Browse > Article
http://dx.doi.org/10.3745/KIPSTA.2004.11A.1.001

A Design of Cellular Array Parallel Multiplier on Finite Fields GF(2m)  

Seong, Hyeon-Kyeong (상지대학교 컴퓨터·정보공학부)
Abstract
A cellular array parallel multiplier with parallel-inputs and parallel-outputs for performing the multiplication of two polynomials in the finite fields GF$(2^m)$ is presented in this paper. The presented cellular way parallel multiplier consists of three operation parts: the multiplicative operation part (MULOP), the irreducible polynomial operation part (IPOP), and the modular operation part (MODOP). The MULOP and the MODOP are composed if the basic cells which are designed with AND Bates and XOR Bates. The IPOP is constructed by XOR gates and D flip-flops. This multiplier is simulated by clock period l${\mu}\textrm{s}$ using PSpice. The proposed multiplier is designed by 24 AND gates, 32 XOR gates and 4 D flip-flops when degree m is 4. In case of using AOP irreducible polynomial, this multiplier requires 24 AND gates and XOR fates respectively. and not use D flip-flop. The operating time of MULOP in the presented multiplier requires one unit time(clock time), and the operating time of MODOP using IPOP requires m unit times(clock times). Therefore total operating time is m+1 unit times(clock times). The cellular array parallel multiplier is simple and regular for the wire routing and have the properties of concurrency and modularity. Also, it is expansible for the multiplication of two polynomials in the finite fields with very large m.
Keywords
Finite fields GF$(2^m)$; Parallel Multiplier; Systolic Multiplier; Irreducible Polynomial; Reed-Solomon Decoder;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. A. Laws and C. K. Rushforth, 'A Cellular Array Multiplier for $GF(2^m)$,' IEEE Trans. Computers, Vol. C-20, pp.1573-1578, Dec., 1971   DOI   ScienceOn
2 H. M. Shao, T. K. Truong, L. J. Deutsch, J. H. Yaeh and I. S. Reed, 'A VLSI Design of a Pipelining Reed-Solomon Decoder,' IEEE Trans. Computers, Vol.C-34, pp.393-403, May., 1985   DOI   ScienceOn
3 P. A. Scott, S. E. Tarvares and L. E. Peppard, 'A Fast Multiplier for GF($2^ m$),' IEEE J. Select. Areas Communications, Vol.SAC-4, No.1, pp.707-717, Jan., 1986   DOI
4 I. S. Hsu, T. K. Truong, L. J. Deutsch and I. S. Reed, 'A Comparison of VLSI Architecture of Finite Field Multipliers Using Dual, Normal, or Standard Bases,' IEEE Trans. Computers, Vol.C-37, No.6, pp.735-739, Jun., 1988   DOI   ScienceOn
5 C. L. Wang and J. L. Lin, 'Systolic Array Implementation of Multipliers for Finite Fields GF($2^m$),', IEEE Trans. Circuits and Systems, Vol.38, No.7, July., 1991   DOI   ScienceOn
6 C. C. Wang, T. K. Truong, H. M. Shao, L. J. Deutsch, J. K. Omura and I. S. Reed, 'VLSI Architecture for Computing Multiplications and Inverses in $GF(2^m)$,' IEEE Trans. Computers, Vol.C-34, pp.709-717, Aug., 1985   DOI   ScienceOn
7 C. K. Koc and B. Sunar, 'Low Complexity Bit-Parallel Canonical and Normal Basis Multipliers for a Class of Finite Fields,' IEEE Trans. Computers, Vol.47, No.3, pp. 353-356, Mar., 1998   DOI   ScienceOn
8 Kiamal Z. Pekmestzi, 'Multiplexer-Based Array Multipliers,' IEEE Trans. Computers, Vol 48, No.1, pp. 15-23, Jan., 1999   DOI   ScienceOn
9 J.J. Wonziak, 'Systolic Dual Basis Serial Multiplier,' IEE Proceeding Computers and Digital Technology, Vol.145, No.3, pp.237-241, July., 1998   DOI   ScienceOn
10 H. Wu and M. A. Hasan, 'Low Complexity Bit-Parallel Multipliers for a Class of Finite Fields,' IEEE Trans. Computers, Vol.47, No.8, pp.883-887, Nov., 1998   DOI   ScienceOn
11 C. S. Yeh, I. S. Reed and T. K. Truong, 'Systolic Multipliers for Finite Field GF(2m),' IEEE Trans. Computers, Vol.C-33, pp.357-360, Apr., 1984   DOI   ScienceOn
12 A. Halbutogullari and C. K. Koc, 'Mastrovito Multiplier for General Irreducible Polynomials,' IEEE Trans. Computers, Vol.49, No.5, pp.503-518, May., 2000   DOI   ScienceOn
13 G. Drolet, 'A New Representation of Finite Fields GF($2^m$) Yielding Small Complexity Arithmetic,' IEEE Trans. Computers, Vol.47, No.9, pp.938-946, Sept., 1998   DOI   ScienceOn
14 S. W. Wei, 'A Systolic Power-Sum Circuit for GF($2^ m$),', IEEE Trans. Computers, Vol.43, No.2, pp.226-229, Feb., 1994   DOI   ScienceOn
15 A. R. Masoleh and M. A. Hasan, 'A New Construction of Massey-Omura Parallel Multiplier over GF($2^m$),' IEEE Trans. Computers, Vol.51 , No.5, pp.511-520, May., 2002   DOI   ScienceOn
16 H. Wu and H. A. Hasan and L. F. Blake, 'New Low-Complexity Bit-Parallel Finite Fields Multipliers Using Weekly Dual Basis,' IEEE Trans. Computers, Vol.47, No. 11, pp.1223-1234, Nov., 1998   DOI   ScienceOn
17 E. D. Mastrovito, 'VLSI Design for Multiplication on Finite Field GF(2m),', Proc. International Conference on Applied Algebraic Algorithms and Error-Correcting Code, AAECC-6, Roma, pp.297-309, July., 1998   DOI
18 C. Y. Lee, E. H. Lu and J. Y. Lee, 'Bit Parallel Systolic Multipliers for GF($2^m$) Fields Defined by All-One and Equally Spaced Polynomials,' IEEE Trans. Computers, Vol.50, No.5, pp.385-392, May., 2001   DOI   ScienceOn
19 R. Lidl, H. Niederreiter and P. M. Cohn, Finite Fields, Addison-Wesley, Reading, Massachusetts, 1983
20 S. B. Wicker and V. K. Bhargava, Error Correcting Coding Theory, McGraw-Hill, New York, 1989
21 H. Wu, 'Bit-Parallel Finite Field Multiplier and Squarer Using Polynomial Basis,' IEEE Trans. Computers, Vol. 51, No.7, pp.750-758, July., 2002   DOI   ScienceOn
22 C. L. Wang and J. H. Guo, 'New Systolic Arrays for C+AB2, Inversion, and Division in GF($2^ m$),' IEEE Trans. Computers, Vol.49, No.10, pp.1120-1125, Oct., 2000   DOI   ScienceOn
23 C. H. Kim, S. Oh and J. Lim, 'A New Hardware Architecture for Operation in $GF(2^n)$,' IEEE Trans. Computers, Vol.51, No.1, pp.90-92, Jan., 2002   DOI   ScienceOn