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MEAN-VALUE PROPERTY AND CHARACTERIZATIONS OF

SOME ELEMENTARY FUNCTIONS

Janusz Matkowski

Abstract. A mean-value result, saying that the difference quotient of a
differentiable function in a real interval is a mean value of its derivatives
at the endpoints of the interval, leads to the functional equation

f(x)− F (y)

x− y
= M (g(x), G(y)) , x 6= y,

where M is a given mean and f, F, g,G are the unknown functions. Solv-
ing this equation for the arithmetic, geometric and harmonic means,
we obtain, respectively, characterizations of square polynomials, homo-
graphic and square-root functions. A new criterion of the monotonicity
of a real function is presented.

Introduction

In a recent paper [4] the following counterpart of the Lagrange mean-value
theorem has been proved. If a real function f defined on an interval I ⊂ R is

differentiable, and f ′ is one-to-one, then there exists a unique mean function

M : f ′ (I)× f ′ (I) → f ′ (I) such that

f(x)− f(y)

x− y
= M (f ′(x), f ′(y)) , x, y ∈ I, x 6= y.

One can show [5] that, in this equality, M is a power mean if and only if one
of the following cases occurs:

M is the arithmetic mean, that is M = A where

A(u, v) =
u+ v

2
, u, v ∈ R,

and the function f is a quadratic polynomial;
M is the geometric, that is M = G where

G(u, v) =
√
uv, u, v > 0,

and f is a homographic function;
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M is the harmonic, that is M = H where

H(u, v) =
2uv

u+ v
, u, v > 0,

and f is the square root of an affine function.
In the present paper, assuming that M ∈ {A,G,H} , we consider the func-

tional equation

(∗) f(x)− F (y)

x− y
= M (g(x), G(y)) , x, y ∈ I, x 6= y,

where all functions f, F, g,G : I → R are unknown.
In the auxiliary Section 1 we first observe if the real functions f, F defined

on a set I ⊂ R of the cardinality grater than 2 satisfy the inequality

f(x)− F (y)

x− y
≥ 0, x, y ∈ I, x 6= y,

then both functions are nondecreasing. Moreover, if I is an interval, the func-

tion f and F coincide at the continuity points of these functions (Theorem 1).
This new criterion of monotonicity appears to be very helpful in proving of the
main results.

In Section 2, assuming that M = A, we show that (without any regularity
assumptions) the functions f, F, g,G satisfy the equation (∗) if and only if the
functions f and F are equal to a quadratic polynomials and the functions g = G

is its derivative (Theorem 2).
In Section 3 we consider the case M = G. We show that f, F, g,G satisfy

the equation (∗) if and only if f = F is either affine or homographic, and the
functions g and G, up to a multiplicative constant, are equal to the derivative
of f (Theorem 3).

In Section 4, assuming that M = H, we prove that f, F, g,G satisfy the
equation (∗) if and only if f = F is either affine or square root of an affine
function, and g = G is the derivative of f (Theorem 4).

The idea of this paper is due to J. Aczél [1], who characterized the quadratic
polynomials using only the mean value property of their derivatives (cf. also
M. Kuczma [3] and J. Aczél and M. Kuczma [2]).

1. Difference quotient and a criterion of monotonicity

Lemma 1. Let I ⊂ R be an arbitrary set such that card I ≥ 3. If the functions

f, F : I → R satisfy the inequality

(1.1)
f(x)− F (y)

x− y
≥ 0, x, y ∈ I, x 6= y,

then, for all x1, x2, x3 ∈ I such that x1 < x2 < x3,

(1.2) f (x1) ≤ F (x2) ≤ f (x3) and F (x1) ≤ f (x2) ≤ F (x3) ;

in particular, the functions f and F are nondecreasing.
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If inequality (1.1) is sharp, then inequalities (1.2) are sharp and f, F are

strictly increasing.

Proof. Let x1, x2, x3 ∈ I be such that x1 < x2 < x3. Taking x := x1 and
y := x2 in (1.1) we get f (x1) ≤ F (x2) and taking x := x3 and y := x2 in (1.1)
we get F (x2) ≤ f (x3) whence f (x1) ≤ F (x2) ≤ f (x3) . Similarly, taking first
x := x2 and y := x1; then x := x3 and y := x2 we get the remaining inequalities
in (1.2). �

To show that the assumption card I ≥ 3 is indispensable, consider the fol-
lowing:

Example 1. Take I := {1, 2} and f, F : I → R defined by f(1) = 3, f(2) = 2
and F (1) = 1, F (2) = 4. Then

f(1)− F (2)

1− 2
=

f(2)− F (1)

2− 1
= 1 > 0,

and the function f is not decreasing.

Theorem 1. Let I ⊂ R be an interval. The functions f, F : I → R satisfy the

inequality (1.2) :

f(x)− F (y)

x− y
≥ 0, x, y ∈ I, x 6= y,

if and only if f and F are nondecreasing and f(x) = F (x) at every point of the

continuity of one of these function.

Proof. In view of Lemma 1, the functions f and F are nondecreasing. Denote
by Cf the set of all continuity points of f. If x ∈ Cf then, for all s, t ∈ I such
that s < x < t in view of the first of inequalities of (1.2),

f (s) ≤ F (x) ≤ f (t) .

Letting here s and t tend to x, and using the continuity of f , we hence get
f(x) = F (x). If x ∈ CF we argue similarly. The converse implication is obvious.

�

Remark 1. Theorem 1 generalizes the classical criterion of the monotonicity of
a differentiable function: the nonnegativity of derivative.

2. Mean-value property for the arithmetic mean

Theorem 2. Let I ⊂ R be a set such that card I > 3. The functions f, F, g,G :
I → R, and satisfy the functional equation

(2.1)
f(x)− F (y)

x− y
= A (g(x), G(y)) , x, y ∈ I, x 6= y

if and only if

f(x) = F (x) =
a

2
x2 + bx+ d, g(x) = G(x) = ax+ b, x ∈ I

for some a, b, c, d ∈ R.
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Proof. Assume that the functions f, F, g,G satisfy the equation (2.1). Then by
the definition of A,

(2.2) f(x)− F (y) =
g(x) +G(y)

2
(x− y) , x, y ∈ I, x 6= y.

Replacing here y by z we get

f(x)− F (z) =
g(x) +G(z)

2
(x− z) , x, z ∈ I, x 6= z.

Subtracting the respective sides of these two equations we obtain

2 [F (z)− F (y)] = [G(y)−G(z)]x+ (z − y) g(x) + [zG(z)− yG(y)] ,

whence

(2.3) g(x) =
G(z)−G(y)

z − y
x+

2 [F (z)− F (y)]− [zG(z)− yG(y)]

z − y

for all x, y, z ∈ I, y 6= x 6= z. Since in this formula y, z ∈ I, y 6= z, can be here
chosen arbitrarily, it follows that

(2.4) g(x) = ax+ b, x ∈ I

for some a, b ∈ R such that a2 + b2 > 0. Moreover the equation (2.3) implies
that

(2.5)
G(z)−G(y)

z − y
= a, y, z ∈ I, y 6= z,

and

(2.6) 2
F (z)− F (y)

z − y
− zG(z)− yG(y)

z − y
= b, y, z ∈ I, y 6= z.

Equality (2.5) implies that, for some real c,

(2.7) G(x) = ax+ c, x ∈ I.

Since
zG(z)− yG(y)

z − y
=

G(z)−G(y)

z − y
z +G(y),

from (2.6) and (2.7) we get

2
F (z)− F (y)

z − y
= az + b, y, z ∈ I, y 6= z,

whence, obviously,

(2.8) F (x) =
a

2
x2 + bx+ d, x ∈ I

for some real d. Setting the functions g,G and F given by (2.4), (2.7) and (2.8)
into the equation (2.2) we get

f(x) =
a

2
x2 +

b+ c

2
x+ d+

b− c

2
y, x, y ∈ I, x 6= y.
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Since the function on the right-hand side cannot depend on y, it follows that

(2.9) c = b

and, consequently,

(2.10) f(x) =
a

2
x2 + bx+ d, x ∈ I.

Moreover, from (2.7) and (2.9) we get

(2.11) G(x) = ax+ b, x ∈ I.

Since the functions f given by (2.10), F given by (2.8), g given by (2.4) and G

given by (2.11) satisfy the equation (2.1), the proof is completed. �

3. Mean-value property for the geometric mean

Theorem 3. Let I ⊂ R be an interval. The functions f, F : I → R, and

g,G : I → (0,∞) satisfy the functional equation

(3.1)
f(x)− F (y)

x− y
= G (g(x), G(y)) , x, y ∈ I, x 6= y,

if and only if, one of the following cases occurs:
(i) there are p, q, r ∈ R, p > 0, q > 0, such that

f(x) = F (x) = pqx+ r, g(x) = p2, G(x) = q2, x ∈ I;

(ii) there are p, q, r, s ∈ R, p > 0, q > 0, such that

f(x) = F (x) = s− pq

x+ r
, g(x) =

p2

(x+ r)
2 , G(x) =

q2

(x+ r)
2 , x ∈ I.

Proof. If the functions f, F, g,G satisfy the equation (3.1), then by the defini-
tion of G,

(3.2) f(x)− F (y) = (x− y)
√

g(x)G(y), x, y ∈ I, x 6= y.

Replacing here y by z we get

f(x)− F (z) = (x− z)
√

g(x)G(z), x, z ∈ I, x 6= z.

As the right-hand side of the equation (3.1) is positive, by Lemma 1 the function
F (as well as f) is one-to-one. Subtracting the respective sides of these two
equations we obtain

F (z)− F (y) =
[(

√

G(y)−
√

G(z)
)

x+
(

z
√

G(z)− y
√

G(y)
)]

√

g(x),

whence

(3.3)
√

g(x) =
1√

G(y)−
√

G(z)

F (z)−F (y) x+
z
√

G(z)−y
√

G(y)

F (z)−F (y)

, x, y, z ∈ I, y 6= x 6= z
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for all x, y, z ∈ I, y 6= x 6= z. Since y, z ∈ I, y 6= z, can be here arbitrarily fixed,
it follows that

(3.4) g(x) =
1

(ax+ b)2
, x ∈ I

for some a, b ∈ R such that a2 + b2 > 0. Now the equation (3.3) implies that

(3.5)

√

G(y)−
√

G(z)

F (z)− F (y)
= a, y, z ∈ I, y 6= z,

and

(3.6)
z
√

G(z)− y
√

G(y)

F (z)− F (y)
= b, y, z ∈ I, y 6= z.

From (3.5) we have
√

G(y) + aF (y) =
√

G(z) + aF (z), y, z ∈ I, y 6= z,

which implies that, for some k ∈ R,
√

G(x) + aF (x) = k, x ∈ I.

Similarly, from (3.6), we get

x
√

G(x) − bF (x) = m, x ∈ I.

The last two equations imply that, for some c > 0,

(3.7) G(x) =
c2

(ax+ b)
2 , x ∈ I,

and

(3.8) F (x) =
nx+ d

ax+ b
, x ∈ I

for some n, d ∈ R. From (3.2) and (3.4) we obtain that

(3.9) f(x) =
kx+m

ax+ b
, x ∈ I

for some k,m ∈ R. Setting the functions (3.4), (3.7), (3.8) and (3.9) into the
equation (3.2) we get

a (k − n)xy − (ad− bk + c)x+ (am− bn+ c) y + b (m− d) = 0

for all x, y ∈ I, x 6= y. It follows that

(3.10) a (k − n) = 0, ad− bk + c = 0, am− bn+ c = 0, b (m− d) = 0.

If a = 0, then b 6= 0, and this system of equations simplifies to

bk − c = 0, bn− c = 0, m− d = 0.

Hence

k = n =
c

b
, m = d,
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whence

f(x) = F (x) =
c

b2
x+

d

b
, x ∈ I.

In this case, by (3.4) and (3.7), the functions g and G are constant; more
precisely, we have

g(x) =
1

b2
, G(x) =

(c

b

)2

, x ∈ I.

Since c
b2

= 1
b
· c
b
, setting

p :=
1

b2
, q :=

c

b
, r :=

d

b
,

we obtain

f(x) = F (x) = pqx+ r, g(x) = p2, G(x) = q2, x ∈ I.

If b = 0, then a 6= 0, and the system (3.10) becomes

k − r = 0, ad+ c = 0, am+ c = 0.

Hence

r = k, m = d = − c

a
,

whence

f(x) = F (x) =
k

a
− c

a2
1

x
, x ∈ I.

Replacing in his formula k by ad we get

f(x) = F (x) = d− c

a2
1

x
, x ∈ I.

In this case, by (3.4) and (3.7), we have

g(x) =
1

a2x2
, G(x) =

c2

a2x2
, x ∈ I.

Setting

p :=
1

a
, q :=

c

a
, s :=

k

a
,

we hence get

f(x) = F (x) = s− pq

x
, g(x) =

p2

x2
, G(x) =

q2

x2
, x ∈ I.

If ab 6= 0, the from (3.10) we obtain

n = k =
ad+ c

b
, m = d,

whence

f(x) = F (x) =
c

b

x

ax+ b
+

d

b
= d+

c

ab
− c

a2
1

x+ b
a

, x ∈ I.
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From (3.4) and (3.7) we have

g(x) =
1

a2
1

(

x+ b
a

)2 , G(x) =
c2

a2
1

(

x+ b
a

)2 , x ∈ I.

Therefore, setting

p :=
1

a
, q :=

c

a
, r :=

b

a
, s := d+

c

ab
,

we hence obtain

f(x) = F (x) = s− pq

x+ r
, g(x) =

p2

(x+ r)2
, G(x) =

q2

(x+ r)2
, x ∈ I.

Note that taking here r = 0 we get the formulas obtained in the previous case.
Since the geometric mean is a positive function, (3.1) and Lemma 1 imply that
f is strictly increasing. It follows that p and q has to be of the same sign. Of
course, we can assume that both are positive. Since in each of these three cases,
the functions f, F, g,G satisfy the equation (3.1), the proof is completed. �

4. Mean-value property for the harmonic mean

Theorem 4. Let I ⊂ R be an arbitrary set such that card I > 3. The functions

f, F : I → R, and g,G : I → (0,∞) satisfy the functional equation

(4.1)
f(x)− F (y)

x− y
= H (g(x), G(y)) , x, y ∈ I, x 6= y,

if and only if, one of the following cases occurs:
(i) there are p, q ∈ R, p > 0, such that

f(x) = F (x) = px+ q, g(x) = G (x) = p, x ∈ I;

(ii) there are p, q, r ∈ R, p > 0, such that

f(x) = F (x) = 2p
√
x+ q + r, g(x) = G(x) =

p√
x+ q

, x ∈ I;

(iii) there are p, q, r ∈ R, p > 0, such that

f(x) = F (x) = 2p
√
q − x+ r, g(x) = G(x) =

p√
q − x

x ∈ I.

Proof. Assume that the functions f, F, g,G : I → R satisfy the equation (4.1).
Since the right-hand side of the equation (4.1) is positive, Theorem 1 implies
that the functions f and F are strictly increasing and

(4.2) F (x) = f(x), x ∈ J := Cf ∪ CF ,

where Cf denotes the set of all continuity points of f. Thus, from (4.1) we get

f(x)− f(y)

x− y
= H (g(x), G(y)) , x, y ∈ I, x 6= y,
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whence, by the definition of H, we get

x− y

f(x)− f(y)
=

1
g(x) +

1
G(y)

2
, x, y ∈ I, x 6= y.

Take arbitrary u, v ∈ f (J) . Setting x := f−1(u), y := f−1(v) in this equation
we get

f−1(u)− f−1(v)

u− v
=

1
g◦f−1(u) +

1
G◦f−1(v)

2
, u, v ∈ f (J) , u 6= v.

Since, obviously, card f (J) = cardJ > 3, applying Theorem 2 with I replaced
by f (J) ; f and F replaced by f−1, g replaced by 1

g◦f−1 and G replaced by
1

G◦f−1 we conclude that there are a, b, c, d ∈ R such that, for some a, b, c, d ∈ R.,

(4.3) f−1(u) =
a

2
u2 + bu+ d, u ∈ f (J) ,

and

(4.4)
1

g ◦ f−1(u)
=

1

G ◦ f−1(u)
= au+ b, u ∈ f (J) .

If a 6= 0 we hence we get that, for every x ∈ J, either

f(x) = − b

a
− 1

a

√

2ax+ (b2 − 2ad) and g(x) = G(x) = − 1
√

2ax+ (b2 − 2ad)

or

f(x) = − b

a
+

1

a

√

2ax+ (b2 − 2ad) and g(x) = G(x) =
1

√

2ax+ (b2 − 2ad)
.

Note that the first of these formulas must be omitted, as g (and G) has positive
values. Since, by Lemma 1, f is increasing in the interval I, the set J is dense
in the interval I, and

f(x) = − b

a
+

1

a

√

2ax+ (b2 − 2ad), x ∈ J,

it follows that J = I. Hence, by (4.2),

f(x) = F (x) = − b

a
+

1

a

√

2ax+ (b2 − 2ad), x ∈ I,

and, by (4.4)

g(x) = G(x) =
1

√

2ax+ (b2 − 2ad)
, x ∈ I.

Assume that a > 0. Setting here

p :=
1√
2a

, q :=
b2 − 2ad

2a
, r := − b

a
,

we obtain

f(x) = F (x) = 2p
√
x+ q + r, g(x) = G(x) =

p√
x+ q

x ∈ I,
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where p > 0 and q, r ∈ R are arbitrary.
If a < 0, setting

p :=
1√
−2a

, q :=
2ad− b2

2a
, r := − b

a
,

we obtain

f(x) = F (x) = 2p
√
q − x+ r, g(x) = G(x) =

p√
q − x

x ∈ I,

where p > 0 and q, r ∈ R are arbitrary.
Now assume that a = 0. In view of (4.3),

f−1(u) = bu+ d, u ∈ f (J) .

Since f is strictly increasing, it follows that b > 0 and

f(x) = F (x) =
1

b
x− d

b
, x ∈ I,

and, by (4.4),

g(x) = G (x) =
1

b
, x ∈ I.

Setting p := 1
b
and q := − d

b
we obtain

f(x) = F (x) = px+ q, g(x) = G (x) = p, x ∈ I,

where p > 0 and q ∈ R are arbitrary. �

5. Remark concerning on a relevant functional equation with five

unknown functions

From Theorem 2 we obtain the following:

Corollary 1. Let X be a set such that cardX > 3 and let f, F, g,G, h : X → R.

Suppose that h is one-to-one. The functions f, F, g,G, h satisfy the functional

equation

f(x)− F (y)

h(x) − h(y)
= A (g(x), G(y)) , x, y ∈ X, x 6= y

if and only if

f(x) = F (x) =
a

2
h (x)

2
+ bh (x) + d, g(x) = G(x) = ah (x) + b, x ∈ I

for some a, b, c, d ∈ R.

To prove it is enough to apply Theorem 1 to the functional equation

f ◦ h−1(u)− F ◦ h−1(u)

u− v
= A

(

g ◦ h−1(u), G ◦ h−1(v)
)

, u, v ∈ h (X) , u 6= v.

In a similar way one could formulate respective generalizations of Theorems
3 and 4.
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