ(x∗, x∗) + J◦(x∗; y − x∗) ≥ 0, ∀y ∈ Ω.
(4.3)

For any x ∈ Ω fixed, we put y = x in (4.3), we obtain

〈N(x∗, x∗)− f, x− x∗〉X + ϕ(x∗, x)− ϕ(x∗, x∗) + J◦(x∗;x− x∗) ≥ 0. (4.4)

By virtue of the denition of Λf,γ , one has

Λf,γ(x) ≥ 〈N(x, x)−f, x−x∗〉X+ϕ(x, x)−ϕ(x, x∗)−J◦(x;x∗−x)− 1

2γ
‖x−x∗‖2X .

(4.5)
It follows from the assumptions (A(ii)), (A(iii)), (B(ii)), and (C(ii)), we have

〈N(x, x)− f, x− x∗〉X + ϕ(x, x)− ϕ(x, x∗)− J◦(x;x∗ − x)− 1

2γ
‖x− x∗‖2X

≥ 〈N(x∗, x∗)− f, x− x∗〉X + ϕ(x∗, x)− ϕ(x∗, x∗) + J◦(x∗;x− x∗)

+ (βN − αN − αj − αϕ −
1

2γ
)‖x− x∗‖2X

≥
(
βN − αN − αj − αϕ −

1

2γ

)
‖x− x∗‖2X , (4.6)

where the last inequality is obtained by using (4.4). Combining (4.5) and
(4.6), we have

Λf,γ(x) ≥
(
βN − αN − αj − αϕ −

1

2γ

)
‖x− x∗‖2X . (4.7)

Hence, the desired inequality (4.2) is valid. �
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Theorem 4.2. Let x∗ ∈ Ω be the unique solution of (2.1) and γ > 0 be such
that

βN − αN − αj − αϕ ≥
1

2γ
. (4.8)

Assume that the assumptions of Theorem 3.1 hold. Then, for each x ∈ Ω and
all ρ > 0, we have

‖x− x∗‖X ≤

√√√√√ Λf,γ,ρ(x)ג2

min

{
βN − αN − αϕ − αJ −

1

2γ
, ρ

} . (4.9)

Proof. Let x∗ ∈ Ω be the unique solution of (2.1). By the definition of the
function

Λf,γ,ρ(x)ג = inf
z∈Ω

{
Λf,γ(z) + ρ‖x− z‖2X

}
≥ inf

z∈Ω

{(
βN − αN − αJ − αϕ −

1

2γ

)
‖x∗ − z‖2X + ρ‖x− z‖2X

}
≥ min

{
βN − αN − αJ − αϕ −

1

2γ
, ρ

}
inf
z∈Ω

{
‖x∗ − z‖2X + ‖x− z‖2X

}
≥ 1

2
min

{
βN − αN − αJ − αϕ −

1

2γ
, ρ

}
‖x− x∗‖2X , ∀x ∈ Ω,

we have

‖x− x∗‖X ≤

√√√√√ Λf,γ,ρ(x)ג2

min

{
βN − αN − αϕ − αJ −

1

2γ
, ρ

} , ∀x ∈ Ω,

which completes the proof. �

5. Applications

The object of this section is to investigate a boundary value problem with
the generalized gradient and obstacle effect, which illustrates the applicability
of the abstract results.

Let < be a bounded domain with a Lipschitz continuous boundary Γ in
Rd (d = 2, 3). The boundary is divided into two mutually disjoint measurable
parts, Γ1 and Γ2, with the result that meas (Γ1) > 0.

Consider the following nonlinear mixed boundary value problem with con-
straints. For finding a function x : < → R such that

−div a(u,∇x) + ∂g(u, x) 3 f(u), in <, (5.1)
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where ∂g and ∂cF denote the generalized gradient and the convex subdiffer-
ential of the functions g : < × R → R and F : Γ2 × R → R, respectively with
respect to their second variables, while the conormal derivative

∂x

∂νa
= (a(u,∇x),ν)Rd

represents the heat flux through the part Γ2, and ν stands for the outward unit
normal on Γ. The function x represents the electric potential, the function
a = a(u,∇x) is the dielectric coefficient, and f = f(u) is a given source term.
The material which occupies < is non-isotropic and heterogeneous, and thus
a effectively depends on u.

x(u) ≤ ψ(u), in <, (5.2)

represents an additional unilateral constraint for the solution,

x = 0, on Γ1 (5.3)

− ∂x

∂νa
∈ κ(x)∂cF (u, x), on Γ2. (5.4)

We remark that in general there is no function F such that

∂F̃ = κ∂cF.

This means that if g ≡ 0, then the weak form of (5.1), stated in (5.2) below,
reduces to quasi-variational inequality.

We need the following standard functional space. Let X be defined by

X =
{
y ∈ H1(<)

∣∣ y = 0 on Γ1

}
.

Since meas (Γ1) > 0, the space X is endowed with the inner product and
corresponding norm given by

〈x, y〉 =

∫
<

(∇x(u),∇y(u))Rd du

and

‖y‖X =

(∫
<
‖∇y(u)‖2Rddu

) 1
2

, ∀x, y ∈ X.

Let γ0 : X → L2(Γ) be the trace operator and Ω be the admissible set
defined by

Ω =
{
y ∈ X

∣∣ y(u) ≤ ψ(u) for a.e. u ∈ <
}
.

For the unique solvability of (4.1), we suggest the following hypotheses:

(A) a : <× Rd → Rd is such that
(i) a(·, w) is measurable on < for all w ∈ Rd with

a(u, 0) = 0 for a.e.u ∈ <. (5.5)
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(ii) a(u, ·) is continuous on Rd for a.e. u ∈ <.
(iii) for all w ∈ Rd, a.e. u ∈ < with αa > 0, we have

‖a(u,w)‖Rd ≤ αa(1 + ‖w‖Rd). (5.6)

(iv) for all w1, w2 ∈ Rd and a.e. u ∈ < with αa > 0, we have

(a(u,w1)− a(u,w2)) · (w1 − w2) ≥ −αa‖w1 − w2‖2Rd . (5.7)

(v) for all w1, w2 ∈ Rd and a.e. u ∈ < with βa > 0, we have

(a(u,w1)− a(u,w2)) · (w1 − w2) ≤ −βa‖w1 − w2‖2Rd . (5.8)

(B) g : <× R→ R is such that
(i) g(·, r) is measurable on < for all r ∈ R and there exists ẽ ∈ L2(<)

such that

g(·, ẽ(·)) ∈ L1(<). (5.9)

(ii) g(u, ·) is locally Lipschitz on R for a.e. u ∈ <.
(iii) there exist f̄0, f̄1 ≥ 0 such that∣∣∂g(u, r)

∣∣ ≤ f̄0 + f̄1|r|, ∀r ∈ R and a.e. u ∈ <. (5.10)

(iv) there exists αg ≥ 0 such that

g◦(u, r1; r2 − r1) + g◦(u, r2; r1 − r2) ≤ αg|r1 − r2|2, (5.11)

for all r1, r2 ∈ R and a.e. u ∈ <.
(C) F : Γ2 × R→ R is such that

(i) F (·, r) is measurable on Γ2 for all r ∈ R.
(ii) F (u, ·) is convex on R for a.e. u ∈ <.

(iii) there exists LF > 0 such that∣∣F (u, r1)− F (u, r2)
∣∣ ≤ LF |r1 − r2|, (5.12)

for all r1, r2 ∈ R and a.e. u ∈ Γ2.

(D) κ : Γ2 × R→ R is such that
(i) κ(·, r) is measurable on Γ2 for all r ∈ R.

(ii) there exists Lκ > 0 such that∣∣κ(u, r1)− κ(u, r2)
∣∣ ≤ Lκ|r1 − r2|, (5.13)

for all r1, r2 ∈ R and a.e. u ∈ Γ2.
(iii) κ(u, 0) = 0 for a.e. u ∈ <.

(E) ψ ∈ X and

f ∈ L2(<). (5.14)
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Now, using the standard method based on the Green theorem, see [18], we
have the following variational formulation of (5.1) for finding x ∈ Ω such that∫

<
(a(u,∇x),∇(y − x))Rd du+

∫
Γ2

(κ(x)F (u, y)− κ(x)F (u, x)) dΓ

+

∫
<
g◦(u, x; y − x)du ≥

∫
<
f(y − x)du, ∀y ∈ Ω. (5.15)

Theorem 5.1. Assume that the assumptions (A)-(E) are satisfied. If the
inequality holds

βa − αa − αg − LFLκ‖γ0‖2 ≥ 0, (5.16)

then (5.15) has a unique solution x∗ ∈ Ω.

Proof. Consider the operatorN : X×X → X∗ and the functions ϕ : Ω×Ω→ R
and J : X → R defined by

〈N(x, x), y〉X =

∫
<

(a(u,∇x),∇y)Rddu,

ϕ(x, y) =

∫
Γ2

κ(x)F (y)dΓ,

J(y) =

∫
<
g(u, y)du, ∀x, y ∈ X.

It is simple to demonstrate that all conditions of Theorem 3.1 are met with

αN = αa, βN = βa, αJ = αg,f0 = f̄0,f1 = f̄1 and αϕ = LFLκ‖γ0‖2.

From Theorem 3.1, we have

J◦(x; y) ≤
∫
<
g◦(x; y)du, ∀x, y ∈ X.

Therefore, we can conclude that (5.15) admits a solution. Moreover, the con-
dition (5.16) guarantees that (5.15) is uniquely solvable.

Next, for any parameter γ > 0, we introduce the function Λ̃f,γ : Ω → R
defined by

Λ̃f,γ(x) = sup
y∈Ω

{∫
<
a(u,∇x) · ∇(x− y)du+

∫
Γ2

(κ(x)F (u, x)−κ(x)F (u, y)) dΓ

−
∫
<
f(x− y)du−

∫
<
g◦(u, x; y − x)du− 1

2γ
‖x− y‖2X

}
. (5.17)

�

The following error estimates are obtained directly from the Theorems 3.4-
3.6, 4.1-4.2 and Theorem 5.1.
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Theorem 5.2. Let x∗ ∈ Ω be the unique solution of (5.15). Under the hy-
potheses of Theorem 5.1, we have

(i) for each γ > 0 and f ∈ L2(<), Λ̃f,γ : Ω → R is a regularized gap
function for (5.15).

(ii) If γ > 0 is such that

βa − αa − αg − LFLκ‖γ0‖2 >
1

2γ
. (5.18)

Then for each x ∈ Ω, it holds

‖x− x∗‖X ≤

√√√√√ Λ̃f,γ(x)

βa − αa − αg − LFLκ‖γ0‖2 −
1

2γ

. (5.19)

Theorem 5.3. Let x∗ ∈ Ω be the unique solution of (5.15). Under the hy-
potheses of Theorem 5.1, we have

(i) for any γ, ρ > 0, the function Λ̃f,γ,ρג̃ : Ω→ R defined by

Λ̃f,γ,ρ(x)ג̃ = inf
z∈Ω

{
Λ̃f,γ(z) + ρ‖x− z‖2X

}
(5.20)

is the Moreau-Yosida regularized gap function for (5.15).
(ii) for any ρ > 0, if γ > 0 is such that

βa − αa − αg − LFLκ‖γ0‖2 >
1

2γ
. (5.21)

Then for each x ∈ Ω the following bounds holds

‖x− x∗‖X ≤

√√√√√√ Λ̃f,γ,ρ(x)ג2̃

min

{
βa − αa − αg − LFLκ‖γ0‖2 −

1

2γ
, ρ

} . (5.22)
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[14] S. Migórski, A. Ochal and M. Sofonea, A class of variationalhemivariational inequalities
in reflexive Banach spaces, J. Elast., 127 (2017), 151-178.

[15] Kanikar Muangchoo, A New Explicit Extragradient Method for Solving Equilibrium
Problems With Convex Constraints, Nonlinear Funct. Anal. Appl., 27(1) (2022), 1-22.

[16] Z. Naniewicz and P.D. Panagiotopoulos, Mathematical Theory of Hemivariational In-
equalities and Applications, Marcel Dekker, New York, 1995.

[17] P.D. Panagiotopoulos, Hemivariational Inequalities, Appl. Mechanics and Engineering,
Springer, Berlin, 1993.
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