Browse > Article

A Study on the Hardware Architecture of Trinomial $GF(2^m)$ Multiplier  

변기영 (인하대학교 UWB-IT 연구센터)
윤광섭 (인하대학교 전자전기공학부)
Publication Information
Abstract
This study focuses on the arithmetical methodology and hardware implementation of low-system-complexity multiplier over GF(2$^{m}$ ) using the trinomial of degree a The proposed parallel-in parallel-out operator is composed of MR, PP, and MS modules, each can be established using the regular array structure of AND and XOR gates. The proposed multiplier is composed of $m^2$ 2-input AND gates and $m^2$-1 2-input XOR gates, and the propagation delay is $T_{A}$+(1+[lo $g_2$$^{m}$ ]) $T_{x}$ . Comparison result of the related multipliers of GF(2$^{m}$ ) are shown by table, it reveals that our operator involve more regular and generalized then the others, and therefore well-suited for VLSI implementation. Moreover, our multiplier is more suitable for any other GF(2$^{m}$ ) operational applications.s.
Keywords
finite field; trinomial; standard basis; $GF(2^m)$ multiplier; modular reduction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C.K. Koc and T. Acar, 'Montgomery Multiplication in GF(2k)' Designs, Codes, and Cryptography, vol. 14, pp. 57-69, 1998   DOI
2 B.A.Laws and C.K.Rushford, 'A Cellular-Array Multiplier for GF(2m)' IEEE Trans. Comput., vol. C-20, no. 12, pp. 1573-1578, Dec. 1971   DOI   ScienceOn
3 C.S.Yeh, I.S.Reed, and T.K.Trung, 'Systolic Multipliers for Finite Field GF(2m),' IEEE Trans. Comput., vol. C-33, pp. 357-360, April 1984   DOI   ScienceOn
4 M.A. Hasan, M.Z. Wang, and V.K. Bhargava, 'Moduler Construction of Low Complexity Parallel Multipliers for a Class of Finite Fields GF($2^m$),' IEEE Trans. Computers, vol. 41, no. 8, pp. 961-971, Aug. 1992   DOI   ScienceOn
5 C.Y.Lee, E.H.Lu, and J.Y.Lee, 'Bit-Parallel Systolic Multipliers for GF(2m) Fields Defined by All-One and Equally Spaced Polynomials,' IEEE Trans. Comput., vol. 50, no.5, pp.385- 393, May 2001   DOI   ScienceOn
6 E.D.Mastrovito, 'VLSI Architectures for Multiplication over Finite Fields,' Ph.D thesis, Dept. of Electrical Eng., Linkoping Univ., Linkoping, Sewden, 1991
7 A. Halbutogullari and C.K. Koc, 'Mastrovito Multiplier for General Irreducible Polynomials,' IEEE Trans. Comput., vol. 49, no. 5, pp. 503-518, May 2000   DOI   ScienceOn
8 B.Sunar and C.K.Koc, 'Mastrovito Multiplier for All Trinomials,' IEEE Trans. Comput., vol. 48, no. 5, pp. 522-527, May 1999   DOI   ScienceOn
9 H.Wu, 'Montgomery Multiplier and Squarer for a Class of Finite Fields,' IEEE Trans. Comput., vol.51, no.5, pp.521-529, May 2002   DOI   ScienceOn
10 C.Paar, 'A New Architectures for a Parallel Finite Field Multiplier with Low Complexity Basrd on Composite Fields,' IEEE Trans. Comput., vol. 45, pp. 856-861, 1996   DOI   ScienceOn
11 T.Zhang and K.K.Parhi, 'Systematic Design Approach of Mastrovito Multipliers over GF(2m),' IEEE Workshop on SiPS 2000, pp.507-516, 2000   DOI
12 S.Lin, Error Control Coding, Prentice-Hall, Inc. New Jersey, 1983
13 이만영, BCH부호와 Reed-Solomon부호, 민음사, 1990
14 I.S.Hsu, T.K.Troun, L.J.Deutsch, and I.S.Reed, 'A Comparison of VLSI Architecture of Multipliers using Dual, Normal, or Standard Bases,' IEEE Trans. Comput., vol.C-37, pp.735-739, 1988   DOI   ScienceOn
15 H.Okano and H.Imai, 'A Construction method of high-speed decoders using ROM's for Bose-Chaudhuri-Hocquenghem and Reed-Solomon codes,' IEEE Trans. Comput., vol. C-36, p.1165-1171, 1987   DOI   ScienceOn