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Abstract. Let M be an n-dimensional closed Riemannian manifold with metric g,

dµ = e−ϕ(x)dν be the weighted measure and ∆p,ϕ be the weighted p-Laplacian. In this

article we will study the evolution and monotonicity for the first nonzero eigenvalue prob-

lem of the weighted p-Laplace operator acting on the space of functions along the Yamabe

flow on closed Riemannian manifolds. We find the first variation formula of it along the

Yamabe flow. We obtain various monotonic quantities and give an example.

1. Introduction

Let (M, g) be a Riemannian manifold, dν be the Riemannian volume measure on
(M, g) and dµ = e−ϕ(x)dν is the weighted volume measure. Then triple (M, g, dµ)
is a smooth metric measure space. Such spaces have been used more widely in
the work of mathematicians, for instance, Perelman used it in [10]. Let M be an
n-dimensional closed Riemannian manifold with metric g.

The geometric flows as the Yamabe flow have been a topic of active research
interest in both mathematics and physics. A geometric flow is an evolution of a geo-
metric structure under a differential equation related to a functional on a manifold,
usually associated with some curvature. A smooth one-parameter family of Rieman-
nian metrics g(t) on M with scalar curvature R = Rg(t) is a called unnormalized
Yamabe flow if

(1.1)
d

dt
g(t) = −Rg(t)g(t), g(0) = g0.

Also, g(t) is a solution of normalized Yamabe flow if

(1.2)
d

dt
g(t) = −(−Rg(t) − rg(t))g(t), g(0) = g0,
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where rg(t) denotes the mean value of the scalar of the metric g(t), i.e.

rg(t) =

∫
M

Rgdvg(t)

V ol(M)
.

Let W 1,p(M) be the Sobolev space and f : M → R, f ∈ W 1,p(M). For p ∈ [1,+∞)
and any smooth function f on M , we define the weighed p-Laplacian on M by

(1.3) ∆p,ϕf = eϕdiv
(
e−ϕ|∇f |p−2∇f

)
= ∆pf − |∇f |p−2∇ϕ.∇f,

where the p-Laplacian ∆pf defined as

(1.4) ∆pf = div(|∇f |p−2∇f) = |∇f |p−2∆f + (p− 2)|∇f |p−4(Hessf)(∇f,∇f).

The Witten-Laplacian is defined by ∆ϕ = ∆−∇ϕ.∇, which is a symmetric diffusion
operator on L2(M,µ) and is self-adjoint. The weighted p-Laplacian is generalization
of p-Laplacian and the Witten-Laplace operators, for instance, when ϕ is a constant
function, the weighted p-Laplace operator is just the p-Laplace operator and when
p = 2, the weighted p-Laplace operator is the Witten-Laplace operator.

We say Λ is an eigenvalue of the weighted p-Laplacian ∆p,ϕ at time t ∈ [0, T )
whenever for some f ∈ W 1,p(M),

(1.5) −∆p,ϕf = Λ|f |p−2f,

or equivalently

(1.6) −
∫
M

f∆p,ϕfdµ = Λ

∫
M

|f |pdµ,

where dµ = e−ϕ(x)dν and dν is the Riemannian volume measure. We have

(1.7)

∫
M

|∇f |p dµ = Λ

∫
M

|f |pdµ,

where f(x, t) called eigenfunction corresponding to eigenvalue Λ(t). The first non-
zero eigenvalue λ(t) = λ(M, g(t), dµ) is characterised as follows

(1.8) λ(t) = inf
0 ̸=f∈W 1,p

0 (M)

{∫
M

|∇f |pdµ :

∫
M

|f |pdµ = 1

}
,

where W 1,p
0 (M) is the completion of C∞

0 (M) with respect Sobolev norm

(1.9) ||f ||W 1,p =

(∫
M

|f |pdµ+

∫
M

|∇f |pdµ
) 1

p

.

The eigenvalue problem for weighted p-Laplacian has been extensively studied in
the literature [11, 12].
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The problem of evolution and monotonicity of the eigenvalue of geometric op-
erator is a topic problem. Recently many mathematicians investigate properties
of Laplace, p-Laplace, Witten-Laplace and etc geometric operators, under various
geometric flows. For first time Perelman in [10] showed that the first eigenvalue of
the geometric operator −4∆ +R is nondecreasing along the Ricci flow, where R is
scalar curvature.

Then Cao [4] and Zeng and et’al [14] extended the geometric operator −4∆+R
to the operator −∆+ cR on closed Riemannian manifolds, and studied the mono-
tonicity of eigenvalues of the operator −∆+ cR along the Ricci flow and the Ricci-
Bourguignon flow, respectively.

Author in [1] studied the evolution for the first eigenvalue of p-Laplacian along
the Yamabe flow and in [2] shown that the first eigenvalue of Witten-Laplace oper-
ator −∆ϕ is monotonic along the Ricci-Bourguignon flow with some assumptions.

In [9], I have been studied the evolution for the first eigenvalue of geometric
operator −∆ϕ + R

2 under the Yamabe flow. For the other recent research in this
direction, see [5, 6, 13].

Motivated by the above works, in this paper we will investigate the evolution
of the nonzero first eigenvalue of the weighted p-Laplace operator whose metric
satisfying the Yamabe flow (1.1) and ϕ evolves by ∂ϕ

∂t = ∆ϕ.

2. Preliminaries

In this section, we will first introduce a smooth function where at time t0 is
the first nonzero eigenvalue of the weighted p-Laplace operator ∆p,ϕ then we will
find the formula for the evolution of the first non-zero eigenvalue of the weighted p-
Laplace operator along the evolution equation system (1.1) on a connected, smooth,
closed oriented Riemannnian n-manifold. Let M be a closed oriented Riemannian
n-manifold and (M, g(t), ϕ(t)) be a smooth solution of the evolution equation system
(1.1) for t ∈ [0, T ).

The first non-zero eigenvalue of weighted p-Laplacian is nonlinear and its corre-
sponding eigenfunction are not known to be C1-differentiable. For this reason, we
apply techniques of Cao [3] and Wu [13] and assume that at time t0, f0 = f(t0) is
the eigenfunction for the first nonzero eigenvalue λ(t0) of ∆p,ϕ. Then we get

(2.1)

∫
M

|f(t0)|p dµg(t0) = 1.

We consider the following smooth function

(2.2) h(t) := f0

[
det(gij(t0))

det(gij(t))

] 1
2(p−1)

,

along the Yamabe flow g(t). We assume that

(2.3) f(t) =
h(t)

(
∫
M

|h(t)|pdµ)
1
p

,
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where f(t) is smooth function under the Yamabe flow, satisfied in
∫
M

|f |pdµ = 1
and at time t0, f is the eigenfunction for λ of ∆p,ϕ. Therefore if

∫
M

|f |pdµ = 1 and

(2.4) λ(t, f(t)) = −
∫
M

f∆p,ϕfdµ,

then λ(t0, f(t0)) = λ(t0).

3. Variation of λ(t)

In this section, we first recall evolution of some geometric structure along the
Yamabe flow and then we give some useful evolution formulas for λ(t) under the
Yamabe flow. From [7] we have

Lemma 3.1. Under the Yamabe flow equation (1.1), we get

∂

∂t
gij = Rgij ,

∂

∂t
(dν) = −n

2
Rdν,

∂

∂t
(dµ) = −(ϕt +

n

2
R)dµ,

∂

∂t
(Γk

ij) = −1

2
(∇jRδki +∇iRδkj −∇kRgij),

∂

∂t
R = (n− 1)∆R+R2,

and along the normalized Yamabe flow we have

∂

∂t
gij = (R− r)gij ,

∂

∂t
(dν) = −n

2
(R− r)dν,

∂

∂t
(dµ) = −(ϕt +

n

2
(R− r))dµ,

∂

∂t
R = (n− 1)∆R+R(R− r).

Lemma 3.2. Let (M, g(t)), t ∈ [0, T ) be a solution to the Yamabe flow (1.1) on
a closed oriented Riemannain manifold. Let f ∈ C∞(M) be a smooth function on
(M, g(t)). Then we have the following evolutions:

∂

∂t
|∇f |2 = |∇f |2 + 2gij∇if∇jft,(3.1)

∂

∂t
|∇f |p−2 = (p− 2)|∇f |p−4{R

2
|∇f |2 + gij∇if∇jft},(3.2)
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∂

∂t
(∆f) = ∆ft +R∆f +

2− n

2
∇kR∇kf,(3.3)

∂

∂t
(∆pf) = R∆pf + gij∇i(Zt∇jf) + gij∇i(Z∇jft)(3.4)

−n− 2

2
Zgij∇iR∇jf,

∂

∂t
(∆p,ϕf) = gij∇i(Zt∇jf) + gij∇i(Z∇jft)−

n− 2

2
Zgij∇iR∇jf(3.5)

+R∆p,ϕf − Zt∇ϕ.∇f − Z∇ϕt.∇f − Z∇ϕ.∇ft,

where Z := |∇f |p−2 and ft =
∂f
∂t .

Proof. By derivative respect to variable time t in local coordinates we have

∂

∂t
|∇f |2 =

∂

∂t
(gij∇if∇jf) =

∂gij

∂t
∇if∇jf + 2gij∇if∇jft

= R|∇f |2 + 2gij∇if∇jft

which is (3.1). For prove (3.2) by using (3.1) we get

∂

∂t
|∇f |p−2 =

∂

∂t
(|∇f |2)

p−2
2 =

p− 2

2
(|∇f |2)

p−4
2

∂

∂t
(|∇f |2)

=
p− 2

2
|∇f |p−4

{
R|∇f |2 + 2gij∇if∇jft

}
= (p− 2)|∇f |p−4

{
R

2
|∇f |2 + gij∇if∇jft

}
which is exactly (3.2). Now Lemma 3.1 and 2∇iRij = ∇jR result

∂

∂t
(∆f) =

∂

∂t
[gij(

∂2f

∂xi∂xj
− Γk

ij

∂f

∂xk
)]

=
∂gij

∂t
(

∂2f

∂xi∂xj
− Γk

ij

∂f

∂xk
) + gij(

∂2ft
∂xi∂xj

− Γk
ij

∂ft
∂xk

)− gij
∂

∂t
(Γk

ij)
∂f

∂xk

= R∆f +∆ft +
1

2
gij(∇jRδki +∇iRδkj −∇kRgij)∇kf

= ∆ft +R∆f +
2− n

2
∇kR∇kf.

For prove (3.4), let Z = |∇f |p−2. We obtain

∂

∂t
(∆pf) =

∂

∂t

(
div(|∇f |p−2∇f)

)
=

∂

∂t

(
gij∇i(Z∇jf)

)
=

∂

∂t

(
gij∇iZ∇jf + gijZ∇i∇jf

)
=

∂gij

∂t
∇iZ∇jf + gij∇iZt∇jf + gij∇iZ∇jft + Zt∆f + Z

∂

∂t
(∆f)
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= Rgij∇iZ∇jf + gij∇iZt∇jf + gij∇iZ∇jft + Zt∆f

+Z{∆ft +R∆f +
2− n

2
∇kR∇kf}

= R∆pf + gij∇i(Zt∇jf) + gij∇i(Z∇jft)−
n− 2

2
Zgij∇iR∇jf.

Taking derivative with respect to time t of both sides of equation ∆p,ϕf = ∆pf −
|∇f |p−2∇ϕ.∇f and (3.4) imply that

∂

∂t
(∆p,ϕf) =

∂

∂t
(∆pf)− Z

∂gij

∂t
∇iϕ∇jf − Ztg

ij∇iϕ∇jf − Zgij∇iϕt∇jf

−Zgij∇iϕ∇jft

= R∆pf + gij∇i(Zt∇jf) + gij∇i(Z∇jft)−
n− 2

2
Zgij∇iR∇jf

−ZRgij∇iϕ∇jf − Ztg
ij∇iϕ∇jf − Zgij∇iϕt∇jf − Zgij∇iϕ∇jft,

it results in (3.5). 2

Proposition 3.3. Let (M, g(t)), t ∈ [0, T ) be a solution of the Yamabe flow (1.1)
on the smooth closed Riemannain manifold (Mn, g0) and ∂ϕ

∂t = ∆ϕ. If λ(t) de-
notes the evolution the first non-zero eigenvalue of the weighted p-Laplacian ∆p,ϕ

corresponding to the eigenfunction f(x, t) under the flow (1.1), then

∂

∂t
λ(t, f(t))|t=t0 =

n

2
λ(t0)

∫
M

R|f |p dµ+
p− n

2

∫
M

R|∇f |pdµ

+λ(t0)

∫
M

(∆ϕ)|f |p dµ−
∫
M

(∆ϕ)|∇f |pdµ.(3.6)

Proof. Let f(t) be a smooth function where f(t0) is the corresponding eigenfunc-
tion to λ(t0) = λ(t0, f(t0)). Function λ(t, f(t)) is smooth and taking derivative
λ(t, f(t)) = −

∫
M

f∆p,ϕf dµ with respect to t, we get

(3.7)
∂

∂t
λ(t, f(t))|t=t0 = − ∂

∂t

∫
M

f∆p,ϕf dµ.

Now, by condition
∫
M

|f |pdµ = 1 and taking the time derivative of it, we can write

(3.8) 0 =
∂

∂t

∫
M

|f |p−2f2dµ =

∫
M

(p− 1)|f |p−2fftdµ+

∫
M

|f |p−2f
∂

∂t
(fdµ),

hence

(3.9)

∫
M

|f |p−2f

[
(p− 1)ftdµ+

∂

∂t
(fdµ)

]
= 0.
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On the other hand, using (3.5), we obtain

∂

∂t

∫
M

f∆p,ϕf dµ =

∫
M

∂

∂t
(∆p,ϕf)f dµ+

∫
M

∆p,ϕf
∂

∂t
(f dµ)

=

∫
M

R∆p,ϕff dµ+

∫
M

gij∇i(Zt∇jf)f dµ

+

∫
M

gij∇i(Z∇jft)f dµ− n− 2

2

∫
M

Z∇R.∇ff dµ(3.10)

−
∫
M

Zt∇ϕ.∇ff dµ−
∫
M

Z∇ϕt.∇ff dµ

−
∫
M

Z∇ϕ.∇ftf dµ−
∫
M

λ|f |p−2f
∂

∂t
(fdµ).

By the application of integration by parts we have

(3.11)

∫
M

gij∇i(Zt∇jf)f dµ = −
∫
M

Zt|∇f |2dµ+

∫
M

Zt∇f.∇ϕf dµ,

and

(3.12)

∫
M

gij∇i(Z∇jft)f dµ = −
∫
M

Z∇ft.∇f dµ+

∫
M

Z∇ft.∇ϕf dµ.

Now, plugging (3.11) and (3.12) into (3.10), we get

∂

∂t

∫
M

f∆p,ϕf dµ = −
∫
M

λR|f |p dµ− n− 2

2

∫
M

Z∇R.∇ffdµ

−
∫
M

Zt|∇f |2dµ−
∫
M

Z∇ft.∇f dµ−
∫
M

Z∇ϕt.∇f f dµ(3.13)

−
∫
M

λ|f |p−2f
∂

∂t
(fdµ).

On the other hand

(3.14) Zt =
∂

∂t
(|∇f |p−2) = (p− 2)|∇f |p−4{R

2
|∇f |2 + gij∇if∇jft}.

Therefore replacing this into (3.13), we have

− ∂

∂t
λ(t, f(t))|t=t0 = −λ(t0)

∫
M

R|f |p dµ− p− 2

2

∫
M

R|∇f |pdµ

−n− 2

2

∫
M

Z∇R.∇ffdµ− (p− 1)

∫
M

Z∇ft.∇f dµ

−
∫
M

Z∇ϕt.∇f f dµ− λ(t0)

∫
M

|f |p−2f
∂

∂t
(fdµ).(3.15)
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Also

(3.16)

∫
M

Z∇ft.∇f dµ = −
∫
M

ft∆p,ϕf dµ =

∫
M

λ|f |p−2f ft dµ.

Then we arrive at

− ∂

∂t
λ(t, f(t))|t=t0 = −λ(t0)

∫
M

R|f |p dµ− p− 2

2

∫
M

R|∇f |pdµ

−n− 2

2

∫
M

Z∇R.∇ffdµ−
∫
M

Z∇ϕt.∇f dµ(3.17)

−λ(t0)

∫
M

|f |p−2f

(
(p− 1)ft dµ+

∂

∂t
(fdµ)

)
.

Hence (3.9) results in

− ∂

∂t
λ(t, f(t))|t=t0 = −λ(t0)

∫
M

R|f |p dµ− p− 2

2

∫
M

R|∇f |pdµ

−n− 2

2

∫
M

Z∇R.∇ffdµ−
∫
M

Z∇ϕt.∇f dµ.(3.18)

By integration by parts we get

(3.19)

∫
M

Z∇ϕt.∇f f dµ =

∫
M

λ|f |p(∆ϕ) dµ−
∫
M

(∆ϕ)|∇f |pdµ

and

(3.20)

∫
M

Z∇R.∇f f dµ =

∫
M

λR|f |p dµ−
∫
M

R|∇f |pdµ.

Pluggin (3.19) and (3.20) into (3.18) imply that (3.6). 2

Corollary 3.4. Let (M, g(t)), t ∈ [0, T ) be a solution of the Yamabe flow (1.1)
on the smooth closed Riemannain manifold (Mn, g0). If λ(t) denotes the evolution
the first non-zero eigenvalue of the weighted p-Laplacian ∆p,ϕ corresponding to the
eigenfunction f(x, t) under the flow (1.1) where ϕ is independent of t, then

(3.21)
∂

∂t
λ(t, f(t))|t=t0 =

n

2
λ(t0)

∫
M

R|f |p dµ+
p− n

2

∫
M

R|∇f |pdµ.

Theorem 3.5. Let (M, g(t)), t ∈ [0, T ) be a solution of the Yamabe flow (1.1)
on the smooth closed Riemannain manifold (Mn, g0) and ∂ϕ

∂t = ∆ϕ. Let p−n
2 R <

∆ϕ and Rmin(0) ≥ 0 along the Yamabe flow (1.1). Suppose that λ(t) denotes the
evolution the first non-zero eigenvalue of the weighted p-Laplacian ∆p,ϕ then the

quantity λ(t)(1−Rmin(0)t)
p+2
2 is nondecreasing along the flow (1.1) for T ≤ 1

Rmin(0)
.
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Proof. According to (3.6) of Proposition 3.3, we have

∂

∂t
λ(t, f(t))|t=t0 ≥ n

2
λ(t0)

∫
M

R|f |p dµ+
p− n

2

∫
M

R|∇f |pdµ

+
p− n

2
λ(t0)

∫
M

R|f |p dµ−
∫
M

(∆ϕ)|∇f |pdµ(3.22)

≥ p

2
λ(t0)

∫
M

R|f |p dµ

On the other hand, the scalar curvature under the Yamabe flow evolves by

(3.23)
∂R

∂t
= (n− 1)∆R+R2

The solution of the corresponding ODE y′ = y2 with initial value y(0) = Rmin(0) is

σ(t) =
Rmin(0)

1−Rmin(0)t

on [0, T ′) where T ′ = min{T, 1
Rmin(0)

}. Using the maximum principle to (3.23), we

get Rg(t) ≥ σ(t). Therefore (3.22) becomes

d

dt
λ(t, f(t))|t=t0 ≥ p

2
λ(t0)σ(t0),

and this implies that in any sufficiently small neighborhood of t0 such as I0, we get

d

dt
λ(t, f(t)) ≥ p

2
λ(t, f(t))σ(t).

Integrating the last inequality with respect to t on [t1, t0] ⊂ I0, we have

ln
λ(t0, f(t0))

λ(t1, f(t1))
> ln(

1−Rmin(0)t1
1−Rmin(0)t0

)
p
2 .

Since λ(t0, f(t0)) = λ(t0) and λ(t1, f(t1)) ≥ λ(t1) we conclude that

ln
λ(t0)

λ(t1)
> ln(

1−Rmin(0)t1
1−Rmin(0)t0

)
p
2 ,

that is, the quantity λ(t)(1 − Rmin(0)t)
p
2 is strictly increasing in any sufficiently

small neighborhood of t0. Since t0 is arbitrary, then λ(t)(1−Rmin(0)t)
p
2 is strictly

increasing along the Yamabe flow on [0, T ′). 2

Proposition 3.6. Let (M, g(t)), t ∈ [0, T ) be a solution of the normalized Yamabe
flow (1.2) on the smooth closed Riemannain manifold (Mn, g0) and ∂ϕ

∂t = ∆ϕ. If
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λ(t) denotes the evolution the first non-zero eigenvalue of the weighted p-Laplacian
∆p,ϕ corresponding to the eigenfunction f(x, t) under the flow (1.2), then

∂

∂t
λ(t, f(t))|t=t0 = −pr

2
λ(t0) +

n

2
λ(t0)

∫
M

R|f |p dµ+
p− n

2

∫
M

R|∇f |pdµ

+λ(t0)

∫
M

(∆ϕ)|f |p dµ−
∫
M

(∆ϕ)|∇f |pdµ.(3.24)

Proof. In the normalized case, we have

∂

∂t
(∆p,ϕf) = gij∇i(Zt∇jf) + gij∇i(Z∇jft)−

n− 2

2
Zgij∇iR∇j

+(R− r)∆p,ϕf − Zt∇ϕ.∇f − Z∇ϕt.∇f − Z∇ϕ.∇ft,(3.25)

and

(3.26) Zt =
∂

∂t
(|∇f |p−2) = (p− 2)|∇f |p−4{R− r

2
|∇f |2 + gij∇if∇jft},

where Z = |∇f |p−2. The subsequent process is similar to the proof of Proposition
3.3, direct computation implies that (3.24). 2

Corollary 3.7. Let (M, g(t)), t ∈ [0, T ) be a solution of the Yamabe flow (1.1)
on the smooth closed Riemannain manifold (Mn, g0). If λ(t) denotes the evolution
the first non-zero eigenvalue of the weighted p-Laplacian ∆p,ϕ corresponding to the
eigenfunction f(x, t) under the flow (1.1) where ϕ is independent of t, then

(3.27)
∂

∂t
λ(t, f(t))|t=t0 = −pr

2
λ(t0) +

n

2
λ(t0)

∫
M

R|f |p dµ+
p− n

2

∫
M

R|∇f |pdµ.

3.1. Variation of λ(t) on a Surface

Now, we write Proposition 3.6 and Corollary 3.7 in some remarkable particular
cases.

Corollary 3.1.1. Let (M2, g(t)), t ∈ [0, T ) be a solution of the normalized Yamabe
flow on a closed Riemannian surface (M2, g0). If λ(t) denotes the evolution of the
first eigenvalue of the weighted p-Laplacian under the flow (1.2), then on g0, we
have

(1) If ∂ϕ
∂t = ∆ϕ then

∂

∂t
λ(t, f(t))|t=t0 = −pr

2
λ(t0) + λ(t0)

∫
M

R|f |p dµ+
p− 2

2

∫
M

R|∇f |pdµ

+ λ(t0)

∫
M

(∆ϕ)|f |p dµ−
∫
M

(∆ϕ)|∇f |pdµ.(2.1)
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(2) If ϕ is independent of t then

∂

∂t
λ(t, f(t))|t=t0 = −pr

2
λ(t0) + λ(t0)

∫
M

R|f |p dµ+
p− 2

2

∫
M

R|∇f |pdµ.(2.2)

Remark 3.1.2. Let (M2, g(t)), t ∈ [0, T ) be a solution of the normalized Yamabe
flow on a compact Riemannian surface (M2, g0) and ϕ be independent of t. Then
from [8] for a constant c depending only on g0, we have

(i) If r < 0 then r − cert ≤ R ≤ r + cert,

(ii) If r = 0 then − c
1+ct ≤ R ≤ c,

(iii) If r > 0 then −cert ≤ R ≤ r + cert.

Therefore by using (2.2) we can obtain a lower bound and a upper bound for the
first eigenvalue of the weighted p-Laplacian under the flow (1.2).

4. Example

In this section, we find the variational formula of the evolving spectrum of the
weighted p-Laplace operator for some of Riemannian manifolds.

Example 4.1. Let (Mn, g0) be an Einstein manifold i.e. there exists a constant
a such that Ric(g0) = ag0. Assume that we have a solution to the Yamabe flow
which is of the form

g(t) = u(t)g0, u(0) = 1

where u(t) is a positive function. We compute

∂g

∂t
= u′(t)g0, Ric(g(t)) = Ric(g0) = ag0 =

a

u(t)
g(t), Rg(t) =

an

u(t)
,

for this to be a solution of the Yamabe flow, we require

u′(t)g0 = −Rg(t)g(t) = −ang0

this shows that u(t) = −nat + 1. So g(t) is an Einstein metric. Using equation
(3.21), we obtain the following relation

d

dt
λ(t, f(t))|t=t0 =

n

2
λ(t0)

an

−nat0 + 1

∫
M

|f |pdµ+
p− n

2

an

−nat0 + 1

∫
M

|∇f |pdµ,

or equivalently
d

dt
λ(t, f(t))|t=t0 =

panλ(t0)

2(−nat0 + 1)
.

This implies that in any sufficiently small neighborhood of t0 such as I0, we get

d

dt
λ(t, f(t)) =

panλ(t, f(t))

2(−nat+ 1)
.
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Integrating the last inequality with respect to t on [t1, t0] ⊂ I0, we have

ln
λ(t0, f(t0))

λ(t1), f(t1)
= ln(

−nat1 + 1

−nat0 + 1
)

p
2 .

Since λ(t0, f(t0)) = λ(t0) and λ(t1, f(t1)) ≥ λ(t1) we conclude that

ln
λ(t0)

λ(t1)
> ln(

−nat1 + 1

−nat0 + 1
)

p
2 ,

that is, the quantity λ(t)(−nat + 1)
p
2 is strictly increasing along the flow (1.1) on

[0, T ).
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