International Journal of Internet, Broadcasting and Communication
/
v.16
no.1
/
pp.17-28
/
2024
As listed as one of the most important requirements for Post-Quantum Cryptography standardization process by National Institute of Standards and Technology, the resistance to various side-channel attacks is considered very critical in deploying cryptosystems in practice. In fact, cryptosystems can easily be broken by side-channel attacks, even though they are considered to be secure in the mathematical point of view. The timing attack(TA) and the simple power analysis attack(SPA) are such side-channel attack methods which can reveal sensitive information by analyzing the timing behavior or the power consumption pattern of cryptographic operations. Thus, appropriate measures against such attacks must carefully be considered in the early stage of cryptosystem's implementation process. The Montgomery multiplier is a commonly used and classical gadget in implementing big-number-based cryptosystems including RSA and ECC. And, as recently proposed as an alternative of building blocks for implementing post quantum cryptography such as lattice-based cryptography, the big-number multiplier including the Montgomery multiplier still plays a role in modern cryptography. However, in spite of its effectiveness and wide-adoption, the multiplier is known to be vulnerable to TA and SPA. And this paper proposes a new countermeasure for the Montgomery multiplier against TA and SPA. Briefly speaking, the new measure first represents a multiplication operand without 0 digits, so the resulting multiplication operation behaves in a very regular manner. Also, the new algorithm removes the extra final reduction (which is intrinsic to the modular multiplication) to make the resulting multiplier more timing-independent. Consequently, the resulting multiplier operates in constant time so that it totally removes any TA and SPA vulnerabilities. Since the proposed method can process multi bits at a time, implementers can also trade-off the performance with the resource usage to get desirable implementation characteristics.
Journal of the Institute of Electronics Engineers of Korea SD
/
v.40
no.6
/
pp.447-458
/
2003
A high speed multiplier is essential basic building block for digital signal processors today. Typically iterative algorithms in Signal processing applications are realized which need a large number of multiply, add and accumulate operations. This paper describes a macro block of a parallel structured multiplier which has adopted a 32$\times$32-b regularly structured tree (RST). To improve the speed of the tree part, modified partial product generation method has been devised at architecture level. This reduces the 4 levels of compression stage to 3 levels, and propagation delay in Wallace tree structure by utilizing 4-2 compressor as well. Furthermore, this enables tree part to be combined with four modular block to construct a CSA tree (carry save adder tree). Therefore, combined with four modular block to construct a CSA tree (carry save adder tree). Therefore, multiplier architecture can be regularly laid out with same modules composed of Booth selectors, compressors and Modified Partial Product Generators (MPPG). At the circuit level new Booth selector with less transistors and encoder are proposed. The reduction in the number of transistors in Booth selector has a greater impact on the total transistor count. The transistor count of designed selector is 9 using PTL(Pass Transistor Logic). This reduces the transistor count by 50% as compared with that of the conventional one. The designed multiplier in 0.25${\mu}{\textrm}{m}$ technology, 2.5V, 1-poly and 5-metal CMOS process is simulated by Hspice and Epic. Delay is 4.2㎱ and average power consumes 1.81㎽/MHz. This result is far better than conventional multiplier with equal or better than the best one published.
Journal of the Korea Institute of Information Security & Cryptology
/
v.27
no.2
/
pp.193-199
/
2017
In this paper, we proposed an architecture of error detection in $Z_N$ operations using $Z_{(2^r-1)N}$. The error detection can be simply constructed in hardware. The hardware overheads are only 50% and 1% with respectively space and time complexity. The architecture is very efficient because it is detection 99% for 1 bit fault. For 2 bit fault, it is detection 99% and 50% with respective r=2 and r=3.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.39
no.4
/
pp.36-42
/
2002
In this paper, we proposed a multiplicative algorithm for two polynomials with all non-zero coefficients over finite field GF($P^m$). Using the proposed multiplicative algorithm, we constructed the multiplier of modular architecture with parallel in-output. The proposed multiplier is composed of $(m+1)^2$ identical cells, each cell consists of one mod(p) additional gate and one mod(p) multiplicative gate. Proposed multiplier need one mod(p) multiplicative gate delay time and m mod(p) additional gate delay time not clock. Also, our architecture is regular and possesses the property of modularity, therefore well-suited for VLSI implementation.
In this paper, we propose an efficient architecture for radix-4 modular multiplication in systolic array structure based on the Montgomery's algorithm. We propose a radix-4 modular multiplication algorithm to reduce the number of iterations, so that it takes (3/2)n+2 clock cycles to complete an n-bit modular multiplication. Since we can interleave two consecutive modular multiplications for 100% hardware utilization and can start the next multiplication at the earliest possible moment, it takes about only n/2 clock cycles to complete one modular multiplication in the average. The proposed architecture is quite regular and scalable due to the systolic array structure so that it fits in a VLSI implementation. Compared to conventional approaches, the proposed architecture shows shorter period to complete a modular multiplication while requiring relatively less hardware resources.
Journal of the Korea Institute of Information and Communication Engineering
/
v.22
no.1
/
pp.100-108
/
2018
This paper describes a design of scalable RSA public-key cryptography processor supporting four key lengths of 512/1,024/2,048/3,072 bits. The modular multiplier that is a core arithmetic block for RSA crypto-system was designed with 32-bit datapath, which is based on the CIOS (Coarsely Integrated Operand Scanning) Montgomery modular multiplication algorithm. The modular exponentiation was implemented by using L-R binary exponentiation algorithm. The scalable RSA crypto-processor was verified by FPGA implementation using Virtex-5 device, and it takes 456,051/3,496347/26,011,947/88,112,770 clock cycles for RSA computation for the key lengths of 512/1,024/2,048/3,072 bits. The RSA crypto-processor synthesized with a $0.18{\mu}m$ CMOS cell library occupies 10,672 gate equivalent (GE) and a memory bank of $6{\times}3,072$ bits. The estimated maximum clock frequency is 147 MHz, and the RSA decryption takes 3.1/23.8/177/599.4 msec for key lengths of 512/1,024/2,048/3,072 bits.
Journal of the Korea Institute of Information Security & Cryptology
/
v.11
no.5
/
pp.63-74
/
2001
Modular exponentiation is an essential operation required for implementations of most public key cryptosystems. This paper presents two architectures for modular exponentiation using the Montgomery modular multiplication algorithm combined with two binary exponentiation methods, L-R(Left to Left) algorithms. The proposed architectures make use of MUXes for efficient pre-computation and post-computation in Montgomery\`s algorithm. For an n-bit modulus, if mulitplication with m carry processing clocks can be done (n+m) clocks, the L-R type design requires (1.5n+5)(n+m) clocks on average for an exponentiation. The R-L type design takes (n+4)(n+m) clocks in the worst case.
Journal of the Korea Institute of Information Security & Cryptology
/
v.18
no.2
/
pp.3-10
/
2008
The choice of basis for representation of element in $GF(2^m)$ affects the efficiency of a multiplier. Among them, a multiplier using redundant representation efficiently supports trade-off between the area complexity and the time complexity since it can quickly carry out modular reduction. So time of a previous multiplier using redundant representation is faster than time of multiplier using others basis. But, the weakness of one has a upper space complexity compared to multiplier using others basis. In this paper, we propose a new efficient multiplier with consideration that polynomial exponentiation operations are frequently used in cryptographic hardwares. The proposed multiplier is suitable fer left-to-right exponentiation environment and provides efficiency between time and area complexity. And so, it has both time delay of $T_A+({\lceil}{\log}_2m{\rceil})T_x$ and area complexity of (2m-1)(m+s). As a result, the proposed multiplier reduces $2(ms+s^2)$ compared to the previous multiplier using equally-spaced polynomials in area complexity. In addition, it reduces $T_A+({\lceil}{\log}_2m+s{\rceil})T_x$ to $T_A+({\lceil}{\log}_2m{\rceil})T_x$ in the time complexity.($T_A$:Time delay of one AND gate, $T_x$:Time delay of one XOR gate, m:Degree of equally spaced irreducible polynomial, s:spacing factor)
A cellular array parallel multiplier with parallel-inputs and parallel-outputs for performing the multiplication of two polynomials in the finite fields GF$(2^m)$ is presented in this paper. The presented cellular way parallel multiplier consists of three operation parts: the multiplicative operation part (MULOP), the irreducible polynomial operation part (IPOP), and the modular operation part (MODOP). The MULOP and the MODOP are composed if the basic cells which are designed with AND Bates and XOR Bates. The IPOP is constructed by XOR gates and D flip-flops. This multiplier is simulated by clock period l${\mu}\textrm{s}$ using PSpice. The proposed multiplier is designed by 24 AND gates, 32 XOR gates and 4 D flip-flops when degree m is 4. In case of using AOP irreducible polynomial, this multiplier requires 24 AND gates and XOR fates respectively. and not use D flip-flop. The operating time of MULOP in the presented multiplier requires one unit time(clock time), and the operating time of MODOP using IPOP requires m unit times(clock times). Therefore total operating time is m+1 unit times(clock times). The cellular array parallel multiplier is simple and regular for the wire routing and have the properties of concurrency and modularity. Also, it is expansible for the multiplication of two polynomials in the finite fields with very large m.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.41
no.5
/
pp.29-36
/
2004
This study focuses on the arithmetical methodology and hardware implementation of low-system-complexity multiplier over GF(2$^{m}$ ) using the trinomial of degree a The proposed parallel-in parallel-out operator is composed of MR, PP, and MS modules, each can be established using the regular array structure of AND and XOR gates. The proposed multiplier is composed of $m^2$ 2-input AND gates and $m^2$-1 2-input XOR gates, and the propagation delay is $T_{A}$+(1+[lo $g_2$$^{m}$ ]) $T_{x}$ . Comparison result of the related multipliers of GF(2$^{m}$ ) are shown by table, it reveals that our operator involve more regular and generalized then the others, and therefore well-suited for VLSI implementation. Moreover, our multiplier is more suitable for any other GF(2$^{m}$ ) operational applications.s.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.