DOI QR코드

DOI QR Code

유한체 GF(2m)상의 셀 배열 병렬 승산기의 설계

A Design of Cellular Array Parallel Multiplier on Finite Fields GF(2m)

  • 성현경 (상지대학교 컴퓨터·정보공학부)
  • 발행 : 2004.02.01

초록

본 논문에서는 유한체 GF$(2^m)$상에서 두 다항식의 승산을 실현하는 병렬-입력 및 병렬-출력을 갖는 셀 배열 병렬 승산기를 제시한다 이 승산기는 승산연산부, 기약다항식연산부. MOD연산부로 구성한다. 승산연산부는 AND 게이트와 XOR 게이트로 설계한 기본 셀의 배열로 이루어지며, 기약다항식연산부는 XOR 게이트와 D 플림플롭회로를 사용하여 구성하며, MOD연산부는 AND 게이트와 XOR 게이트에 의한 기본 셀을 배열하여 구성하였다. 제시한 승산기는 PSpice 시뮬레이션을 통하여 동작특성을 보였으며, 클럭신호의 주기를 l${\mu}\textrm{s}$로 하였다. 제시한 셀 배열 병렬 승산기는 m=4인 경우에 AND 게이트의 수가 24개, XOR 게이트의 수가 32개 필요하며, D 플립플롭회로가 4개 필요하다. 또한, AOP 기약 다항식을 사용하면 AND 게이트와 XOR 게이트의 수가 24개 필요하며 D 플립플롭은 사용되지 않는다. 셀 배열 병렬 승산기의 승산연산부의 동작시간은 1 단위시간(클럭시간)이 소비되고, 기약다항식연산부에 의한 MOD연산부의 동작시간은 m 단위시간(클럭시간)이 소비되어 전체 동작시간은 m+1 단위시간(클럭시간)이 소비된다. 본 논문에서 제시한 셀 병렬 승산기는 회선경로 선택의 규칙성, 간단성, 배열의 모듈성과 병렬동작의 특징을 가지며, 특히 차수 m이 매우 큰 유한체강의 두 다항식의 승산에서 확장성을 갖는다.

A cellular array parallel multiplier with parallel-inputs and parallel-outputs for performing the multiplication of two polynomials in the finite fields GF$(2^m)$ is presented in this paper. The presented cellular way parallel multiplier consists of three operation parts: the multiplicative operation part (MULOP), the irreducible polynomial operation part (IPOP), and the modular operation part (MODOP). The MULOP and the MODOP are composed if the basic cells which are designed with AND Bates and XOR Bates. The IPOP is constructed by XOR gates and D flip-flops. This multiplier is simulated by clock period l${\mu}\textrm{s}$ using PSpice. The proposed multiplier is designed by 24 AND gates, 32 XOR gates and 4 D flip-flops when degree m is 4. In case of using AOP irreducible polynomial, this multiplier requires 24 AND gates and XOR fates respectively. and not use D flip-flop. The operating time of MULOP in the presented multiplier requires one unit time(clock time), and the operating time of MODOP using IPOP requires m unit times(clock times). Therefore total operating time is m+1 unit times(clock times). The cellular array parallel multiplier is simple and regular for the wire routing and have the properties of concurrency and modularity. Also, it is expansible for the multiplication of two polynomials in the finite fields with very large m.

키워드

참고문헌

  1. B. A. Laws and C. K. Rushforth, 'A Cellular Array Multiplier for $GF(2^m)$,' IEEE Trans. Computers, Vol. C-20, pp.1573-1578, Dec., 1971 https://doi.org/10.1109/T-C.1971.223173
  2. H. M. Shao, T. K. Truong, L. J. Deutsch, J. H. Yaeh and I. S. Reed, 'A VLSI Design of a Pipelining Reed-Solomon Decoder,' IEEE Trans. Computers, Vol.C-34, pp.393-403, May., 1985 https://doi.org/10.1109/TC.1985.1676579
  3. C. C. Wang, T. K. Truong, H. M. Shao, L. J. Deutsch, J. K. Omura and I. S. Reed, 'VLSI Architecture for Computing Multiplications and Inverses in $GF(2^m)$,' IEEE Trans. Computers, Vol.C-34, pp.709-717, Aug., 1985 https://doi.org/10.1109/TC.1985.1676616
  4. P. A. Scott, S. E. Tarvares and L. E. Peppard, 'A Fast Multiplier for GF($2^ m$),' IEEE J. Select. Areas Communications, Vol.SAC-4, No.1, pp.707-717, Jan., 1986 https://doi.org/10.1109/JSAC.1986.1146305
  5. I. S. Hsu, T. K. Truong, L. J. Deutsch and I. S. Reed, 'A Comparison of VLSI Architecture of Finite Field Multipliers Using Dual, Normal, or Standard Bases,' IEEE Trans. Computers, Vol.C-37, No.6, pp.735-739, Jun., 1988 https://doi.org/10.1109/12.2212
  6. C. L. Wang and J. L. Lin, 'Systolic Array Implementation of Multipliers for Finite Fields GF($2^m$),', IEEE Trans. Circuits and Systems, Vol.38, No.7, July., 1991 https://doi.org/10.1109/31.135751
  7. C. K. Koc and B. Sunar, 'Low Complexity Bit-Parallel Canonical and Normal Basis Multipliers for a Class of Finite Fields,' IEEE Trans. Computers, Vol.47, No.3, pp. 353-356, Mar., 1998 https://doi.org/10.1109/12.660172
  8. Kiamal Z. Pekmestzi, 'Multiplexer-Based Array Multipliers,' IEEE Trans. Computers, Vol 48, No.1, pp. 15-23, Jan., 1999 https://doi.org/10.1109/12.743408
  9. H. Wu and M. A. Hasan, 'Low Complexity Bit-Parallel Multipliers for a Class of Finite Fields,' IEEE Trans. Computers, Vol.47, No.8, pp.883-887, Nov., 1998 https://doi.org/10.1109/12.707588
  10. J.J. Wonziak, 'Systolic Dual Basis Serial Multiplier,' IEE Proceeding Computers and Digital Technology, Vol.145, No.3, pp.237-241, July., 1998 https://doi.org/10.1049/ip-cdt:19981938
  11. C. S. Yeh, I. S. Reed and T. K. Truong, 'Systolic Multipliers for Finite Field GF(2m),' IEEE Trans. Computers, Vol.C-33, pp.357-360, Apr., 1984 https://doi.org/10.1109/TC.1984.1676441
  12. H. Wu and H. A. Hasan and L. F. Blake, 'New Low-Complexity Bit-Parallel Finite Fields Multipliers Using Weekly Dual Basis,' IEEE Trans. Computers, Vol.47, No. 11, pp.1223-1234, Nov., 1998 https://doi.org/10.1109/12.736433
  13. G. Drolet, 'A New Representation of Finite Fields GF($2^m$) Yielding Small Complexity Arithmetic,' IEEE Trans. Computers, Vol.47, No.9, pp.938-946, Sept., 1998 https://doi.org/10.1109/12.713313
  14. A. Halbutogullari and C. K. Koc, 'Mastrovito Multiplier for General Irreducible Polynomials,' IEEE Trans. Computers, Vol.49, No.5, pp.503-518, May., 2000 https://doi.org/10.1109/12.859542
  15. C. Y. Lee, E. H. Lu and J. Y. Lee, 'Bit Parallel Systolic Multipliers for GF($2^m$) Fields Defined by All-One and Equally Spaced Polynomials,' IEEE Trans. Computers, Vol.50, No.5, pp.385-392, May., 2001 https://doi.org/10.1109/12.926154
  16. S. W. Wei, 'A Systolic Power-Sum Circuit for GF($2^ m$),', IEEE Trans. Computers, Vol.43, No.2, pp.226-229, Feb., 1994 https://doi.org/10.1109/12.262128
  17. E. D. Mastrovito, 'VLSI Design for Multiplication on Finite Field GF(2m),', Proc. International Conference on Applied Algebraic Algorithms and Error-Correcting Code, AAECC-6, Roma, pp.297-309, July., 1998 https://doi.org/10.1007/3-540-51083-4_67
  18. R. Lidl, H. Niederreiter and P. M. Cohn, Finite Fields, Addison-Wesley, Reading, Massachusetts, 1983
  19. S. B. Wicker and V. K. Bhargava, Error Correcting Coding Theory, McGraw-Hill, New York, 1989
  20. A. R. Masoleh and M. A. Hasan, 'A New Construction of Massey-Omura Parallel Multiplier over GF($2^m$),' IEEE Trans. Computers, Vol.51 , No.5, pp.511-520, May., 2002 https://doi.org/10.1109/TC.2002.1004590
  21. H. Wu, 'Bit-Parallel Finite Field Multiplier and Squarer Using Polynomial Basis,' IEEE Trans. Computers, Vol. 51, No.7, pp.750-758, July., 2002 https://doi.org/10.1109/TC.2002.1017695
  22. C. L. Wang and J. H. Guo, 'New Systolic Arrays for C+AB2, Inversion, and Division in GF($2^ m$),' IEEE Trans. Computers, Vol.49, No.10, pp.1120-1125, Oct., 2000 https://doi.org/10.1109/12.888047
  23. C. H. Kim, S. Oh and J. Lim, 'A New Hardware Architecture for Operation in $GF(2^n)$,' IEEE Trans. Computers, Vol.51, No.1, pp.90-92, Jan., 2002 https://doi.org/10.1109/12.980019