
International Journal of Internet, Broadcasting and Communication Vol.16 No.1 17-28 (2024)

http://dx.doi.org/10.7236/IJIBC.2024.16.1.17

Copyright© 2024 by The Institute of Internet, Broadcasting and Communication. This is an Open Access article distributed under the terms of

the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0)

Montgomery Multiplier with Very Regular Behavior

Yoo-Jin Baek

Associate Professor, Department of Information Security, Woosuk University

yoojin.baek@gmail.com

Abstract

As listed as one of the most important requirements for Post-Quantum Cryptography standardization

process by National Institute of Standards and Technology, the resistance to various side-channel attacks is

considered very critical in deploying cryptosystems in practice. In fact, cryptosystems can easily be broken by

side-channel attacks, even though they are considered to be secure in the mathematical point of view. The

timing attack(TA) and the simple power analysis attack(SPA) are such side-channel attack methods which can

reveal sensitive information by analyzing the timing behavior or the power consumption pattern of

cryptographic operations. Thus, appropriate measures against such attacks must carefully be considered in

the early stage of cryptosystem's implementation process. The Montgomery multiplier is a commonly used and

classical gadget in implementing big-number-based cryptosystems including RSA and ECC. And, as recently

proposed as an alternative of building blocks for implementing post quantum cryptography such as lattice-

based cryptography, the big-number multiplier including the Montgomery multiplier still plays a role in

modern cryptography. However, in spite of its effectiveness and wide-adoption, the multiplier is known to be

vulnerable to TA and SPA. And this paper proposes a new countermeasure for the Montgomery multiplier

against TA and SPA. Briefly speaking, the new measure first represents a multiplication operand without 0

digits, so the resulting multiplication operation behaves in a very regular manner. Also, the new algorithm

removes the extra final reduction (which is intrinsic to the modular multiplication) to make the resulting

multiplier more timing-independent. Consequently, the resulting multiplier operates in constant time so that it

totally removes any TA and SPA vulnerabilities. Since the proposed method can process multi bits at a time,

implementers can also trade-off the performance with the resource usage to get desirable implementation

characteristics.

Keywords: Side-Channel Attack, Montgomery Multiplier, RSA, Countermeasure

1. INTRODUCTION

As the threat of the quantum computer to the conventional cryptography grows, the effort of mitigating such

a menace is also attracting more interest of the public and the research community. To cope with this

phenomenon, National Institute of Standards and Technology (NIST) formally initiated the process of

standardizing post-quantum cryptography in 2016. And, as quoted in the following [1]

IJIBC 24-1-3

Manuscript Received: December. 6, 2023 / Revised: January. 3, 2024 / Accepted: January. 12, 2024

Corresponding Author: yoojin.baek@gmail.com

Tel: +82-63-290-1221, Fax: +82-63-290-1518

Associate Professor, Department of Information Security, Woosuk University, Korea

18 International Journal of Internet, Broadcasting and Communication Vol.16 No.1 17-28 (2024)

“Another case where security and performance interact is resistance to side-channel attacks. … We further

note that optimized implementations that address side-channel attacks (e.g., constant-time implementations)

are more meaningful than those which do not.”

one of the most important requirements for Post-Quantum Cryptography standardization process is resistance

to various side-channel attacks including the timing attack.

Cryptographic attacks can, in general, be classified into two categories, mathematical attacks and side-

channel attacks. And, it is well known that, even though being proved to be secure in the point of view of

mathematical attacks, cryptographic algorithms can be broken by side-channel attacks [2].

The side-channel attacks take advantage of side-channel information captured in cryptographic

computations to retrieve secret materials in devices. And, the side-channel information includes computation

time, power consumption pattern, electromagnetic emission and so on. Since the introduction of the timing

attack in [3], many papers have considered various side-channel attack methods and the corresponding

countermeasures. And this paper mainly concerns about protecting cryptographic systems from the timing

attack and the simple power attack.

The timing attack(TA) relies on the fact that the timing information is highly dependent of the input data

and the internal operations [3]. Consequently, the attack tries to recover secret information by analyzing the

timing profile of cryptographic algorithms’ execution. On the other hand, the power analysis attack recovers

secret keys from the power consumption pattern of cryptographic devices [2]. Especially, the simple power

attack(SPA), one category of the power attack methods, observes one or a few power traces, from which it

distinguishes between various cryptographic primitives

The Montgomery multiplier [5] is popularly used for efficiently implementing the RSA cryptosystem.

However, as recently proposed as an alternative of building blocks for implementing post quantum

cryptography such as lattice-based cryptography [7], the multiplier can also play a role in implementing various

post quantum algorithms. And, since the multiplier may be vulnerable to TA and SPA as shown in the

subsequent, it should carefully be designed to address adequate countermeasures.

The TA and SPA vulnerabilities of the modular multiplication may come from several leakage sources. First

of all, its different behavior in handling certain input digits may be problematic. For example, when the

multiply-and-then-reduce strategy is used for computing 𝑎𝑏 mod 𝑁 for given three integers 𝑎, 𝑏 and 𝑁, the

multiplication algorithm first represents the operand 𝑎 into 𝑎 = 𝑎𝑖2
𝑤𝑖 for the fixed window size 𝑤. Then,

it repeatedly compute 𝑎𝑖𝑏 and accumulates the result to a register. Thus, if 𝑎𝑖 = 0, then no action is taken to

compute 𝑎𝑖𝑏, which would show a different behavior compared with 𝑎𝑖 ≠ 0. And, this phenomenon can

result in some TA/SPA vulnerabilities. Another leakage, which is specific to the Montgomery multiplier, may

come from the extra reduction step. That is, the execution of Step 5 of Algorithm 1 in the next section may

occur or not, dependent on the input values, which may be investigated by side-channel attackers. To prevent

these weaknesses, this paper proposes a new regular Montgomery-type multiplier which has the following

properties:

- The new multiplier transforms one of operands into a representation without 0 digits. Thus, the

multiplications by the digit 0 are removed during the operation.

- The proposed digit transformation method is implemented using simple closed formula, so its

implementation does not involve any conditional statements. It is worth noting that, in addition to giving

Montgomery Multiplier with Very Regular Behavior 19

a resistance to TA and SPA, this property is also helpful in preventing a kind of fault attacks which

makes the conditional statements bypassed and then analyses the faulty output to get some meaningful

information.

- The digit manipulation of the new multiplier can be performed on-the-fly fashion with negligible

performance degradation, which is beneficial in the memory-constrained circumstance.

The proposed method can process multi bits at a time, so implementers can trade-off the performance with

the resource usage to get desirable implementation characteristics.

2. PRELIQUISITE

2.1 TIMING ATTACK AND SIMPLE POWER ATTACK

The side-channel attack is a very powerful implementation attack method and deals with side-channel

information from cryptographic computations. In fact, real-world cryptographic devices may pour out some

unintentional information related to the internal states or operations and if this information can be used to

retrieve some secret material in the devices, it is called the ‘side-channel information’. The side-channel

information includes computation time, power consumption pattern, electromagnetic emission and so on.

There are proposed various side-channel attack methods and the corresponding countermeasures in the

literature.

The timing attack(TA) tries to recover secret information by analyzing the timing profile in the execution

of cryptographic algorithms and highly relies on the fact that the timing information is dependent of the input

data and the internal operations [3]. Especially, the attack has been proven to be practical when the authors of

[4] successfully applied it to the SSL-based network web server using the CRT-based RSA cryptosystem.

On the other hand, the power attack, one of the most powerful side-channel attack methods, recovers secret

keys from the power consumption pattern of cryptographic devices [2]. There are proposed two basic

categories of power attack techniques, that is, the simple power analysis attack (SPA) and the differential

power analysis attack (DPA). SPA observes one or a few power signals, from which it tries to distinguish

between various cryptographic primitives. For example, the modular multiplication and the modular squaring,

the basic operations adopted in the RSA cryptosystem, are known to be distinguishable from each other by

their power consumption pattern. Different than SPA, DPA collects lots of power consumption data and uses

sophisticated statistical tools to get some useful information from these data.

It is known that cryptosystems without countermeasures are highly vulnerable to side-channel attacks even

though they are proven to be mathematically secure. Thus, cryptosystems’ implementers must carefully design

appropriate measures to prevent such side-channel attacks. For example, as countermeasures against DPA, a

variety of randomization methods were introduced so far, including the random scalar blinding and the random

point blinding applicable to the elliptic curve cryptosystems [8]. On the other hand, the double-and-add always

method [8], its right-to-left variant [9], the Montgomery powering ladder [5,10] and various exponent recoding

techniques [11,12,13] are proposed for preventing SPA. Note that these SPA countermeasures can also be used

to mitigate from TA since the basic mechanisms of performing TA and SPA are very similar.

However, all these methods are only applicable for securing the very high-level operations, say,

exponentiation or scalar multiplication. In other words, they don't consider the SPA-and TA-resistance of, for

example, the multiplication operation, which is the basic building block for exponentiation. And this paper

concerns secure implementation of the modular multiplication against SPA and TA, keeping in mind that SPA-

20 International Journal of Internet, Broadcasting and Communication Vol.16 No.1 17-28 (2024)

and TA-resistant multipliers are the essential part of securely implementing the whole exponentiation operation.

Especially, since the Montgomery multiplier is commonly used for efficiently implementing cryptosystems

based on big-number arithmetic, this paper mainly devotes to securely implementing the Montgomery

multiplier against TA and SPA.

Another noteworthy TA and SPA countermeasure is given in [14]. The authors first defined the concept of

‘side-channel equivalent’. Briefly speaking, two instructions are side-channel equivalent if they are

indistinguishable in the side-channel-point of view. And then, they concluded that, given a group in which

cryptographic operations are taking place, if multiplication-like and squaring-like operations are side-channel

equivalent, the exponentiation-like operation can be implemented in the TA and SPA secure manner with

negligible computational overhead. However, the authors didn’t mention how to make multiplication-like and

squaring-like operations be side-channel equivalent. Thus, if the proposed countermeasure for the Montgomery

multiplier really behaves regularly irrespective of input data, the resulting multiplication and squaring

operations can be used as a side-channel equivalent instructions.

2.2 MONTGOMERY MULTIPLIER

Given a modulus 𝑁 and a public/private exponent pair (𝑒, 𝑑), the RSA cryptosystem [15] encrypts a

message 𝑚 by computing 𝑐 = 𝑚𝑒 mod 𝑁 and decrypts a ciphertext 𝑐 by calculating 𝑚 = 𝑐𝑑 mod 𝑁 .

Thus, the modular exponentiation is the main operation of RSA (and some big-number-based cryptosystems)

and should be implemented in a secure manner to side-channel attacks.

In general, the modular exponentiation is implemented by applying modular multiplications and modular

squarings iteratively. And the modular multiplication (and the modular squaring as well) can be realized with

the school-book method which is basically a composition of a multi-precision integer multiplication and a

modular reduction. Also, even though the classical modular multiplication is believed to be more adequate for

implementing a single modular multiplication operation, it is also known that the Montgomery multiplier is a

very effective gadget for implementing the modular exponentiation since it substitutes the expensive modular

reduction by a cheap shift operation [16].

Given two (big) integers 𝑎, 𝑏 and a modulus 𝑁, the Montgomery multiplier computes 𝑎𝑏𝑅−1 mod 𝑁,

where 𝑅 is a specifically chosen constant which is greater than 𝑁 and generally has the form of a power of

2 [5]. The following algorithm describes the exemplary realization of the 2𝑤-ary Montgomery multiplier [16].

Algorithm 1 (2𝑤-ary Montgomery Multiplier)

Input (𝑁, 𝑎, 𝑏, 𝑤, 𝑘, 𝑅) with

- 𝑁, an odd modulus

- 𝑤, the fixed window size

- 𝑘, a positive integer satisfying 𝑁 < 2𝑤𝑘

- 𝑅 = 2𝑤𝑘

- 𝑎 and 𝑏, two positive integers with 𝑎, 𝑏 < 𝑁 (in the algorithm below, 𝑎 is expressed

as 𝑎 = ∑ 𝑎𝑖2
𝑤𝑖𝑘−1

𝑖=0 with 𝑎𝑖 ∈ {0, 1, … , 2
𝑤 − 1} for all 𝑖)

Output 𝑎𝑏𝑅−1 mod 𝑁

1. 𝑏0 ← 𝑏 mod 2𝑤

2. 𝐼 ← −𝑁−1 mod 2𝑤

3. 𝑆 ← 0

Montgomery Multiplier with Very Regular Behavior 21

4. For 𝑖 = 0 to 𝑘 − 1

a. 𝑢 ← (𝑠0 + 𝑎𝑖𝑏0)𝐼 mod 2
𝑤 for 𝑠0 = 𝑆 mod 2

𝑤

b. 𝑆 ← (𝑆 + 𝑎𝑖𝑏 + 𝑢𝑁)/2
𝑤

5. If 𝑆 ≥ 𝑁, then 𝑆 ← 𝑆 − 𝑁.

6. Return 𝑆

Even though the Montgomery multiplier shows a good performance feature, it may also have some security-

related pitfalls. In particular, in the view of the security against TA and SPA, the following two points should

be considered as a potential leakage source. The first one is about Step 4.b of Algorithm 1. Clearly, the step

will behave differently according to the values of 𝑎𝑖 and 𝑢. More precisely, if they are both nonzero, then

there must occur two multi-precision integer additions by 𝑎𝑖𝑏 and 𝑢𝑁 followed by a division by 2𝑤 (which

can be realized by a right-shift operation). On the other hand, if 𝑎𝑖 or 𝑢 is zero, then there is occurring at

most one multi-precision integer addition followed by a division, which is distinguishable for the previous case

by TA or SPA attackers. The second point comes from Step 5 of Algorithm 1. That is, the step contains a

conditional final subtraction 𝑆 − 𝑁 and the triggering condition is obviously dependent on the input values

𝑎, 𝑏 (for a fixed 𝑁). Consequently, both points may be investigated by TA or SPA attackers, so must be

removed in the implementation. And, this paper tries to eliminate these two weaknesses to get a highly regular

multiplier.

3. REGULAR MONTGOMERY MULTIPLIER

As noted in the previous section, the different behavior in processing digits of the 𝑎-operand in Algorithm

1 may lead to TA and SPA vulnerabilities. And, to prevent such undesirable phenomenon, we begin with

converting all digits of 𝑎 into non-zero digits so that 𝑎 is represented without 0-digit. Thus, assuming that,

for a fixed window size 𝑤(≥ 1) , 𝑎 is represented by 𝑎 = ∑ 𝑎𝑖2
𝑤𝑖𝑘−1

𝑖=0 with 𝑎𝑖 ∈ {0, 1, … , 2
𝑤 − 1} , we

change the representation into 𝑎 = ∑ 𝑎𝑖
′2𝑤𝑖𝑘

𝑖=0 with 𝑎𝑖
′ ∈ {±1,±2,… ,±2𝑤−1, ±2𝑤} for 𝑖 = 0,1,… , 𝑘 − 1

and 𝑎𝑘
′ ∈ {0,1}. The following points are worthy of noting for understanding the new representation:

- The new digit set {±1,±2,… ,±2𝑤−1, ±2𝑤} for 𝑎𝑖
′, 0 ≤ 𝑖 ≤ 𝑘 − 1 does not contain 0 while it

includes negative values.

- For 0 ≤ 𝑖 ≤ 𝑘 − 1, 0 < 𝑎𝑖
′ ≤ 2𝑤−2 or 𝑎𝑖

′ = 2𝑤. Thus, the absolute value of new digits except of 𝑎𝑘
′

cannot take the values between 2𝑤−1 and 2𝑤.

- The new representation is incomplete in the sense that the new most significant digit 𝑎𝑘
′ can take 0

and this problem will be fixed later.

The basic procedure of converting the representation is as follows: from the least significant digit to the most

significant digit, if we encounter a 0-digit, the digit is converted to −2𝑤 and the next digit is added by 1 to

adjust the whole value. And, this is repeated until the last digit. More precisely, letting 𝑐0 = 0, the carry bit

𝑐𝑖+1 and the new digit 𝑎𝑖
′ for 0 ≤ 𝑖 ≤ 𝑘 − 1 are inductively defined as: for 𝑥𝑖 = 𝑎𝑖 + 𝑐𝑖,

(𝑐𝑖+1, 𝑎𝑖
′) =

{

(1,−2𝑤)
(0, 𝑥𝑖)

if 𝑥𝑖 = 0

if 0 < 𝑥𝑖 ≤ 2
𝑤−1

(1, 𝑥𝑖 − 2
𝑤)

(0, 2𝑤)
if 2𝑤−1 < 𝑥𝑖 < 2

𝑤

if 𝑥𝑖 = 2
𝑤

 (1)

22 International Journal of Internet, Broadcasting and Communication Vol.16 No.1 17-28 (2024)

Also, 𝑎𝑘
′ is defined to be 𝑐𝑘.

Lemma 1 When (1) is applied to 𝑎 = ∑ 𝑎𝑖2
𝑤𝑖𝑘−1

𝑖=0 with 𝑎𝑖 ∈ {0, 1, … , 2
𝑤 − 1}, the followings hold.

 (i) 0 ≤ 𝑥𝑖 ≤ 2
𝑤 for 0 ≤ 𝑖 < 𝑘, hence (1) takes into consideration all cases of 𝑥𝑖.

(ii) 𝑥𝑖 = 𝑐𝑖+12
𝑤 + 𝑎𝑖

′ for 0 ≤ 𝑖 < 𝑘

(iii) 𝑎 = 𝑐𝑘2
𝑤𝑘 + ∑ 𝑎𝑖

′2𝑤𝑖 = ∑ 𝑎𝑖
′2𝑤𝑖𝑘

𝑖=0
𝑘−1
𝑖=0

(iv) 𝑎𝑖
′ ∈ {±1,±2,… , ±2𝑤−1, ±2𝑤} for 0 ≤ 𝑖 < 𝑘 and 𝑎𝑘

′ ∈ {0,1}.

Proof (i) is true since 𝑐𝑖 is 0 or 1 and 0 ≤ 𝑎𝑖 < 2𝑤. (ii) can be proved case by case. If 𝑥𝑖 = 0, (𝑐𝑖+1, 𝑎𝑖
′) =

(1, −2𝑤) thus 𝑐𝑖+12
𝑤 + 𝑎𝑖

′ = 0 = 𝑥𝑖 . If 0 < 𝑥𝑖 ≤ 2
𝑤−1 , (𝑐𝑖+1, 𝑎𝑖

′) = (0, 𝑥𝑖) and 𝑐𝑖+12
𝑤 + 𝑎𝑖

′ = 𝑥𝑖 . If

2𝑤−1 < 𝑥𝑖 < 2
𝑤 , 𝑐𝑖+12

𝑤 + 𝑎𝑖
′ = (1, 𝑥𝑖 − 2

𝑤) and 𝑐𝑖+12
𝑤 + 𝑎𝑖

′ = 2𝑤 + (𝑥𝑖 − 2
𝑤) = 𝑥𝑖 . Finally, if 𝑥𝑖 =

2𝑤 , 𝑐𝑖+12
𝑤 + 𝑎𝑖

′ = (0, 2𝑤) thus 𝑐𝑖+12
𝑤 + 𝑎𝑖

′ = 2𝑤 = 𝑥𝑖 . (iii) can be shown by mathematical induction.

That is, letting 𝐴𝑙 = ∑ 𝑎𝑖2
𝑤𝑖𝑙

𝑖=0 and 𝐵𝑙 = 𝑐𝑙+12
𝑤(𝑙+1) + ∑ 𝑎𝑖

′2𝑤𝑖𝑙
𝑖=0 for 𝑙 = 0,… , 𝑘 − 1, it is obvious that

𝐴0 = 𝐵0 since 𝐴0 = 𝑎0 = 𝑥0 = 𝑐12
𝑤 + 𝑎0

′ = 𝐵0 by (ii). And, assuming that 𝐴𝑙 = 𝐵𝑖 for 0 ≤ 𝑙 < 𝑘 − 2,

we have 𝐴𝑙+1 = 𝑎𝑙+12
𝑤(𝑙+1) + 𝐴𝑙 = 𝑎𝑙+12

𝑤(𝑙+1) + 𝐵𝑙 = 𝑎𝑙+12
𝑤(𝑙+1) + 𝑐𝑙+12

𝑤(𝑙+1) + ∑ 𝑎𝑖
′2𝑤𝑖𝑙

𝑖=0 =

(𝑎𝑙+1 + 𝑐𝑙+1)2
𝑤(𝑙+1) + ∑ 𝑎𝑖

′2𝑤𝑖𝑙
𝑖=0 . Now, since 𝑎𝑙+1 + 𝑐𝑙+1 = 𝑥𝑙+1 by definition and 𝑥𝑙+1 = 𝑐𝑖+22

𝑤 +

𝑎𝑙+1
′ by (2), we get 𝐴𝑙+1 = (𝑎𝑙+1 + 𝑐𝑙+1)2

𝑤(𝑙+1) +∑ 𝑎𝑖
′2𝑤𝑖𝑙

𝑖=0 = (𝑐𝑖+22
𝑤 + 𝑎𝑙+1

′)2𝑤(𝑙+1) + ∑ 𝑎𝑖
′2𝑤𝑖𝑙

𝑖=0 =

𝑐𝑙+22
𝑤(𝑙+2) + ∑ 𝑎𝑖

′2𝑤𝑖𝑙+1
𝑖=0 = 𝐵𝑙+1, which complete the proof of (iii). (iv) is obvious. ■

From Lemma 1, we can eventually conclude that the new representation does not change the original value

of 𝑎 and gives the properties explained above. Table 1 gives an example of how the rule (1) can be applied

to the 22-ary representation of integers in {0,1,… ,63}. In the table, the bar notation stands for the minus

value, for example, 1̅ means −1.

Table 1 New representation in a 𝟐𝟐-ary fashion of integers in {𝟎, 𝟏,· · · , 𝟔𝟑}

Original New Original New Original New Original New

000 14̅14̅ 100 0114̅ 200 0214̅ 300 11̅14̅

001 014̅1 101 024̅1 201 11̅4̅1 301 044̅1

002 014̅2 102 024̅2 202 11̅4̅2 302 044̅2

003 14̅11̅ 103 0111̅ 203 0211̅ 303 11̅11̅

010 14̅24̅ 110 0124̅ 210 0224̅ 310 11̅24̅

011 14̅11 111 0111 211 0211 311 11̅11

012 14̅12 112 0112 212 0212 312 11̅12

013 14̅21̅ 113 0121̅ 213 0221̅ 313 11̅21̅

020 011̅4̅ 120 021̅4̅ 220 11̅1̅4̅ 320 041̅4̅

021 14̅21 121 0121 221 0221 321 11̅21

022 14̅22 122 0122 222 0222 322 11̅22

023 011̅1̅ 123 021̅1̅ 223 11̅1̅1̅ 323 041̅1̅

030 14̅44̅ 130 0144̅ 230 0244̅ 330 11̅44̅

031 011̅1 131 021̅1 231 11̅1̅1 331 041̅1

032 011̅2 132 021̅2 232 11̅1̅2 332 041̅2

033 14̅41̅ 133 0141̅ 233 0241̅ 333 11̅41̅

Montgomery Multiplier with Very Regular Behavior 23

However, there is still an issue in the new representation in that the new last digit 𝑎𝑘
′ can have the value

0, depending on 𝑎. And this may make the resulting multiplier with the new representation take a variable

processing time so that it may induce another TA and SPA vulnerabilities. This timing variation, however, can

be eliminated by appending two more digits to the new representation. That is, for the last carry bit 𝑐𝑘 which

can have the value 0 or 1, the following two digits 𝑎𝑘+1
′ , 𝑎𝑘

′ will be appended to the new representation:

(𝑎𝑘+1
′ , 𝑎𝑘

′) = {
(1,−2) if 𝑐𝑘 = 0
(1,−1) if 𝑐𝑘 = 1

. (2)

Since 2𝑎𝑘+1
′ + 𝑎𝑘

′ = 𝑐𝑘 in (2), it is emphasized that (𝑎𝑘+1
′ , 𝑎𝑘

′) in (2) should be interpreted as a binary

representation. Consequently, the new representation can be summarized as: for 𝑎 = ∑ 𝑎𝑖2
𝑤𝑖𝑘−1

𝑖=0 with 𝑎𝑖 ∈

{0, 1, … , 2𝑤 − 1}, 𝑎 is newly represented as 𝑎 = 𝑎𝑘+1
′ 2𝑤𝑘+1 + 𝑎𝑘

′ 2𝑤𝑘 + ∑ 𝑎𝑖
′2𝑤𝑖𝑘−1

𝑖=0 = 2𝑤𝑘+1 + 𝑎𝑘
′ 2𝑤𝑘 +

∑ 𝑎𝑖
′2𝑤𝑖𝑘−1

𝑖=0 with 𝑎𝑖
′ ∈ {±1,±2,… ,±2𝑤−1, ±2𝑤} for 𝑖 = 0,1,… , 𝑘.

As noted in the previous section, when a cryptographic algorithm is implemented in software or hardware,

conditional statements should be avoided as much as possible since it causes data-dependent timing variations

or it can be skipped by fault attackers to give rise to meaningful side-channel information. Thus, implementing

the new representation conversion with rules (1) and (2) has to keep away from data-dependent conditions as

well. In this sense, (2) can be expressed as 𝑎𝑘
′ = 𝑐𝑘 − 2 and 𝑎𝑘+1

′ = 1 in a closed formula. And, it is

preferable to devise a closed formula for (1), hence all the involved variables are implemented without any if-

statements. To achieve this purpose, we need the following lemma. (In the subsequent, ≫ and ≪ stand for

the right and left shift operations, respectively.)

Lemma 2 For 𝑓, 𝑔, ℎ: {0, 1, … , 2𝑤} → {0,1} defined by 𝑓(𝑥) = (𝑥 + 2𝑤+1 − 1) ≫ (𝑤 + 1), 𝑔(𝑥) = (𝑥 +

2𝑤+1 − 2𝑤−1 − 1) ≫ (𝑤 + 1) and ℎ(𝑥) = (𝑥 + 2𝑤) ≫ (𝑤 + 1), we have

(i) 𝑓(𝑥) = {
0 if 𝑥 = 0
1 if 𝑥 ≠ 0

(ii) 𝑔(𝑥) = {
0 if 0 ≤ 𝑥 ≤ 2𝑤−1

1 if 2𝑤−1 < 𝑥 ≤ 2𝑤

(iii) ℎ(𝑥) = {
0 if 𝑥 ≠ 2𝑤

1 if 𝑥 = 2𝑤

(iv) 1 − 𝑓(𝑥) + 𝑔(𝑥) − ℎ(𝑥) = {

1 if 𝑥 = 0
0 if 0 < 𝑥 ≤ 2𝑤−1

1 if 2𝑤−1 < 𝑥 < 2𝑤

0 if 𝑥 = 2𝑤

Proof The proof is based on the simple observation that, for a non-negative integer 𝑥 and a positive integer

𝑛, 𝑥 ≫ (𝑤 + 1) is equal to 𝑛 if 2𝑤+1𝑛 ≤ 𝑥 < 2𝑤+1(𝑛 + 1). ■

Now, comparing with (iv) of Lemma 2 with (1), we can conclude that 𝑐𝑖+1 can be re-written as 𝑐𝑖+1 =

1 − 𝑓(𝑥𝑖) + 𝑔(𝑥𝑖) − ℎ(𝑥𝑖). Also, considering that 𝑎𝑖
′ in (1) can be expressed as 𝑎𝑖

′ = 𝑥𝑖 − (𝑐𝑖+1 ≪ 𝑤), the

final closed formula of (1) becomes of the form: for 𝑖 ≥ 0

 𝑐𝑖+1 = 1 − ((𝑥𝑖 + 2
𝑤+1 − 1) ≫ (𝑤 + 1)) + ((𝑥𝑖 + 2

𝑤+1 − 2𝑤−1 − 1) ≫ (𝑤 + 1)) − ((𝑥𝑖 + 2
𝑤) ≫ (𝑤 + 1)) (3)

24 International Journal of Internet, Broadcasting and Communication Vol.16 No.1 17-28 (2024)

𝑎𝑖
′ = 𝑥𝑖 − (𝑐𝑖+1 ≪ 𝑤).

As noted before, another TA and SPA leakage source of Algorithm 1 may occur at Step 4.b, which adds a

multiple of the modulus 𝑁 to 𝑆 depending on the value 𝑢. That is, if 𝑢 ≠ 0, then the step must add to 𝑆 a

non-zero multiple of 𝑁, while, if 𝑢 = 0, no addition occurs, which can be identified by TA and SPA attackers.

And, this irregular behavior can be avoided by converting 𝑢 into a new value 𝑢′ in a similar manner as in

𝑎𝑖. However, there is a major difference between conversions of 𝑎𝑖 and 𝑢: 𝑎𝑖 should be converted in the

manner that the original value 𝑎 remains unchanged after the conversion, while the constraint does not apply

to 𝑢 since the addition by a different multiple of 𝑁 in Step 4.b do not influence to the output of Algorithm

1. Keeping this in mind, the basic principle of converting 𝑢 is that 𝑢 is converted to 2𝑤 if 𝑢 = 0 and to

𝑢 − 2𝑤 if 2𝑤−1 < 𝑢 < 2𝑤. More precisely, 𝑢′ is computed as

𝑢′ = {
2𝑤 if 𝑢 = 0
𝑢 if 0 < 𝑢 ≤ 2𝑤−1

𝑢 − 2𝑤 𝑖𝑓 2𝑤−1 < 𝑢 < 2𝑤
. (4)

And, similarly as for (𝑐𝑖+1, 𝑎𝑖
′), (4) can be turned into a closed formula as

 𝑢′ = 𝑢 + ((1 − ((𝑢 + 2𝑤 − 1) ≫ 𝑤)) ≪ 𝑤) − (((𝑢 + 2𝑤−1 − 1) ≫ 𝑤) ≪ 𝑤). (5)

Summing up all the discussions above, the following algorithm can be obtained.

Algorithm 2 (New Montgomery Multiplier)

Input (𝑁, 𝑎, 𝑏, 𝑤, 𝑘, 𝑅) with

- 𝑁, an odd modulus

- 𝑤, the fixed window size

- 𝑘, a positive integer satisfying 𝑁 < 2𝑤𝑘

- 𝑅 = 2𝑤𝑘

- 𝑎 and 𝑏, two positive integers with 𝑎, 𝑏 < 𝑁 (in the algorithm below, 𝑎 is expressed

as 𝑎 = ∑ 𝑎𝑖2
𝑤𝑖𝑘−1

𝑖=0 with 𝑎𝑖 ∈ {0, 1, … , 2
𝑤 − 1} for all 𝑖)

Output 𝑎𝑏𝑅−1 mod 𝑁

1. 𝑏0 ← 𝑏 mod 2𝑤

2. 𝐼 ← −𝑁−1 mod 2𝑤

3. 𝑆 ← 0

4. 𝑐 ← 0

5. For 𝑖 = 0 to 𝑘 − 1

a. 𝑥 ← 𝑎𝑖 + 𝑐

b. 𝑐 ← 1 − ((𝑥 + 2𝑤+1 − 1) ≫ (𝑤 + 1)) + ((𝑥 + 2𝑤+1 − 2𝑤−1 − 1) ≫ (𝑤 + 1)) − ((𝑥 +

2𝑤) ≫ (𝑤 + 1))

c. 𝑥 ← 𝑥 − (𝑐 ≪ 𝑤)

d. 𝑢 ← (𝑠0 + 𝑥𝑏0)𝐼 mod 2
𝑤 for 𝑠0 = 𝑆 mod 2

𝑤

e. 𝑢 ← 𝑢 + ((1 − ((𝑢 + 2𝑤 − 1) ≫ 𝑤)) ≪ 𝑤) − (((𝑢 + 2𝑤−1 − 1) ≫ 𝑤) ≪ 𝑤)

Montgomery Multiplier with Very Regular Behavior 25

f. 𝑆 ← (𝑆 + 𝑥𝑏 + 𝑢𝑁) ≫ 𝑤

6. 𝑥 ← 𝑐 − 2

7. 𝑢 ← (𝑠0 + 𝑥𝑏0)𝐼 mod 2 for 𝑠0 = 𝑆 mod 2

8. 𝑢 ← 2 − 𝑢

9. 𝑆 ← (𝑆 + 𝑥𝑏 + 𝑢𝑁) ≫ 1

10. 𝑢 ← (𝑠0 + 𝑏0)𝐼 mod 2 for 𝑠0 = 𝑆 mod 2

11. 𝑢 ← 2 − 𝑢

12. 𝑆 ← (𝑆 + 𝑏 + 𝑢𝑁) ≫ 1

13. If 𝑆 ≥ 𝑁, then 𝑆 ← 𝑆 − 𝑁

14. Return 𝑆

Here are some explanations about Algorithm 2. In the algorithm, Step 5.b and Step 5.c are direct

applications of the equations (3), while Step 5.e comes from (5). Also, Step 6 and Step 8 (and Step 11) are

derived from (2), noting that, for 𝑤 = 1, 𝑢 + ((1 − ((𝑢 + 2𝑤 − 1))𝑤)) ≪ 𝑤) − (((𝑢 + 2𝑤−1 − 1))𝑤) ≪

𝑤) is exactly equal to 2 − 𝑢.

Even though its highly regular behavior, Algorithm 2 still has a leakage source. That is, the subtraction by

𝑁 in Step 13 may occur or not, depending on input values 𝑎 and 𝑏. Hence, it is desirable to remove the step

for preventing TA and SPA. And, this can be achieved with the help of the following lemma.

Lemma 3 If |𝑏| < 8𝑁 in Algorithm 2, the intermediate result 𝑆 after Step 12 satisfies that |𝑆| < 8𝑁.

Proof The proof follows the same approach in [17] and [18]. Let 𝑆′ denote the value of 𝑆 after Step 5. Then,

we first claim that |𝑆′| < 2𝑁 + 2|𝑏|. For the proof, put the initial and the resulting values of 𝑆 in the loop

with index 𝑖 of Step 5 to 𝑆𝐼,𝑖 and 𝑆𝑂,𝑖 , respectively. Then, Step 5.f can be re-written as 𝑆𝑂,𝑖 =

(𝑆𝐼,𝑖 + 𝑥𝑏 + 𝑢𝑁) ≫ 𝑤 =
𝑆𝐼,𝑖+𝑥𝑏+𝑢𝑁

2𝑤
 and the followings also hold:

① 𝑆𝐼,0=0

② 𝑆𝐼,𝑖+1 = 𝑆𝑂,𝑖 for 0 ≤ 𝑖 ≤ 𝑘 − 2

③ For 0 ≤ 𝑖 ≤ 𝑘 − 1, 𝑆𝑂,𝑖 is equal to (𝑆𝐼,𝑖 + 𝑥𝑏 + 𝑢𝑁) ≫ 𝑤 =
𝑆𝐼,𝑖+𝑥𝑏+𝑢𝑁

2𝑤
 for some |𝑥|, |𝑢| ≤ 2𝑤.

Now, we can use the mathematical induction to prove that |𝑆𝑂,𝑖| < 2𝑁 + 2|𝑏| for 0 ≤ 𝑖 ≤ 𝑘 − 1, which

completes the proof of the claim. Actually, for 𝑖 = 0, 𝑆𝑂,𝑖 =
𝑥𝑏+𝑢𝑁

2𝑤
 for some 𝑥, 𝑢 with |𝑥|, |𝑢| ≤ 2𝑤 .

Thus, |𝑆𝑂,0| ≤
|𝑥𝑏|+|𝑢𝑁|

2𝑤
≤ |𝑏| + 𝑁 < 2𝑁 + 2|𝑏|. Next, suppose that |𝑆𝑂,𝑖| < 2𝑁 + 2|𝑏| for 0 ≤ 𝑖 ≤ 𝑘 − 2.

Then, since 𝑆𝑂,𝑖+1 =
𝑆𝐼,𝑖+1+𝑥𝑏+𝑢𝑁

2𝑤
=

𝑆𝑂,𝑖+𝑥𝑏+𝑢𝑁

2𝑤
 for some 𝑥, 𝑢 with |𝑥|, |𝑢| ≤ 2𝑤 , we have |𝑆𝑂,𝑖+1| ≤

|𝑆𝑂,𝑖|+|𝑥𝑏|+|𝑢𝑁|

2𝑤
<

2𝑁+2|𝑏|+2𝑤|𝑏|+2𝑤𝑁

2𝑤
≤ 2𝑁 + 2|𝑏| . Now, since 𝑆′ = 𝑆𝑂,𝑘−1 , we can conclude that |𝑆′| <

2𝑁 + 2|𝑏|, as claimed. Next, let 𝑆𝐼 and 𝑆𝑂 be the initial and the resulting values of the register 𝑆 in Step 9

and 𝑆𝐼
′ and 𝑆𝑂

′ be the initial and the resulting values of the register 𝑆 in Step 12, respectively. Clearly,

|𝑆𝐼| < 2𝑁 + 2|𝑏| since 𝑆𝐼 = 𝑆𝑂,𝑘−1. Also, note that the 𝑥-value of Step 6 is −2 or – 1 according to (2).

Thus, since 𝑆𝑂
′ =

𝑆𝐼
′+𝑏+𝑢1𝑁

2
 for some 𝑢1 with |𝑢1| ≤ 2 and 𝑆𝑂 =

𝑆𝐼+𝑥𝑏+𝑢2𝑁

2
 for some 𝑥 and 𝑢2 with

𝑥 ∈ {−2,−1} and |𝑢1| ≤ 2 , 𝑆𝑂
′ is equal to

𝑆𝐼
′+𝑏+𝑢1𝑁

2
=

𝑆𝑂+𝑏+𝑢1𝑁

2
=

𝑆𝐼+(𝑥+2)𝑏+(𝑢2+2𝑢1)𝑁

4
 with 𝑥 ∈

26 International Journal of Internet, Broadcasting and Communication Vol.16 No.1 17-28 (2024)

{−2,−1} and |𝑢1|, |𝑢2| ≤ 2. Therefore, we have |𝑆𝑂
′ | ≤

|𝑆𝐼|+|𝑏|+6|𝑁|

4
. Since |𝑆𝐼| is already shown to be

less than 2𝑁 + 2|𝑏| and |𝑏| is assumed to be less than 8𝑁, we can derive that |𝑆𝑂
′ | < 8𝑁, which completes

the proof of the lemma. ■

Now, Lemma 3 says that, if the input 𝑏 of Algorithm 2 satisfies that |𝑏| < 8𝑁, then the output satisfies

the same bound even though Step 13 is removed. Thus, when a multiplication is executed via Algorithm 2

without Step 13, its result can be reused as an input of another multiplication operation. And, for example, the

exponentiation algorithm may get some benefits from this process and the step of subtraction by 𝑁 can be

postponed until the final stage of the exponentiation operation.

Based on all the discussions above, the final regular Montgomery multiplier can be described as:

Algorithm 3 (Regular Montgomery Multiplier)

Input (𝑁, 𝑎, 𝑏, 𝑤, 𝑘, 𝑅) with

- 𝑁, an odd modulus

- 𝑤, the fixed window size

- 𝑘, a positive integer satisfying 𝑁 < 2𝑤𝑘

- 𝑅 = 2𝑤𝑘

- 𝑎 and 𝑏 , two integers with 𝑎 < 𝑁 and |𝑏| < 8𝑁 (in the algorithm below, 𝑎 is

expressed as 𝑎 = ∑ 𝑎𝑖2
𝑤𝑖𝑘−1

𝑖=0 with 𝑎𝑖 ∈ {0, 1, … , 2
𝑤 − 1} for all 𝑖)

Output 𝑆 = 𝑎𝑏𝑅−1 mod 𝑁 with |𝑆| < 8𝑁

1. 𝑏0 ← 𝑏 mod 2𝑤

2. 𝐼 ← −𝑁−1 mod 2𝑤

3. 𝑆 ← 0

4. 𝑐 ← 0

5. For 𝑖 = 0 to 𝑘 − 1

a. 𝑥 ← 𝑎𝑖 + 𝑐

b. 𝑐 ← 1 − ((𝑥 + 2𝑤+1 − 1) ≫ (𝑤 + 1)) + ((𝑥 + 2𝑤+1 − 2𝑤−1 − 1) ≫ (𝑤 + 1)) − ((𝑥 +

2𝑤) ≫ (𝑤 + 1))

c. 𝑥 ← 𝑥 − (𝑐 ≪ 𝑤)

d. 𝑢 ← (𝑠0 + 𝑥𝑏0)𝐼 mod 2
𝑤 for 𝑠0 = 𝑆 mod 2

𝑤

e. 𝑢 ← 𝑢 + ((1 − ((𝑢 + 2𝑤 − 1) ≫ 𝑤)) ≪ 𝑤) − (((𝑢 + 2𝑤−1 − 1) ≫ 𝑤) ≪ 𝑤)

f. 𝑆 ← (𝑆 + 𝑥𝑏 + 𝑢𝑁) ≫ 𝑤

6. 𝑥 ← 𝑐 − 2

7. 𝑢 ← (𝑠0 + 𝑥𝑏0)𝐼 mod 2 for 𝑠0 = 𝑆 mod 2

8. 𝑢 ← 2 − 𝑢

9. 𝑆 ← (𝑆 + 𝑥𝑏 + 𝑢𝑁) ≫ 1

10. 𝑢 ← (𝑠0 + 𝑏0)𝐼 mod 2 for 𝑠0 = 𝑆 mod 2

11. 𝑢 ← 2 − 𝑢

12. 𝑆 ← (𝑆 + 𝑏 + 𝑢𝑁) ≫ 1

13. Return 𝑆

Montgomery Multiplier with Very Regular Behavior 27

Now, the main achievement of Algorithm 3 lies at its regular behavior, which clearly gives resistance to

various side-channel attacks. However, it inevitably bears some computational overhead, compared with

Algorithm 1. Nevertheless, if the window size 𝑤 is small enough, the equations (3) and (5) can be

implemented using ordinary integer operations, hence their computational cost is negligible, compared with

the whole modular multiplication operation. Actually, for real software applications, 𝑤 is not greater than 32,

so the operations in (3) and (5) can be implemented by usual integer arithmetics in the standard C library. Also,

in hardware implementations, 𝑤 is not greater than 16 and so the logic realizing the equations does not cause

much overhead of hardware size

4. CONCLUSION

The Montgomery multiplier is popularly used for efficiently implementing some big-number based

cryptosystems including RSA. And, this paper proposed a new Montgomery-like multiplier which is expected

to behave in a highly regular manner.

In general, the constant-time implementation does not give a full specification of SCA countermeasures.

For example, to defeat DPA, it is believed that some randomization techniques should be applied to the

implementations. So, in addition to the work in this paper, it will be interesting to devise a randomized version

of Montgomery multipliers, which is left for the future research.

REFERENCES

[1] National Institute of Standards and Technology, Submission requirements and evaluation criteria for the

Post-Quantum Cryptography standardization process, http://csrc.nist.gov/groups/ST/post-quantum-

crypto/documents/call-for-proposals-final-dec-2016.pdf

[2] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” Lecture Notes in Computer Science, Vol.

1666, pp. 388-397, August 1999. DOI: https://doi.org/10.1007/3-540-48405-1_25

[3] P. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems,”

Lecture Notes in Computer Science, Vol. 1109, pp. 104-113, August 1996. DOI: https://doi.org/10.1007/3-

540-68697-5_9

[4] D. Boneh and D. Brumley, “Remote Timing Attacks Are Practical,” Computer Networks, Vol. 48, Issue

5, pp. 701-716, August 2005. DOI: https://doi.org/10.1016/j.comnet.2005.01.010

[5] P. Montgomery, “Speeding the Pollard and Elliptic Curve Methods for Factorizations,” Mathematics of

Computation, Vol. 48, No. 177, pp. 243-264, January 1987. DOI: https://doi.org/10.1090/S0025-5718-

1987-0866113-7

[6] D. Boneh, R. DeMillo, and R. Lipton, “On the Importance of Checking Cryptographic Protocols for

Faults,” Lecture Notes in Computer Science, Vol. 1233, pp. 37-51, May 1997. DOI:

https://doi.org/10.1007/3-540-69053-0_4

[7] M.R. Albrecht, C. Hanser, A. Hoeller, T. Pöppelmann, F. Virdia, and A. Wallner, “Implementing RLWE-

based Schemes Using an RSA Co-Processor,” IACR Transactions on Cryptographic Hardware and

Embedded Systems, Vol. 2019, Issue 1, pp. 169–208, November 2018. DOI:

https://doi.org/10.13154/tches.v2019.i1.169-208

[8] J. Coron, “Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems,” Lecture

Notes in Computer Science, Vol. 1717, pp. 292-302, September 1999. DOI: https://doi.org/10.1007/3-

540-48059-5_25

http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1016/j.comnet.2005.01.010
https://doi.org/10.1090/S0025-5718-1987-0866113-7
https://doi.org/10.1090/S0025-5718-1987-0866113-7
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.13154/tches.v2019.i1.169-208
https://doi.org/10.1007/3-540-48059-5_25
https://doi.org/10.1007/3-540-48059-5_25

28 International Journal of Internet, Broadcasting and Communication Vol.16 No.1 17-28 (2024)

[9] A. Boscher, R. Naciri, and E. Prouff, “CRT RSA Algorithm Protected Against Fault Attacks,” Lecture

Notes in Computer Science, Vol. 4462, pp. 229-243, May 2007. DOI: https://doi.org/10.1007/978-3-540-

72354-7_19

[10] M. Joye, “Highly Regular m-ary Powering Ladders,” Lecture Notes in Computer Science, Vol. 5867, pp.

350-363, August 1999. DOI: https://doi.org/10.1007/978-3-642-05445-7_22

[11] M. Joye and M. Tunstall, “Exponent Recoding and Regular Exponentiation Algorithms,”, Lecture Notes

in Computer Science, Vol. 5580, pp. 334-349, June 2009. DOI: https://doi.org/10.1007/978-3-642-02384-

2_21

[12] B. Möller, “Securing Elliptic Curve Point Multiplication against Side-Channel Attacks,” Lecture Notes in

Computer Science, Vol. 2200, pp. 324-334, October 2001. DOI: https://doi.org/10.1007/3-540-45439-

X_22

[13] C. Vuillaume and K. Okeya, “Flexible Exponentiation with Resistance to Side-Channel Attacks,” Lecture

Notes in Computer Science, Vol. 3989, pp. 268-283, June 2006. DOI:

https://doi.org/10.1007/11767480_18

[14] B. Chevallier-Mames, M. Ciet, and M. Joye, “Low-Cost Solutions for Preventing Simple Side-Channel

Analysis: Side-Channel Atomicity,” IEEE Transactions on Computers, Vol. 53, Issue 6, pp. 760-768, June

2004. DOI: https://doi.org/10.1109/TC.2004.13

[15] R. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signatures and Public-Key

Cryptosystems,” Communications of the ACM, Vol. 21, No. 2, pp. 120-126, February 1978. DOI:

https://doi.org/10.1145/359340.359342

[16] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone, Handbook of Applied Cryptography, CRC Press,

1997.

[17] G. Hachez and J.-J. Quisquater, “Montgomery Exponentiation with no Final Subtractions: Improved

Results,” Lecture Notes in Computer Science, Vol. 1965, pp. 293-301, August 2000. DOI:

https://doi.org/10.1007/3-540-44499-8_23

[18] C. Walter, “Montgomery Exponentiation Needs No Final Subtractions,” Electronics Letters, Vol. 35,

Issue 21, pp. 1831-1832, October 1999. DOI: https://doi.org/10.1049/el:19991230

https://doi.org/10.1007/978-3-540-72354-7_19
https://doi.org/10.1007/978-3-540-72354-7_19
https://doi.org/10.1007/978-3-642-05445-7_22
https://doi.org/10.1007/978-3-642-02384-2_21
https://doi.org/10.1007/978-3-642-02384-2_21
https://doi.org/10.1007/3-540-45439-X_22
https://doi.org/10.1007/3-540-45439-X_22
https://doi.org/10.1007/11767480_18
https://doi.org/10.1109/TC.2004.13
https://doi.org/10.1145/359340.359342
https://doi.org/10.1007/3-540-44499-8_23
https://doi.org/10.1049/el:19991230

