References
- D.R. Anderson, Time-Scale Integral Inequalities, J. Ineq. Pure and Appl. Math., 6 (3), (2005), Art. 66.
- R. Bellman, On inequalities with alternating signs., proc. Amer. Math. Soc., 10 (1959), 807-809. https://doi.org/10.1090/S0002-9939-1959-0109864-9
- M. Bohner and A. Peterson, Dynamical Equations on Time Scales - An Introduction with Applications, Lecture Notes, Missouri, 2001.
- C. Dinu, Convex Functions on Time Scales, Annals of the University of Craiova, Math. Comp. Sci. Ser., 35, (2008), 87-96.
- E. K. Godunova and V. I. Levin, A general class of inequalities containing Stef-fensen's inequality, Mat. Zametki, 3 (1968) , 339-344.
-
S. Hilger, Ein
$Ma{\beta}kettenkalkul$ mit Anwendung auf Zentrumsmanning-faltigkeiten. PhD thesis, Universitat Wurzburg, 1988. - S. Hilger, Analysis on Measure chains - a unified approach to continuous and discrete calculus., Results Math., 18 (1990), 18-56 https://doi.org/10.1007/BF03323153
- M.M. Iddrisu, C.A. Okpoti and K.A. Gbolagade, Geometrical Proof of New Stef-fensen's Inequality and Applications, Adv. Inequal. Appl., 2014 (2014), Article 23.
- Z. Liu, On Extensions of Steffensen's Inequality, J. Math. Anal. and Approx. Theory, 2 (2), (2000), 325-329.
- P.R. Mercer, Extensions of Steffensen's Inequality, J. Math. Anal. Appl., 246 (2000), 325-329. https://doi.org/10.1006/jmaa.2000.6822
- D.S. Mitrinovic, J.E. Pecaric, A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, 1993.
- D.S. Mitrinovic and J.E. Pecaric, On the Bellman Generalization of Steffensen's Inequality III, J. Math. Anal. and Appl., 135 (1988), 342-345. https://doi.org/10.1016/0022-247X(88)90158-8
- U.M. Ozkan and H. Yildirim, Steffensen's Integral Inequality on Time Scales, J. Ineq. and Appl., 2007, (2007), 10 pages, Art. ID. 46524.
- J.E. Pecaric, On the Bellman Generalization of Steffensen's Inequality, J. Math. Anal. and Appl., 88 (1982), 505-507. https://doi.org/10.1016/0022-247X(82)90208-6
- J.E. Pecaric, On the Bellman Generalization of Steffensen's Inequality II, J. Math. Anal. and Appl., 104 (1984), 432-434. https://doi.org/10.1016/0022-247X(84)90007-6
- J.E. Pecaric, A. Perusic and K. Smoljak, Mercer and Wu-Srivastava generalisations of Steffensen's inequality, Appl. Math. Comput., 219, (2013), 10548-10558. https://doi.org/10.1016/j.amc.2013.04.028
- S.H. Saker and D. O'Regan, Hardy's Type Integral Inequalities on Time Scales, Appl. Math. Inf. Sci. 9 (6), (2015), 2955-2962.
- J. Steffensen, Bounds of certain trigonometric integrals, Tenth Scan-dinavian Mathematical congress, Copenhagan, Hellerupi, 1946, (1947), 181-186.
- F-H. Wong, C-C. Yeh and W-C. Lian, An Extension of Jensen's Inequality on Time Scales, Adv. in Dynamical Systems and Appl., 1 (2006), 113-120.
- S.H. Wu and H.M. Srivastava, Some improvements and generalizations of Stef-fensen's Integral Inequality, Appl. Math. Comput., 192, (2007), 422-428. https://doi.org/10.1016/j.amc.2007.03.020
- C-C. Yeh, F-H. Wong, S-L. Yu, W-C. Lian, Some Inequalities on Time Scales, Comm. in Applied Analysis 10 (1), (2006), 97-107.