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STABILITY IN THE ENERGY SPACE OF THE SUM OF N

PEAKONS FOR A CAMASSA-HOLM-TYPE EQUATION

WITH QUARTIC NONLINEARITY

Xingxing Liu

Abstract. Considered herein is the orbital stability in the energy space
H1(R) of a decoupled sum of N peakons for a Camassa-Holm-type equa-

tion with quartic nonlinearity, which admits single peakon and multi-

peakons. Based on our obtained result of the stability of a single peakon,
then combining modulation argument with monotonicity of local energy

H1-norm, we get the stability of the sum of N peakons.

1. Introduction

In the past two decades, the Camassa-Holm (CH) equation

yt + uyx + 2uxy = 0, y = u− uxx,
attracted a great deal of attention among the nonlinear integrable equations and
the communities of the PDEs. In 1993, Camassa and Holm [3] obtained the CH
equation by approximating directly in the Hamiltonian for Euler’s equations
in the shallow water regime. It can model the unidirectional propagation of
shallow water waves over a flat bottom [3, 13, 24], with u(t, x) standing for
the fluid velocity at time t ≥ 0 in the spatial x ∈ R direction. Actually,
the CH equation was initially introduced in 1981 by Fuchssteiner and Fokas
[18] as a bi-Hamiltonian generalization of the KdV equation. The CH equation
shares with the classical KdV equation the properties that it has bi-Hamiltonian
structure [18] and is completely integrable [1, 7]. However, while all smooth
solutions of the KdV equation are global, the CH equation admits global strong
solutions [6, 9, 10] as well as breaking waves [6, 9–11], i.e., the wave profile
remains bounded, but its slope becomes unbounded in finite time [37].

Another remarkable property of the CH equation is the presence of peaked
solitary wave solutions [4], called peakons. They are given by u(t, x) = ϕc(x−
ct) = ce−|x−ct|, c ∈ R, which are solitons, retaining their shape and speed
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after interacting with other peakons [2]. It is worth pointing out that the
feature of peakons that their profile is smooth except for a peak at its crest, is
analogous to that of the waves of greatest height, i.e., traveling waves of largest
possible amplitude which are solutions to be governing equations for water
waves [8,12,36]. In 2000, Constantin and Strauss [14] applied the conservation
laws to give an impressive proof of stability by a direct approach. In 2009,
Dika and Molinet [15] derived the stability of multi-peakons by combining the
proof of stability of single peakon with a property of almost monotonicity of
the local energy norm. Then they [16] also considered the stability of ordered
trains of anti-peakons and peakons.

Recently, the great interest in the CH equation has inspired the search for
various CH-type equations with cubic or higher-order nonlinearity. Indeed,
two integrable CH-type equations with cubic nonlinearity which admit peakons
have been extensively studied recently. One is the following modified CH equa-
tion:

yt +
(
(u2 − u2x)y

)
x

= 0, y = u− uxx,

and another one is the Novikov equation:

yt + u2yx + 3uuxy = 0, y = u− uxx.

The modified CH equation was derived independently in [17,20, 31, 32]. It has
a bi-Hamiltonian structure [33], and is completely integrable [31]. Fu et al. [19]
studied the Cauchy problem of the modified CH equation in Besov spaces
and the blow-up scenario. Gui et al. [21] considered the formulation of singu-
larities of solutions and showed that some solutions with certain initial data
would blow up in finite time. Then the blow-up phenomena were systemati-
cally investigated in [5, 28]. The modified CH equation admits peakons of the

form u(t, x) = ϕc(t, x) =
√

3c
2 e
−|x−ct|, c > 0. The single peakon and train of

peakons for the modified CH equation are orbitally stable [34] and [26], re-
spectively. The Novikov equation was proposed in [30] and its integrability,
well-posedness, blow-up phenomena, global weak solutions, peakons and their
stability were extensively investigated in [22,23,25,30,38].

Since a small perturbation of a peakon yields another one traveling with
a different speed and phase shift, the appropriate notion of stability here is
that of orbital stability, i.e., a wave starting close to a peakon remains close
to some translate of it for all later times. It is shown above that one of the
main remarkable features of the CH equation (with quadratic nonlinearity), the
modified CH and Novikov equations (with cubic nonlinearity) is the existence
of orbitally stable peakons. Hence, a natural idea is to extend such study to
other CH-type equations with higher-order nonlinearity. By generalizing one
of the Hamiltonian structures of the CH equation, Recio and Anco [35] derived
the following generalized CH equation:

(1.1) yt + ux(u2 − u2x)n−1y +
(
u(u2 − u2x)n−1y

)
x

= 0, y = u− uxx.
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Obviously, Eq. (1.1) can be reduced to the classical CH equation as n = 1. It
possesses weak solutions given by multi-peakons, which are a linear superposi-
tion of peakons with time-dependent amplitudes and positions. Very recently,
we have considered the stability of a single peakon for the following CH-type
equation with quartic nonlinearity [27]:

(1.2) yt + ux(u2 − u2x)y +
(
u(u2 − u2x)y

)
x

= 0, y = u− uxx,

which is the case n = 2 of the generalized CH equation (1.1). In this manu-
script, we continue to study the orbital stability of the sum of N sufficiently
decoupled peakons for Eq. (1.2). Using our obtained result of the stability of a
single peakon [27], and the general strategy introduced by Martel, Merle and
Tsai in [29] for the generalized KdV equation, we get the stability of the sum
of N peakons in the present paper, which is stated as follows:

Theorem 1.1. Let be given N velocities c1, . . . , cN such that 0 < c1 < · · · <
cN . There exist A > 0, L0 > 0 and ε0 > 0 only depending on the speeds (ci)

N
i=1,

such that for any u(0, x) := u0(x) ∈ Hs(R), s > 5
2 , if

0 6≡ y0(x) = (1− ∂2x)u0(x) ≥ 0,(1.3)

and

‖u0 −
N∑
i=1

ϕci(· − z0i )‖H1(R) ≤ ε2 with 0 < ε < ε0,(1.4)

for some (z0i )Ni=1, satisfying

z01 < · · · < z0N and z0i − z0i−1 > L with L > L0 > 0, i = 2, . . . , N,(1.5)

then for the corresponding solution

u(t, x) ∈ C([0, T );Hs(R)) ∩ C1([0, T );Hs−1(R))

associated to the Cauchy problem of Eq. (1.2) with u0 and the maximal existence
time T > 0, there exist x1(t), . . . , xN (t) such that

sup
t∈[0,T )

‖u(t, ·)−
N∑
i=1

ϕci(· − xi(t))‖H1(R) ≤ A(
√
ε+ L−

1
8 ), ∀t ∈ [0, T ),(1.6)

and

xi(t)− xi−1(t) >
L

2
, ∀t ∈ [0, T ), i = 2, . . . , N.(1.7)

As commented by Dika and Molinet in [15, 16], the general method in [29]
developed for the generalized KdV equation indicates that there are two crucial
ingredients to prove the stability of the sum of N peakons. One is a dynamical
proof of the stability of a single peakon, and the other is a property of almost
monotonicity, which says for a solution close to ϕc, the part of the energy
traveling at the right of ϕc(· − ct) is almost decreasing with respect to time.
Our approach to prove Theorem 1.1 is try to follow this method. Since the
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conservation law E(u) of Eq. (1.2) is the same as the CH equation, we also
expect orbital stability of peakons in the sense of the energy space H1(R).
While the other conservation law F (u) of Eq. (1.2) is much more complicated
than the cases of the CH, modified CH and Novikov equations due to its quartic
nonlinearity. There are mainly two difficulties encountered by F (u). First,
following [27], by introducing a polynomial of degree 3 as the functional h (see
Lemma 3.3), we thus derive a localized version of an estimate, which establishes
the connection between the localized version of the conservation laws Ei and
Fi by a polynomial inequality. The second difficulty, involving the proof of
the almost monotonicity result on the part of energy E(·) at the right of each
peakon, is to estimate the term u4x, which is quite different from the cases of
the CH and modified CH equations. Of course this new difficulty is caused
by the complicated nonlinear structure and higher-order conservation laws.
To overcome it, by exploiting the characteristic ODE related to Eq. (1.2) to
get the positivity of the solution u under the assumption on the initial data
y0 = (1− ∂2x)u0 ≥ 0, and the inequality |ux| ≤ u, we thus establish the crucial
monotonicity result (see Lemma 3.2).

The remainder of this paper is organized as follows. In Section 2, we briefly
recall the well-posedness, two conservation laws, and the existence of peakons
for Eq. (1.2). In Section 3, we complete the proof of Theorem 1.1, which is
divided into four subsections for convenience. In Section 4, we end our paper
with an appendix devoted to the proofs of existence of C1-functions (x̃i(t))

N
i=1

in Lemma 3.1 and identity (3.16) in Lemma 3.2.

2. Preliminaries

In this section, we firstly recall the local well-posedness result regarding the
Cauchy problem associated to Eq. (1.2), some properties of the strong solutions
and two useful conservation laws, which will be frequently used in the rest of
the paper.

Lemma 2.1 ([27]). Let u0(x) ∈ Hs(R) with s > 5
2 . Then there exists T >

0 such that the Cauchy problem (1.2) has a unique strong solution u(t, x) ∈
C([0, T );Hs(R))∩C1([0, T );Hs−1(R)) and the map u0 7→ u is continuous from
a neighborhood of u0 in Hs(R) into C([0, T );Hs(R)) ∩ C1([0, T );Hs−1(R)).

Lemma 2.2 ([27]). If the initial data u0 ∈ Hs(R) with s > 5
2 , then the following

two functionals

E(u) =

∫
R

(
u2 + u2x

)
dx and F (u) =

∫
R

(
u5 + 2u3u2x −

1

3
uu4x

)
dx(2.1)

are invariants for Eq. (1.2). Moreover, if y0(x) = (1−∂2x)u0(x) does not change
sign, then y(t, x) will not change sign for all t ∈ [0, T ). It follows that if y0 ≥ 0,
then the solution u of Eq. (1.2) is positive for (t, x) ∈ [0, T )× R, and satisfies

|ux(t, x)| ≤ u(t, x) for all (t, x) ∈ [0, T )× R.(2.2)
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In order to understand the meaning of a peakon solution to Eq. (1.2), ap-
plying the operator (1− ∂2x)−1 to the both sides of Eq. (1.2), we deduce

ut + (u3 − 1

3
uu2x)ux + (1− ∂2x)−1∂x

(
u4 +

3

2
u2u2x −

1

12
u4x
)

(2.3)

+ (1− ∂2x)−1(
1

3
uu3x) = 0.

Recall that if p(x) := 1
2e
−|x|, x ∈ R, then (1− ∂2x)−1f = p ∗ f for all f ∈ L2.

We thus have the following notion of weak solutions.

Definition 2.1. Let u0 ∈ W 1,4(R) be given. If u(t, x) ∈ L∞loc([0, T );W 1,4
loc (R))

and satisfies∫ T

0

∫
R

(
uφt +

1

4
u4φx +

1

3
uu3xφ+ p ∗

(
u4 +

3

2
u2u2x −

1

12
u4x
)
φx

− p ∗ (
1

3
uu3x)φ

)
dxdt+

∫
R
u0(x)φ(0, x)dx = 0

for all functions φ ∈ C∞c ([0, T ) × R), then u(t, x) is called a weak solution to
Eq. (1.2). If u is a weak solution on [0, T ) for every T > 0, then it is called a
global weak solution.

Based on the above definition of weak solution, we have proved the following
existence result of single peakon of Eq. (1.2).

Lemma 2.3 ([27]). For any a > 0, the peaked functions of the form

ϕc(t, x) = ae−|x−ct|, where c =
2

3
a3,(2.4)

is a global weak solution to Eq. (1.2).

3. Proof of Theorem 1.1

In this section, we will break the proof of Theorem 1.1 into four subsections
for convenience. For α > 0, and L > 0, we define the following neighborhood of
size α of the superpositon of N peakons of speed c1, . . . , cN , with spatial shifts
zi that satisfied zi − zi−1 ≥ L,

U(α,L) =

{
u ∈ H1(R); inf

zi−zi−1>L
‖u−

N∑
i=1

ϕci(· − zi)‖H1(R) < α

}
.

By a standard continuity argument, owing to the continuity of u(t, x) in Hs(R)
↪→ H1(R), s > 5

2 , to prove Theorem 1.1, it is sufficient to show that there exist
A > 0, L0 > 0 and ε0 > 0 such that for all L > L0 and 0 < ε < ε0, if u0
satisfies (1.3)-(1.5) and if for some 0 < t0 < T ,

u(t) ∈ U
(
A(
√
ε+ L−

1
8 ),

L

2

)
, ∀t ∈ [0, t0],(3.1)
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then

u(t0) ∈ U
(A

2
(
√
ε+ L−

1
8 ),

2L

3

)
.(3.2)

Therefore, to complete the proof of Theorem 1.1, we only need to verify (3.2)
under the assumption (3.1) for some L > L0 and 0 < ε < ε0, with A,L0, and
ε0 to be specified later.

3.1. Modulation

In this subsection, we prove that if u stays in some neighbourhood U(α, L2 )
of the sum of N peakons, then we can decompose the solution u as the sum of
N modulated peakons plus a function v(t) which remains small in H1(R), in

the following way: u(t) =
∑N
i=1 ϕci(· − x̃i(t)) + v(t). Moreover, we show that

the different bumps of u that are individually close to a peakon get away from
each others as time is increasing.

Lemma 3.1. Let u0 satisfy the conditions (1.3)-(1.5). There exist 0 < α0 � 1
and L0 � 1 depending only on (ci)

N
i=1 such that for all 0 < α < α0 and L0 < L,

if the corresponding solution u(t) ∈ U(α, L2 ) on [0, t0] for some 0 < t0 < T ,

then there exist unique C1-functions x̃i : [0, t0] 7→ R, i = 1, . . . , N, such that∥∥u(t)−
N∑
i=1

ϕci(· − x̃i(t))
∥∥
H1(R) ≤ O(

√
α),(3.3)

˙̃x(t) :=
d

dt
x̃i = ci +O(

√
α) +O(L−1), i = 1, . . . , N,(3.4)

and

x̃i(t)− x̃i−1(t) ≥ 3

4
L+

ci − ci−1
2

t, i = 2, . . . , N.(3.5)

Moreover, setting Ji := [yi(t), yi+1(t)], i = 1, . . . , N, with

(3.6)

{
y1 = −∞, yN+1 = +∞,

yi(t) = x̃i(t)+x̃i−1(t)
2 , i = 2, . . . , N,

it holds

|xi(t)− x̃i(t)| ≤
L

12
, i = 1, . . . , N,(3.7)

where x1(t), . . . , xN (t) are any points such that

u(t, xi(t)) = max
x∈Ji(t)

u(t, x), i = 1, . . . , N.(3.8)

Proof. Following the approach in [15, 16] developed for the CH equation, we
can similarly apply the implicit function theorem and modulation argument
to construct N C1-functions x̃1(t), . . . , x̃N (t) on [0, t0] satisfying a suitable
orthogonality condition (4.3). The detail of its proof is given in Appendix A.1
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in Section 4. Therefore, to complete the proof of this lemma, it remains for us
to prove (3.3)-(3.8).

For 0 < α < α0 with α0 � 1, using that u(t) ∈ U(α, L2 ) and (4.1), we infer
that ∥∥u(t)−

N∑
i=1

ϕci(· − x̃i(t))
∥∥
H1

≤
∥∥u(t)−

N∑
i=1

ϕci(· − zi)
∥∥
H1 +

N∑
i=1

∥∥ϕci(· − zi)− ϕci(· − zi − yi(u(t)))
∥∥
H1

≤ α+
√

2

N∑
i=1

(
E(ϕci)−

∫
R
ϕci(x− zi)ϕci(x− zi − yi(u(t)))dx

−
∫
R
∂xϕci(x− zi)∂xϕci(x− zi − yi(u(t)))dx

) 1
2

≤ α+ 2

N∑
i=1

ai|yi(u(t))| 12 ≤ O(
√
α),

which proves (3.3).
Next let us show that the speed of x̃i stays close to ci. We set

Rj(t) := ϕcj (· − x̃j(t)) and v(t) := u(t)−
N∑
j=1

Rj(t).

Noticing that

∂2xRi(t) = −2aiδ(x̃i(t)) +Ri(t) with ai =
3

√
3ci
2
.(3.9)

Differentiating the orthogonality condition (4.3) with respect to time t, it fol-
lows from (3.9) that∫

R
vt(t)∂xRi(t)dx = ˙̃xi(t)〈∂2xRi(t), v(t)〉H−1,H1

= ˙̃xi(t)
( ∫

R
Ri(t)v(t)dx− 2aiv(t, x̃i(t))

)
,

and thus∣∣ ∫
R
vt(t)∂xRi(t)dx

∣∣ ≤ | ˙̃xi|O(‖v‖H1) ≤ | ˙̃xi − ci|O(‖v‖H1) +O(‖v‖H1).(3.10)

On the other hand, substituting u by v(t) +
∑N
j=1Rj(t) into (2.3) and using

the following equation of Rj(t):

∂tRj + ( ˙̃xj − cj)∂xRj +
1

4
∂x(R4

j )−
1

3
Rj(∂xRj)

3

+ (1− ∂2x)−1∂x(R4
j+

3

2
R2
j (∂xRj)

2− 1

12
(∂xRj)

4) +
1

3
(1− ∂2x)−1Rj(∂xRj)

3 = 0.
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Then we deduce that v satisfies on [0, t0]:

vt −
N∑
j=1

( ˙̃xj − cj)∂xRj

= − 1

4
∂x
(
(v +

N∑
j=1

Rj)
4 −

N∑
j=1

R4
j

)
+

1

3

(
(v +

N∑
j=1

Rj)(vx +

N∑
j=1

∂xRj)
3 −

N∑
j=1

Rj(∂xRj)
3
)

− (1− ∂2x)−1∂x

((
(v+

N∑
j=1

Rj)
4−

N∑
j=1

R4
j

)
+

3

2

(
(v+

N∑
j=1

Rj)
2(vx+

N∑
j=1

∂xRj)
2

−
N∑
j=1

R2
j (∂xRj)

2
)
− 1

12

(
(vx +

N∑
j=1

∂xRj)
4 −

N∑
j=1

(∂xRj)
4
))

− 1

3
(1− ∂2x)−1

(
(v +

N∑
j=1

Rj)(vx +
N∑
j=1

∂xRj)
3 −

N∑
j=1

Rj(∂xRj)
3
)
.

Taking the L2-scalar product with ∂xRi, and integrating by parts, we obtain
for t ∈ [0, t0]

− ( ˙̃xi − ci)
∫
R
(∂xRi)

2dx

(3.11)

= −
∫
R
vt∂xRidx+

∑
1≤j≤N,j 6=i

( ˙̃xj − cj)
∫
R

(∂xRj)(∂xRi)dx

+
1

4

∫
R

(
(v +

N∑
j=1

Rj)
4 −

N∑
j=1

R4
j

)
∂2xRidx

+
1

3

∫
R

(
(v +

N∑
j=1

Rj)(vx +

N∑
j=1

∂xRj)
3 −

N∑
j=1

Rj(∂xRj)
3
)
∂xRidx

+

∫
R

(1− ∂2x)−1
((

(v+

N∑
j=1

Rj)
4 −

N∑
j=1

R4
j

)
+

3

2

(
(v+

N∑
j=1

Rj)
2(vx+

N∑
j=1

∂xRj)
2

−
N∑
j=1

R2
j (∂xRj)

2
)
− 1

12

(
(vx +

N∑
j=1

∂xRj)
4 −

N∑
j=1

(∂xRj)
4
))
∂2xRidx

− 1

3

∫
R

(1− ∂2x)−1
(
(v +

N∑
j=1

Rj)(vx +

N∑
j=1

∂xRj)
3 −

N∑
j=1

Rj(∂xRj)
3
)
∂xRidx
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= −
∫
R
vt∂xRidx+

∑
1≤j≤N,j 6=i

( ˙̃xj − cj)
∫
R

(∂xRj)(∂xRi)dx

+ I1 + I2 + I3 + I4.

To estimate I1, for simplicity, we denote

Î1(t, x) := (v +

N∑
j=1

Rj)
4 −

N∑
j=1

R4
j

= v4 + 4v3(

N∑
j=1

Rj) + 6v2(

N∑
j=1

Rj)
2 + 4v(

N∑
j=1

Rj)
3 + (

N∑
j=1

Rj)
4 −

N∑
j=1

R4
j ,

which together with ‖v‖L∞(R) ≤
‖v‖H1(R)√

2
≤ O(

√
α), (4.2) and the exponential

decay of Rj gives

|Î1(t, x)| ≤ O(
√
α)(O(

√
α) +O(1)) +O(e−

L
8 ).

Thus, by (3.9), we infer that

I1 =
1

4

(
− 2aiÎ1(t, x̃i(t)) +

∫
R
Î1Ridx

)
≤ O(

√
α) +O(e−

L
8 ).

To estimate I2, we calculate

I2 =
1

3

∫
R

(
vv3x + 3vv2x

N∑
j=1

∂xRj + 3vvx
( N∑
j=1

∂xRj
)2

+ v
( N∑
j=1

∂xRj
)3

+v3x
( N∑
j=1

Rj
)
+3v2x

( N∑
j=1

Rj ·
N∑
j=1

∂xRj
)
+3vx

( N∑
j=1

Rj · (
N∑
j=1

∂xRj)
2
))
∂xRidx

+
1

3

∫
R

( N∑
j=1

Rj · (
N∑
j=1

∂xRj)
3 −

N∑
j=1

Rj(∂xRj)
3
)
∂xRidx.

Using (2.2) and (3.3), we have

‖vx‖L∞(R) ≤ ‖ux‖L∞(R) + ‖
N∑
j=1

∂xRj‖L∞(R) ≤ ‖u‖L∞(R) +

N∑
j=1

‖∂xRj‖L∞(R)

≤ 1√
2
‖v +

N∑
j=1

Rj‖H1(R) +

N∑
j=1

aj ≤ O(
√
α) +O(1).(3.12)

In view of (3.12) and (4.2), using the exponential decay of Rj and Hölder’s
inequality, we have the following estimate

I2 ≤ C
(
‖v‖L∞

(
‖vx‖L∞ + 1

) ∫
R
v2xdx+

( ∫
R
v2dx

) 1
2
( ∫

R
v2xdx

) 1
2 + ‖v‖L∞

+
(
‖vx‖L∞ + 1

) ∫
R
v2xdx+

( ∫
R
v2xdx

) 1
2

)
+O(e−

L
8 )
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≤ C
(
‖v‖2H1 + ‖v‖H1 + 1

)
‖v‖H1 +O(e−

L
8 )

≤ O(
√
α)
(
O(α) +O(

√
α) +O(1)

)
+O(e−

L
8 ) ≤ O(

√
α) +O(e−

L
8 ).

In a similar manner as above, noting that (1 − ∂2x)−1f = 1
2e
−|x| ∗ f , one can

easily deduce that I3 + I4 ≤ O(
√
α) +O(e−

L
8 ). Therefore, combining the above

estimations of I1-I4, with (4.2) and the exponential decay of Rj , we deduce
from (3.10)-(3.11) that

a2i | ˙̃xi − ci| ≤ |
∫
R
vt∂xRidx|+

∑
1≤j≤N,j 6=i

(| ˙̃xj |+ cj)
∣∣ ∫

R
(∂xRj)(∂xRi)dx

∣∣
+O(

√
α) +O(e−

L
8 )

≤ O(
√
α)| ˙̃xi − ci|+O(

√
α) +O(e−

L
8 ),

which yields (3.4).
To prove (3.5), taking 0 < α < α0 and L > L0, with α0 � 1 and L0 � 1,

and then combining (1.3)-(1.5), (3.4) with (4.2), we deduce for all t ∈ [0, t0]
there exists s ∈ [0, t] such that

x̃i(t)− x̃i−1(t) = x̃i(0)− x̃i−1(0) +
(

˙̃xi(s)− ˙̃xi−1(s)
)
t

= x̃i(0)− x̃i−1(0) +
(
( ˙̃xi(s)− ci)− (ci−1 − ˙̃xi−1(s))

)
t

+ (ci − ci−1)t

≥ 3

4
L+

ci − ci−1
2

t.

Finally, by the continuous embedding of H1(R) into L∞(R) and (3.3), we have

u(x) =

N∑
i=1

ϕci(x− x̃i(t)) +O(
√
α), ∀x ∈ R.

Applying the above formula with x = xi and u(xi) = maxx∈Ji u(x), and using
(3.5), it holds

u(xi) = max
x∈Ji

{
N∑
i=1

ϕci(x− x̃i(t))

}
+O(

√
α)

= ai +O(e−
L
4 ) +O(

√
α) ≥ 2

3
ai.

On the other hand, for x ∈ Ji\[x̃i(t)− L
12 , x̃i(t) + L

12 ], we derive

u(x) ≤ aie−
L
12 +O(e−

L
4 ) +O(

√
α) ≤ ai

2
,

which ensures that x ∈ [x̃i(t) − L
12 , x̃i(t) + L

12 ]. This completes the proof of
Lemma 3.1. �
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3.2. Monotonicity property

This subsection is devoted to proving the principal tool of our proof, which
is the almost monotonicity of functionals that are very close to the energy at
the right of the ith bump of the solution u(t, x), i = 1, . . . , N − 1. Firstly, we
define Ψ to be a C∞ function such that{

0 < Ψ(x) < 1,Ψ′(x) > 0, x ∈ R,
|Ψ′′′(x)| ≤ 10Ψ′(x), x ∈ [−1, 1],

and Ψ(x)=

{
e−|x|, x < −1,
1− e−|x|, x > 1.

Setting ΨK = Ψ( ·K ), K > 0, then we introduce for j = 2, . . . , N,

Ij,K(t) =

∫
R

(
u2(t, x) + u2x(t, x)

)
Ψj,K(t, x)dx,(3.13)

where Ψj,K(t, x) = ΨK(x−yj(t)) with yj ’s defined in (3.6). Notice that Ij,K(t)
is close to ‖u(t, x)‖2H1(x>yj(t))

, thus it measures the energy at the right of the

(j − 1)th bump of u. Finally, we set

σ0 =
1

4
min{c1, c2 − c1, . . . , cN − cN−1}.(3.14)

Lemma 3.2. Let u(t, x) be a strong solution of Eq. (1.2) satisfying (3.3) on
[0, t0] with initial data u(0, x) = u0(x), which satisfies (1.3)-(1.5). There exist
α0 > 0 and L0 > 0 only depending on (ci)

N
i=1, such that if 0 < α < α0 and

L > L0, then for any 4 ≤ K = O(
√
L),

Ij,K(t)− Ij,K(0) ≤ O(e−
L
8K ), ∀t ∈ [0, t0], i = 2, . . . , N.(3.15)

Proof. To prove this lemma, we first claim that for any smooth function g(x) :
R 7→ R, it holds

d

dt

∫
R

(
u2 + u2x

)
gdx

= − 1

2

∫
R
u(u2 − u2x)2g′dx− 2

∫
R
u
(
(1− ∂2x)−1(uu2xy)

)
g′dx

+
1

2

∫
R
u5g′dx+

∫
R
u
(
(1− ∂2x)−1(2u4 + 5u2u2x +

1

2
u4x)
)
g′dx,(3.16)

whose proof is given in Appendix A.2 in Section 4.
Applying (3.16) with g = Ψj,K and using d

dtΨj,K = −ẏj(t)∂xΨj,K , we get

d

dt
Ij,K(t) =

d

dt

∫
R

(
u2 + u2x

)
Ψj,Kdx

= − ẏj(t)
∫
R

(
u2 + u2x

)
∂xΨj,Kdx−

1

2

∫
R
u(u2 − u2x)2∂xΨj,Kdx

− 2

∫
R
u
(
(1− ∂2x)−1(uu2xy)

)
∂xΨj,Kdx+

1

2

∫
R
u5∂xΨj,Kdx

+

∫
R
u
(
(1− ∂2x)−1(2u4 + 5u2u2x +

1

2
u4x)
)
∂xΨj,Kdx.(3.17)
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Combining (3.4) with (3.6), it holds for 0 < α < α0 small enough and L > L0

large enough,

ẏj(t) =
˙̃xj(t)− cj

2
+

˙̃xj−1(t)− cj−1
2

+
cj + cj−1

2

≥ cj + cj−1
2

+O(
√
α) +O(L−1) ≥ c1

2
.(3.18)

Note that the assumptions on u0 guarantee the positivity of u and y by Lemma

2.2. Hence, together with ∂xΨj,K = 1
KΨ′(

x−yj(t)
K ) > 0 and (3.18), we deduce

from (3.17) that

d

dt
Ij,K(t) ≤ − c1

2

∫
R

(
u2 + u2x

)
∂xΨj,Kdx+

1

2

∫
R
u5∂xΨj,Kdx

+

∫
R
u
(
(1− ∂2x)−1(2u4 + 5u2u2x +

1

2
u4x)
)
∂xΨj,Kdx

:= − c1
2

∫
R

(
u2 + u2x

)
∂xΨj,Kdx+ J1 + J2.(3.19)

To estimate J1-J2, we firstly divide R into two regions Dj := [x̃j−1(t) +
L
4 , x̃j(t) −

L
4 ], i = 2, . . . , N, and its complement Dc

j . Combining (3.5) with
(3.6), we find that for x ∈ Dc

j ,

|x− yj(t)| ≥
x̃j(t)− x̃j−1(t)

2
− L

4
≥ cj − cj−1

4
t+

L

8
≥ σ0t+

L

8
,

and then for K = O(
√
L) and L0 large enough, we have

|x−yj(t)|
K > 1, which

along with the definition of Ψ yields

∂xΨj,K =
1

K
Ψ′(

x− yj(t)
K

) ≤ 1

K
e−

1
K (σ0t+

L
8 ), x ∈ Dc

j .(3.20)

On the other hand, using the exponential decay of ϕci(x−x̃i(t)) for any x ∈ Dj ,
and (3.3), it holds

‖u(t)‖L∞(Dj) ≤ ‖u−
N∑
i=1

ϕci(· − x̃i(t))‖L∞(Dj) +

N∑
i=1

‖ϕci(· − x̃i(t))‖L∞(Dj)

≤ O(
√
α) +O(e−

L
8 ).(3.21)

To estimate J1, combining (3.20) with (3.21), for 0 < α < α0 and L > L0, with
α0 � 1 and L0 � 1, gives rise to

J1 =
1

2

∫
Dj

u5∂xΨj,Kdx+
1

2

∫
Dcj

u5∂xΨj,Kdx

≤ 1

2
‖u‖3L∞(Dj)

∫
Dj

u2∂xΨj,Kdx

+
1

2
‖∂xΨj,K‖L∞(Dcj )

‖u‖3L∞(R)‖u‖
2
L2(R)
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≤ 1

2
‖u‖3L∞(Dj)

∫
Dj

u2∂xΨj,Kdx+
C

K
‖u0‖5H1(R)e

− 1
K (σ0t+

L
8 )

≤ c1
8

∫
R

(
u2 + u2x

)
∂xΨj,Kdx+

C

K
‖u0‖5H1(R)e

− 1
K (σ0t+

L
8 ).(3.22)

To bound J2, since (1− ∂2x)−1f = 1
2e
−|x| ∗ f , we deduce from (3.20) that∫

Dcj

u
(
(1− ∂2x)−1(2u4 + 5u2u2x +

1

2
u4x)
)
∂xΨj,Kdx

≤ 1

4
‖u‖L∞(R) sup

x∈Dcj
|∂xΨj,K(t, x)|

∫
R
e−|x| ∗ (4u4 + 10u2u2x + u4x)dx

≤ 1

4
‖u‖L∞(R) sup

x∈Dcj
|∂xΨj,K(t, x)|

∫
R
e−|x|dx ·

∫
R

(5u4 + 10u2u2x)dx

≤ 5‖u‖3L∞(R) sup
x∈Dcj

|∂xΨj,K(t, x)|
∫
R

(u2 + u2x)dx

≤ C

K
‖u0‖5H1(R)e

− (σ0t+L/8)
K ,(3.23)

where we used the fact that |ux| ≤ u in Lemma 2.2. Now for x ∈ Dj , noticing
that u, 2u4 + 5u2u2x + 1

2u
4
x and ∂xΨj,K are non-negative, we have∫

Dj

u
(
(1− ∂2x)−1(2u4 + 5u2u2x +

1

2
u4x)
)
∂xΨj,Kdx

≤ ‖u‖L∞(Dj)

∫
Dj

(
(1− ∂2x)−1(2u4 + 5u2u2x +

1

2
u4x)
)
∂xΨj,Kdx

≤ 1

2
‖u‖L∞(Dj)

∫
R

(4u4 + 10u2u2x + u4x)(1− ∂2x)−1∂xΨj,Kdx

≤ 5

2
‖u‖L∞(Dj)‖u‖

2
H1(R)

∫
R
(u2 + u2x)(1− ∂2x)−1∂xΨj,Kdx,(3.24)

where we used the inequalities |ux| ≤ u and supx∈R |u(x)| ≤ 1√
2
‖u‖H1(R). By

the definition of Ψ and the property of |Ψ′′′(x)| ≤ 10Ψ′(x), we get

(1− ∂2x)∂xΨj,K ≥ (1− 10

K2
)∂xΨj,K

⇒ (1− ∂2x)−1∂xΨj,K ≤ (1− 10

K2
)−1∂xΨj,K .

Taking K ≥ 4, we infer from (3.21) and (3.24) for 0 < α < α0 and L > L0,
with α0 � 1 and L0 � 1 that∫

Dj

u
(
(1− ∂2x)−1(2u4 + 5u2u2x +

1

2
u4x)
)
∂xΨj,Kdx

≤
(
O(
√
α) +O(e−

L
8 )
)
‖u0‖2H1(R)

∫
R
(u2 + u2x)∂xΨj,Kdx
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≤
(
O(
√
α) +O(e−

L
8 )
)(
‖u0 −

N∑
i=1

ϕci(· − x̃i(0))‖H1(R)

+ ‖
N∑
i=1

ϕci(· − x̃i(0))‖H1(R)
)2 ∫

R

(
u2 + u2x

)
∂xΨj,Kdx

≤
(
O(
√
α) +O(e−

L
8 )
)(
O(
√
α) +

N∑
i=1

√
2ai
)2 ∫

R

(
u2 + u2x

)
∂xΨj,Kdx

≤ c1
8

∫
R

(
u2 + u2x

)
∂xΨj,Kdx,

which along with (3.23) yields

J2 ≤
c1
8

∫
R

(
u2 + u2x

)
∂xΨj,Kdx+

C

K
‖u0‖5H1(R)e

− 1
K (σ0t+

L
8 ).(3.25)

Therefore, plugging (3.22) and (3.25) into (3.19), we find

d

dt
Ij,K(t) ≤ −c1

4

∫
R

(
u2 + u2x

)
∂xΨj,Kdx+

C

K
‖u0‖5H1(R)e

− 1
K (σ0t+

L
8 ).

Thus the monotonicity property (3.15) can be obtained by integrating the above
inequality from 0 to t, with t ≤ t0. This completes the proof of Lemma 3.2. �

3.3. Localized estimate and global identity

Firstly, for i = 1, . . . , N, we define the following localized version of the
conservation laws (2.1) as

Ei(t) := Ei(u(t)) =

∫
R
(u2 + u2x)Φi(t)dx,(3.26)

and

Fi(t) := Fi(u(t)) =

∫
R

(
u5 + 2u3u2x −

1

3
uu4x

)
Φi(t)dx.(3.27)

Here the weight functions Φi = Φi(t, x) are given by{
Φ1 = 1−Ψ2,K = 1−ΨK(· − y2(t)), ΦN = ΨN,K = ΨK(· − yN (t)),

Φi = Ψi,K −Ψi+1,K = ΨK(· − yi(t))−ΨK(· − yi+1(t)), i = 2, . . . , N − 1,

where Ψi,K ’s and yi(t)’s are defined in Subsection 3.2 and (3.6), respectively.

Then we find that the Φi’s are positive functions and
∑N
i=1 Φi(t, x) ≡ 1. Finally,

taking L/K > 0 large enough, and using the exponentially asymptotic behavior
of Φi, it is easy to check for i = 1, . . . , N that∣∣1− Φi

∣∣ ≤ 4e−
L
4K for x ∈ [x̃i −

L

4
, x̃i +

L

4
],(3.28)

and ∣∣Φi∣∣ ≤ 4e−
L
4K for x ∈ [x̃j −

L

4
, x̃j +

L

4
], whenever j 6= i.(3.29)
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We now derive a local version of an estimate, which establishes the connec-
tion between Ei and Fi by a polynomial inequality. Noticing that the function-
als Ei and Fi are independent of time since we fix x̃1 < · · · < x̃N .

Lemma 3.3. Let be given x̃1 < · · · < x̃N with x̃i − x̃i−1 ≥ 3L
4 . Define

the interval Ji as in Lemma 3.1 and assume that for i = 1, . . . N, there exist
xi ∈ Ji such that u(xi) = max

x∈Ji
u(x) := Mi and |xi − x̃i| < L

12 . Then, for any

fixed positive function u ∈ Hs(R), s > 5
2 , it holds

Fi(u) ≤ 4

3
M3
i Ei(u)− 8

5
M5
i + ‖u0‖5H1(R)O(L−

1
2 ), i = 1, . . . , N.(3.30)

Proof. Let i = 1, . . . N be fixed. We first define the function g as in [14]

g(x) =

{
u(x)− ux(x), x < xi,

u(x) + ux(x), x > xi.

We thus get∫
R
g2(x)Φi(x)dx =

∫ xi

−∞
(u(x)− ux(x))2Φidx+

∫ +∞

xi

(u(x) + ux(x))2Φidx

= Ei(u)− 2M2
i Φi(xi) +

∫ xi

−∞
u2∂xΦidx−

∫ +∞

xi

u2∂xΦidx.(3.31)

Next, following [27], we introduce the function h(x) defined by

h(x) =

{
u3(x)− 2

3u
2(x)ux(x)− 1

3uu
2
x(x), x < xi,

u3(x) + 2
3u

2(x)ux(x)− 1
3uu

2
x(x), x > xi.

Integrating by parts, we compute∫
R
h(x)g2(x)Φi(x)dx

=

∫ xi

−∞
(u3 − 2

3
u2ux −

1

3
uu2x)(u− ux)2Φidx

+

∫ +∞

xi

(u3 +
2

3
u2ux −

1

3
uu2x)(u+ ux)2Φidx

=

∫ xi

−∞
(u5 + 2u3u2x −

1

3
uu4x)Φidx−

8

3

∫ xi

−∞
u4uxΦidx

+

∫ +∞

xi

(u5 + 2u3u2x −
1

3
uu4x)Φidx+

8

3

∫ +∞

xi

u4uxΦidx

= Fi(u)− 8

15
u5Φi

∣∣∣xi
−∞

+
8

15

∫ xi

−∞
u5∂xΦidx+

8

15
u5Φi

∣∣∣+∞
xi

− 8

15

∫ +∞

xi

u5∂xΦidx
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= Fi(u)− 16

15
M5
i Φi(xi) +

8

15

∫ xi

−∞
u5∂xΦidx−

8

15

∫ +∞

xi

u5∂xΦidx.(3.32)

By the Cauchy-Schwarz inequality, we deduce for the positive solution u(x)
that

h(x) = u3(x)∓ 2

3
u

3
2 (x) · u 1

2 (x)ux(x)− 1

3
u(x)u2x(x)

≤ u3(x) +
1

3
u3(x) =

4

3
u3.(3.33)

Combining (3.31) with (3.33), we obtain∫
R
h(x)g2(x)Φi(x)dx

≤ 4

3

∫
R
u3(x)g2(x)Φi(x)dx

=
4

3

∫
Ji
u3(x)g2(x)Φi(x)dx+

4

3

∑
1≤j≤N,j 6=i

∫
Jj
u3(x)g2(x)Φi(x)dx

≤ 4

3
M3
i

∫
R
g2(x)Φi(x)dx+

4

3

∑
1≤j≤N,j 6=i

∫
Jj
u3(x)g2(x)Φi(x)dx

=
4

3
M3
i Ei(u)− 8

3
M5
i Φi(xi) +

4

3
M3
i

∫ xi

−∞
u2∂xΦidx−

4

3
M3
i

∫ +∞

xi

u2∂xΦidx

+
4

3

∑
1≤j≤N,j 6=i

∫
Jj
u3(x)g2(x)Φi(x)dx,

which along with (3.32) gives rise to

Fi(u) ≤ 4

3
M3
i Ei(u) +

8

5
M5
i (1− Φi(xi))−

8

5
M5
i

+
4

3

∑
1≤j≤N,j 6=i

∫
Jj
u3(x)g2(x)Φi(x)dx

+
4

3
M3
i

∫ xi

−∞
u2∂xΦidx−

4

3
M3
i

∫ +∞

xi

u2∂xΦidx−
8

15

∫ xi

−∞
u5∂xΦidx

+
8

15

∫ +∞

xi

u5∂xΦidx.(3.34)

Taking K =
√
L/8, we deduce that with a constant C > 0, |∂xΦi| ≤ C/K =

O(
√
L). Moreover, since |xi − x̃i| < L/12, it follows from (3.28) that |1 −

Φi(xi)| ≤ 4e−L/4K ≤ O(
√
L). Hence, with (3.29) and the Sobolev embedding

‖u‖L∞(R) ≤
‖u‖H1(R)√

2
at hand, we infer from (3.34) that

Fi(u) ≤ 4

3
M3
i Ei(u)− 8

5
M5
i + ‖u0‖5H1(R)O(L−

1
2 ).

This completes the proof of Lemma 3.3. �
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Next, we present a global identity, which is the generalization of Lemma 3.1
in [27]. For Z = (z1, . . . , zN ) ∈ RN , we set

RZ(·) =

N∑
i=1

Rzi(·) =

N∑
i=1

ϕci(· − zi) =

N∑
i=1

aiϕ(· − zi) =

N∑
i=1

aie
−|·−zi|,(3.35)

where ai = 3

√
3ci
2 by (2.4). Obviously, Rzi(x) has the peak at x = zi, and hence

max
x∈R

Rzi(x) = Rzi(zi) = ai. By a simple computation, we obtain

E(Rzi) = 2a2i and F (Rzi) =
16

15
a5i .(3.36)

Lemma 3.4. For any (z1, . . . , zN ) ∈ RN such that |zi− zi−1| > L
2 with L > 0,

i = 2, . . . , N, and for any u ∈ H1(R), it holds

E(u)−
N∑
i=1

E(ϕci) = ‖u−
N∑
i=1

Rzi(x)‖2H1(R) + 4

N∑
i=1

ai
(
u(zi)− ai

)
(3.37)

+O(e−
L
4 ),

where the constant involving in O(e−
L
4 ) depends only on (ci)

N
i=1, since ai =

3

√
3ci
2 .

Proof. Integrating by parts, we have

‖u−
N∑
i=1

Rzi(x)‖2H1(R)

= E(u) + E(

N∑
i=1

Rzi)− 2

N∑
i=1

ai

∫
R
u(x)ϕ(· − zi)dx

− 2

N∑
i=1

ai

∫
R
ux(x)ϕx(· − zi)dx

= E(u) + E(

N∑
i=1

Rzi)

+ 2

N∑
i=1

ai

(∫ +∞

zi

ux(x)ϕ(· − zi)dx−
∫ zi

−∞
ux(x)ϕ(· − zi)dx

)
− 2

N∑
i=1

ai

∫
R
u(x)ϕ(· − zi)dx

= E(u)− E(

N∑
i=1

Rzi) + 4
(1

2
E(

N∑
i=1

Rzi)−
N∑
i=1

aiu(zi)
)
.(3.38)
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Since |zi − zi−1| ≥ L
2 , it follows from (3.36) that

E(

N∑
i=1

Rzi) =

N∑
i=1

E(ϕci) +O(e−
L
4 ) = 2

N∑
i=1

a2i +O(e−
L
4 ).(3.39)

Combining (3.38) and (3.39), we obtain (3.37). This completes the proof of
Lemma 3.4. �

We also need the following lemma, which enables us to control the distances
between global and local energies at t = 0.

Lemma 3.5. Let u0 ∈ Hs(R), s > 5
2 satisfy (1.3)-(1.5). Then the following

estimates hold: ∣∣E(u0)−
N∑
i=1

E(ϕci)
∣∣ ≤ O(ε2) +O(e−

L
4 ),(3.40)

∣∣Ei(u0)− E(ϕci)
∣∣ ≤ O(ε2) +O(e−

√
L), i = 1, . . . , N,(3.41)

and ∣∣Fi(u0)− F (ϕci)
∣∣ ≤ O(ε2) +O(e−

√
L), i = 1, . . . , N,(3.42)

where O(·) depend only on (ci)
N
i=1, since ai = 3

√
3ci
2 .

Proof. For the first estimate, applying triangular inequality, and using (1.4),
we get∣∣E(u0)− E(RZ0)

∣∣ =
∣∣‖u0‖H1(R) − ‖RZ0‖H1(R)

∣∣ · (‖u0‖H1(R) + ‖RZ0‖H1(R)
)

≤ ‖u0 −RZ0‖H1(R) ·
(
‖u0 −RZ0‖H1(R) + 2‖RZ0‖H1(R)

)
≤ ε2(ε2 + 2

√
2

N∑
i=1

ai),

which together with (3.39) yields∣∣E(u0)−
N∑
i=1

E(ϕci)
∣∣ ≤ ∣∣E(u0)− E(RZ0)

∣∣+
∣∣E(RZ0)−

N∑
i=1

E(ϕci)
∣∣

≤ ε2(ε2 +O(1)) +O(e−
L
4 ) ≤ O(ε2) +O(e−

L
4 ).

For the second estimate, it follows from (1.4) and the exponential decay of ϕci ’s
and Φi’s, and the definition of Ei(·) that∣∣Ei(u0)− E(ϕci)

∣∣
≤
∣∣‖u0‖2H1(Ji(0)) − ‖ϕci‖

2
H1(Ji(0))

∣∣+O(e−
√
L)

=
∣∣‖u0‖H1(Ji(0)) − ‖ϕci‖H1(Ji(0))

∣∣(‖u0‖H1(Ji(0)) + ‖ϕci‖H1(Ji(0))
)

+O(e−
√
L)

≤
(
‖u0 −RZ0‖H1(Ji(0))
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+
∑

1≤j≤N,j 6=i

‖ϕcj‖H1(Ji(0))
)(
‖u0 −RZ0‖H1(R) + 2

√
2

N∑
i=1

ai
)

+O(e−
√
L)

≤ (ε2 +O(e−
L
8 ))(ε2 +O(1)) +O(e−

√
L) ≤ O(ε2) +O(e−

√
L).

For the third estimate, combining the above similar argument on the second
estimate and the method developed for the estimate of |F (u)−F (ϕ)| in Lemma
3.3 in [27], one can easily find that (3.42) holds. Thus we omit the details here.
This completes the proof of Lemma 3.5. �

3.4. End of the proof of Theorem 1.1

Let u(t, x) be a strong solution of Eq. (1.2) satisfying (3.1) on [0, t0] for
some 0 < t0 < T , with initial data u0(x) ∈ Hs(R), s > 5

2 , which satisfies (1.3)-
(1.5). Let us set Mi = max

x∈Ji
u(t0, x) = u(t0, xi(t0)), with Ji’s as in (3.6), and

δi := ai −Mi. Noticing that, by (3.5) and (3.7), we deduce for i = 2, . . . , N
that

xi(t0)− xi−1(t0) ≥ x̃i(t0)− L

12
− (x̃i−1(t0) +

L

12
) ≥ 3L

4
− L

6
>
L

2
.(3.43)

Hence, applying (3.37) and (3.40) with u(t0) gives rise to

‖u(t0, x)−
N∑
i=1

ϕci(x− xi(t0))‖2H1(R) ≤ 4

N∑
i=1

aiδi +O(ε2) +O(e−
L
4 ).(3.44)

Therefore, to conclude the proof of Theorem 1.1, it is sufficient to prove that
there exists C > 0 only depending on (ci)

N
i=1 such that

δi ≤ C(ε+ L−
1
4 ), i = 1, . . . , N,(3.45)

and Theorem 1.1 follows by taking A = 2C.
To prove (3.45), by (3.30), we have

Fi(u(t0)) ≤ 4

3
M3
i Ei(u(t0))− 8

5
M5
i +O(L−

1
2 ), i = 1, . . . , N.

Taking the sum over i of the above inequality yields

F (u(t0)) =

N∑
i=1

Fi(u(t0)) ≤ 4

3

N∑
i=1

M3
i Ei(u(t0))− 8

5

N∑
i=1

M5
i +O(L−

1
2 ).(3.46)

Denoting ∆t0
0 F (u) := F (u(t0))−F (u0) and ∆t0

0 E(u) := E(u(t0))−E(u0), then
it follows from (3.46) and the conservation laws (2.1) that

0 = ∆t0
0 F (u) =

N∑
i=1

∆t0
0 Fi(u) ≤ 4

3

N∑
i=1

M3
i ∆t0

0 Ei(u)− 8

5

N∑
i=1

M5
i

+

N∑
i=1

(4

3
M3
i Ei(u0)− Fi(u0)

)
+O(L−

1
2 ).(3.47)



722 X. LIU

Using the conservation law E(u) and (3.40), we obtain

M2
i ≤ ‖u(t, x)‖2L∞(R)

≤
‖u‖2H1(R)

2
=
E(u0)

2

≤ 1

2

N∑
i=1

E(ϕci) +O(ε2) +O(e−
L
4 ) ≤ 2

N∑
i=1

a2i(3.48)

for 0 < ε < ε0 and L > L0 > 0 with ε0 � 1 and L0 � 1 both depending
only on (ci)

N
i=1. Combining (3.41)-(3.42) with (3.48), and using (3.36), we thus

obtain having substituted Mi by ai − δi that

N∑
i=1

(
− 8

5
M5
i +

4

3
M3
i Ei(u0)− Fi(u0)

)
=

N∑
i=1

(
− 8

5
M5
i +

4

3
M3
i (Ei(u0)− E(ϕci)) +

4

3
M3
i E(ϕci)

− (Fi(u0)− F (ϕci))− F (ϕci)
)

≤ 8

N∑
i=1

δ2i
(
− a3i +

5

3
a2i δi − aiδ2i +

1

5
δ3i
)

+O(ε2) +O(e−
√
L)

= − 8

15

N∑
i=1

δ2i
(
2a3i + 4a2iMi + 6aiM

2
i + 3M3

i

)
+O(ε2) +O(e−

√
L).(3.49)

Then, by (3.47) and (3.49), for 0 < ε < ε0 and L > L0 > 0 with ε0 � 1 and
L0 � 1, it holds

N∑
i=1

δ2i
(
2a3i + 4a2iMi + 6aiM

2
i + 3M3

i

)
≤ 5

2

N∑
i=1

M3
i ∆t0

0 Ei(u) +O(ε2) +O(L−
1
2 ).

Using the Abel transformation and the definition of the weight function Φi, we
deduce from the above inequality that

N∑
i=1

δ2i
(
2a3i + 4a2iMi + 6aiM

2
i + 3M3

i

)
(3.50)

≤ 5

2

N∑
i=2

(M3
i −M3

i−1)∆t0
0 Ij,K +O(ε2) +O(L−

1
2 ),

where Ij,K(t) is given in (3.13) in Subsection 3.2. Recalling from (3.1) that

if u(t) ∈ U
(
α, L2

)
,∀t ∈ [0, t0], in view of Lemma 3.1, then there exists X̃ =
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(x̃1, . . . , x̃N ) with x̃i ∈ Ji such that ‖u(t0)−RX̃‖H1(R) ≤ O(
√
α), where RX̃ is

defined in (3.35). Hence, for X = (x1, . . . , xN ), it follows from (3.7) that

‖u(t0, ·)−RX‖H1(R) = ‖u(t0, ·)−
N∑
j=1

ϕcj (· − xj(t0))‖H1(R)

≤ ‖u(t0, ·)−RX̃‖H1(R) + ‖RX̃ −RX‖H1(R)

≤ O(
√
α) +

N∑
i=1

‖ϕci(· − xi(t0))− ϕci(· − x̃i(t0))‖H1(R)

≤ O(
√
α) +O(e−

L
4 ),

which along with the inequality (3.43) yields

u(t0, xi(t0)) =

N∑
j=1

ϕcj (xi(t0)− xj(t0)) +O(
√
α) +O(e−

L
4 )

= ai +
∑

1≤j≤N,j 6=i

ϕcj (xi(t0)− xj(t0)) +O(
√
α) +O(e−

L
4 )

= ai +O(
√
α) +O(e−

L
4 ).

Taking α = A(ε+ L−
1
4 ), it follows from the above inequality that

Mi = ai +O(
√
ε) +O(L−

1
8 ).(3.51)

Owing to 0 < c1 < · · · < cN and the relation ai = 3

√
3ci
2 , we deduce from

(3.51), for 0 < ε < ε0 and L > L0 > 0 with ε0 � 1 and L0 � 1, that

0 < M1 < · · · < MN .(3.52)

Thus, combining (3.48), (3.50), (3.52) with the monotonicity property (3.15),
we have

3

N∑
i=1

δ2iM
3
i ≤

N∑
i=1

δ2i
(
2a3i + 4a2iMi + 6aiM

2
i + 3M3

i

)
≤ O(ε2) +O(L−

1
2 ).

Therefore, we find that there exists C > 0 only depending on (ci)
N
i=1 and

‖u0‖Hs(R) such that

δi ≤ C(ε+ L−
1
4 ), i = 1, . . . , N,

which is the desired result (3.45). This completes the proof of Theorem 1.1.

4. Appendix

A.1. Construction of C1-functions (x̃i(t))
N
i=1 in Lemma 3.1. We firstly

apply the implicit function theorem to prove the decomposition of the solution
u ∈ U(α, L2 ) with no time dependency. For Z = (z1, . . . , zN ) ∈ RN , such that

|zi − zi−1| > L
2 , we denote RZ =

∑N
i=1 ϕci(· − zi) and BH1(RZ , α) as the ball
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in H1(R) of center RZ with radius α. For 0 < α < α0, we define the following
mapping:

Y : BH1(RZ , α)×
N∏
i=1

(−α, α)→ RN ,

(u, y1, . . . , yN ) 7→
(
Y 1(u, y1, . . . , yN ), . . . , Y N (u, y1, . . . , yN )

)
,

with

Y i(u, y1, . . . , yN ) :=

∫
R

(
u(x)−

N∑
j=1

ϕcj (x− zj − yj)
)
∂xϕci(x− zi − yi)dx.

Next, we verify that the function Y satisfies the following three properties:
(i) Y (RZ , 0, . . . , 0) = (0, . . . , 0).
(ii) By the dominated convergence theorem, we find that Y is a mapping of

class C1. Indeed, for i = 1, . . . , N , we compute

∂Y i

∂u
(u, y1, . . . , yN ) =

∫
R
∂xϕci(x− zi − yi)dx,

∂Y i

∂yi
(u, y1, . . . , yN ) =

∫
R

(
ux−

∑
1≤j≤N,j 6=i

∂xϕcj (x−zj−yj)
)
∂xϕci(x−zi−yi)dx,

and for j 6= i

∂Y i

∂yj
(u, y1, . . . , yN ) =

∫
R
∂xϕcj (x− zj − yj)∂xϕci(x− zi − yi)dx.

(iii) The determinant of the matrix D(y1,...,yN )Y (RZ , 0, . . . , 0) 6= 0. In fact,
thanks to (ii), we have

∂Y i

∂yi
(RZ , 0, . . . , 0) =

∫
R
(∂xϕci(x− zi))2dx = a2i ≥ a21, where ai =

3

√
3ci
2
,

and for j 6= i, using the exponential decay of peakons ϕci and |zi − zi−1| > L
2 ,

for L > L0 > 0 with L0 � 1, it holds

∂Y i

∂yj
(RZ , 0, . . . , 0) =

∫
R
∂xϕcj (x− zj)∂xϕci(x− zi)dx ≤ O(e−

L
4 ).

We deduce that for L0 large enough, the Jacobi matrix

D(y1,...,yN )Y (RZ , 0, . . . , 0) = P +Q,

where P is an invertible diagonal matrix with the norms of ‖P−1‖ ≤ (a1)−2

and ‖Q‖ ≤ O(e−
L
4 ). Hence, there exists L0 > 0 such that for L > L0,

D(y1,...,yN )Y (RZ , 0, . . . , 0) is invertible with an inverse matrix of norm smaller

than 2(a1)−2. Therefore, the implicit function theorem implies that there ex-
ists 0 < β0 < α and uniquely determined C1 functions (y1(u), . . . , yN (u))
from BH1(RZ , β0) to a neighborhood of (0, . . . , 0) such that Y (u, y1, . . . , yN ) =
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(0, . . . , 0) for all u ∈ BH1(RZ , β0). Moreover, if u ∈ BH1(RZ , β) with 0 < β ≤
β0, then there exists a constant C0 > 0 such that

N∑
i=1

∣∣yi(u)
∣∣ ≤ C0β.(4.1)

Notice that β0 and C0 depend only on a1 = 3

√
3c1
2 and L0, but not on Z =

(z1, . . . , zN ) ∈ RN . For u ∈ BH1(RZ , β0), we set x̃i(u) = zi + yi(u). If we
take β0 ≤ min{α, L0

8C0
}, then (x̃1, . . . , x̃N ) are C1-functions on BH1(RZ , β),

satisfying

x̃i(u)− x̃i−1(u) = zi − zi−1 + yi(u)− yi−1(u) >
L

2
− 2C0β ≥

L

4
.(4.2)

For L ≥ L0 and 0 < α < α0 <
β0

2 to be chosen later, we define the modulation

of u ∈ U(α, L2 ) as follows. Covering the trajectory of u by N0 open balls in the
following way:

{u(t), t ∈ [0, t0]} ⊂
⋃

k=1,...,N0

BH1(RZk , 2α).

Owing to 0 < α < α0 <
β0

2 , the functions x̃i(u) are uniquely determined for
u ∈ B(RZk , 2α) ∩ B(RZk′ , 2α). Hence, we define the functions t 7→ x̃i(t) for
all t ∈ [0, t0] by setting x̃i(t) = x̃i(u(t)). By construction, for i = 1, . . . , N and
t ∈ [0, t0], the following orthogonality condition holds:∫

R

(
u(t, ·)−

N∑
j=1

ϕcj (· − x̃j(t))
)
∂xϕci(· − x̃i(t))dx = 0.(4.3)

A.2. Proof of the identity (3.16) in Lemma 3.2. To prove (3.16), let us
first suppose that u(t, x) is smooth since the case u(t, x) ∈ C([0, T );Hs(R)) ∩
C1([0, T );Hs−1(R)), with s > 5

2 follows by the density argument. Differentiat-
ing (2.3) with respect to x, we have

utx = − (u3uxx +
3

2
u2u2x −

1

4
u4x − uu2xuxx − u4)

− (1− ∂2x)−1(u4 +
3

2
u2u2x −

1

12
u4x)− 1

3
(1− ∂2x)−1∂x(uu3x).(4.4)

Using integration by parts, it follows from Eq. (1.2) and (4.4) that

d

dt

∫
R

(u2 + u2x)g(x)dx = 2

∫
R
uytgdx− 2

∫
R
uutxg

′dx

= − 2

∫
R
u(

1

4
(u2 − u2x)2 + u(u2 − u2x)y)xgdx

+ 2

∫
R
u(u3uxx +

3

2
u2u2x −

1

4
u4x − uu2xuxx − u4)g′dx
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+ 2

∫
R
u(1− ∂2x)−1(u4 +

3

2
u2u2x −

1

12
u4x)g′dx

+
2

3

∫
R
u(1− ∂2x)−1∂x(uu3x)g′dx := K1 +K2 +K3 +K4.(4.5)

It is easy to check that

K1 +K2 =
1

2

∫
R
ux(u2 − u2x)2gdx+

∫
R
u(u2 − u2x)(u2 − u2x)xgdx

+
1

2

∫
R
u5g′dx

=
1

2

∫
R
(u(u2 − u2x)2)xgdx+

1

2

∫
R
u5g′dx

= − 1

2

∫
R
u(u2 − u2x)2g′dx+

1

2

∫
R
u5g′dx.

For the term K4, we calculate

K4 =
2

3

∫
R
u(1− ∂2x)−1(u4x + 3uu2xuxx)g′dx

=
2

3

∫
R
u((1− ∂2x)−1u4x)g′dx− 2

∫
R
u((1− ∂2x)−1uu2xy)g′dx

+ 2

∫
R
u((1− ∂2x)−1u2u2x)g′dx.

Thus, plugging the above identities of K1 + K2 and K4 into (4.5) yields the
desired result (3.16).
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