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Abstract 

As listed as one of the most important requirements for Post-Quantum Cryptography standardization 

process by National Institute of Standards and Technology, the resistance to various side-channel attacks is 

considered very critical in deploying cryptosystems in practice. In fact, cryptosystems can easily be broken by 

side-channel attacks, even though they are considered to be secure in the mathematical point of view. The 

timing attack(TA) and the simple power analysis attack(SPA) are such side-channel attack methods which can 

reveal sensitive information by analyzing the timing behavior or the power consumption pattern of 

cryptographic operations. Thus, appropriate measures against such attacks must carefully be considered in 

the early stage of cryptosystem's implementation process. The Montgomery multiplier is a commonly used and 

classical gadget in implementing big-number-based cryptosystems including RSA and ECC. And, as recently 

proposed as an alternative of building blocks for implementing post quantum cryptography such as lattice-

based cryptography, the big-number multiplier including the Montgomery multiplier still plays a role in 

modern cryptography. However, in spite of its effectiveness and wide-adoption, the multiplier is known to be 

vulnerable to TA and SPA. And this paper proposes a new countermeasure for the Montgomery multiplier 

against TA and SPA. Briefly speaking, the new measure first represents a multiplication operand without 0 

digits, so the resulting multiplication operation behaves in a very regular manner. Also, the new algorithm 

removes the extra final reduction (which is intrinsic to the modular multiplication) to make the resulting 

multiplier more timing-independent. Consequently, the resulting multiplier operates in constant time so that it 

totally removes any TA and SPA vulnerabilities. Since the proposed method can process multi bits at a time, 

implementers can also trade-off the performance with the resource usage to get desirable implementation 

characteristics. 
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1. INTRODUCTION 

As the threat of the quantum computer to the conventional cryptography grows, the effort of mitigating such 

a menace is also attracting more interest of the public and the research community. To cope with this 

phenomenon, National Institute of Standards and Technology (NIST) formally initiated the process of 

standardizing post-quantum cryptography in 2016. And, as quoted in the following [1] 
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“Another case where security and performance interact is resistance to side-channel attacks. … We further 

note that optimized implementations that address side-channel attacks (e.g., constant-time implementations) 

are more meaningful than those which do not.” 

one of the most important requirements for Post-Quantum Cryptography standardization process is resistance 

to various side-channel attacks including the timing attack.  

Cryptographic attacks can, in general, be classified into two categories, mathematical attacks and side-

channel attacks. And, it is well known that, even though being proved to be secure in the point of view of 

mathematical attacks, cryptographic algorithms can be broken by side-channel attacks [2].  

The side-channel attacks take advantage of side-channel information captured in cryptographic 

computations to retrieve secret materials in devices. And, the side-channel information includes computation 

time, power consumption pattern, electromagnetic emission and so on. Since the introduction of the timing 

attack in [3], many papers have considered various side-channel attack methods and the corresponding 

countermeasures. And this paper mainly concerns about protecting cryptographic systems from the timing 

attack and the simple power attack. 

The timing attack(TA) relies on the fact that the timing information is highly dependent of the input data 

and the internal operations [3]. Consequently, the attack tries to recover secret information by analyzing the 

timing profile of cryptographic algorithms’ execution. On the other hand, the power analysis attack recovers 

secret keys from the power consumption pattern of cryptographic devices [2]. Especially, the simple power 

attack(SPA), one category of the power attack methods, observes one or a few power traces, from which it 

distinguishes between various cryptographic primitives 

The Montgomery multiplier [5] is popularly used for efficiently implementing the RSA cryptosystem. 

However, as recently proposed as an alternative of building blocks for implementing post quantum 

cryptography such as lattice-based cryptography [7], the multiplier can also play a role in implementing various 

post quantum algorithms. And, since the multiplier may be vulnerable to TA and SPA as shown in the 

subsequent, it should carefully be designed to address adequate countermeasures.  

The TA and SPA vulnerabilities of the modular multiplication may come from several leakage sources. First 

of all, its different behavior in handling certain input digits may be problematic. For example, when the 

multiply-and-then-reduce strategy is used for computing 𝑎𝑏 mod 𝑁 for given three integers 𝑎, 𝑏 and 𝑁, the 

multiplication algorithm first represents the operand 𝑎 into 𝑎 = 𝑎𝑖2
𝑤𝑖 for the fixed window size 𝑤. Then, 

it repeatedly compute 𝑎𝑖𝑏 and accumulates the result to a register. Thus, if 𝑎𝑖 = 0, then no action is taken to 

compute 𝑎𝑖𝑏, which would show a different behavior compared with 𝑎𝑖 ≠ 0. And, this phenomenon can 

result in some TA/SPA vulnerabilities. Another leakage, which is specific to the Montgomery multiplier, may 

come from the extra reduction step. That is, the execution of Step 5 of Algorithm 1 in the next section may 

occur or not, dependent on the input values, which may be investigated by side-channel attackers. To prevent 

these weaknesses, this paper proposes a new regular Montgomery-type multiplier which has the following 

properties: 

- The new multiplier transforms one of operands into a representation without 0 digits. Thus, the 

multiplications by the digit 0 are removed during the operation. 

- The proposed digit transformation method is implemented using simple closed formula, so its 

implementation does not involve any conditional statements. It is worth noting that, in addition to giving 
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a resistance to TA and SPA, this property is also helpful in preventing a kind of fault attacks which 

makes the conditional statements bypassed and then analyses the faulty output to get some meaningful 

information.  

- The digit manipulation of the new multiplier can be performed on-the-fly fashion with negligible 

performance degradation, which is beneficial in the memory-constrained circumstance. 

The proposed method can process multi bits at a time, so implementers can trade-off the performance with 

the resource usage to get desirable implementation characteristics. 

 

2. PRELIQUISITE 

2.1 TIMING ATTACK AND SIMPLE POWER ATTACK 

The side-channel attack is a very powerful implementation attack method and deals with side-channel 

information from cryptographic computations. In fact, real-world cryptographic devices may pour out some 

unintentional information related to the internal states or operations and if this information can be used to 

retrieve some secret material in the devices, it is called the ‘side-channel information’. The side-channel 

information includes computation time, power consumption pattern, electromagnetic emission and so on. 

There are proposed various side-channel attack methods and the corresponding countermeasures in the 

literature.  

The timing attack(TA) tries to recover secret information by analyzing the timing profile in the execution 

of cryptographic algorithms and highly relies on the fact that the timing information is dependent of the input 

data and the internal operations [3]. Especially, the attack has been proven to be practical when the authors of 

[4] successfully applied it to the SSL-based network web server using the CRT-based RSA cryptosystem.  

On the other hand, the power attack, one of the most powerful side-channel attack methods, recovers secret 

keys from the power consumption pattern of cryptographic devices [2]. There are proposed two basic 

categories of power attack techniques, that is, the simple power analysis attack (SPA) and the differential 

power analysis attack (DPA). SPA observes one or a few power signals, from which it tries to distinguish 

between various cryptographic primitives. For example, the modular multiplication and the modular squaring, 

the basic operations adopted in the RSA cryptosystem, are known to be distinguishable from each other by 

their power consumption pattern. Different than SPA, DPA collects lots of power consumption data and uses 

sophisticated statistical tools to get some useful information from these data.  

It is known that cryptosystems without countermeasures are highly vulnerable to side-channel attacks even 

though they are proven to be mathematically secure. Thus, cryptosystems’ implementers must carefully design 

appropriate measures to prevent such side-channel attacks. For example, as countermeasures against DPA, a 

variety of randomization methods were introduced so far, including the random scalar blinding and the random 

point blinding applicable to the elliptic curve cryptosystems [8]. On the other hand, the double-and-add always 

method [8], its right-to-left variant [9], the Montgomery powering ladder [5,10] and various exponent recoding 

techniques [11,12,13] are proposed for preventing SPA. Note that these SPA countermeasures can also be used 

to mitigate from TA since the basic mechanisms of performing TA and SPA are very similar. 

However, all these methods are only applicable for securing the very high-level operations, say, 

exponentiation or scalar multiplication. In other words, they don't consider the SPA-and TA-resistance of, for 

example, the multiplication operation, which is the basic building block for exponentiation. And this paper 

concerns secure implementation of the modular multiplication against SPA and TA, keeping in mind that SPA- 
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and TA-resistant multipliers are the essential part of securely implementing the whole exponentiation operation. 

Especially, since the Montgomery multiplier is commonly used for efficiently implementing cryptosystems 

based on big-number arithmetic, this paper mainly devotes to securely implementing the Montgomery 

multiplier against TA and SPA. 

Another noteworthy TA and SPA countermeasure is given in [14]. The authors first defined the concept of 

‘side-channel equivalent’. Briefly speaking, two instructions are side-channel equivalent if they are 

indistinguishable in the side-channel-point of view. And then, they concluded that, given a group in which 

cryptographic operations are taking place, if multiplication-like and squaring-like operations are side-channel 

equivalent, the exponentiation-like operation can be implemented in the TA and SPA secure manner with 

negligible computational overhead. However, the authors didn’t mention how to make multiplication-like and 

squaring-like operations be side-channel equivalent. Thus, if the proposed countermeasure for the Montgomery 

multiplier really behaves regularly irrespective of input data, the resulting multiplication and squaring 

operations can be used as a side-channel equivalent instructions. 

2.2 MONTGOMERY MULTIPLIER 

Given a modulus 𝑁 and a public/private exponent pair (𝑒, 𝑑), the RSA cryptosystem [15] encrypts a 

message 𝑚  by computing 𝑐 = 𝑚𝑒 mod 𝑁  and decrypts a ciphertext 𝑐  by calculating 𝑚 = 𝑐𝑑  mod 𝑁 . 

Thus, the modular exponentiation is the main operation of RSA (and some big-number-based cryptosystems) 

and should be implemented in a secure manner to side-channel attacks. 

In general, the modular exponentiation is implemented by applying modular multiplications and modular 

squarings iteratively. And the modular multiplication (and the modular squaring as well) can be realized with 

the school-book method which is basically a composition of a multi-precision integer multiplication and a 

modular reduction. Also, even though the classical modular multiplication is believed to be more adequate for 

implementing a single modular multiplication operation, it is also known that the Montgomery multiplier is a 

very effective gadget for implementing the modular exponentiation since it substitutes the expensive modular 

reduction by a cheap shift operation [16]. 

Given two (big) integers 𝑎, 𝑏 and a modulus 𝑁, the Montgomery multiplier computes 𝑎𝑏𝑅−1 mod 𝑁, 

where 𝑅 is a specifically chosen constant which is greater than 𝑁 and generally has the form of a power of 

2 [5]. The following algorithm describes the exemplary realization of the 2𝑤-ary Montgomery multiplier [16]. 

 

Algorithm 1 (2𝑤-ary Montgomery Multiplier) 

Input (𝑁, 𝑎, 𝑏, 𝑤, 𝑘, 𝑅) with 

- 𝑁, an odd modulus 

- 𝑤, the fixed window size 

- 𝑘, a positive integer satisfying 𝑁 < 2𝑤𝑘 

- 𝑅 = 2𝑤𝑘 

- 𝑎 and 𝑏, two positive integers with 𝑎, 𝑏 < 𝑁 (in the algorithm below, 𝑎 is expressed 

as 𝑎 = ∑ 𝑎𝑖2
𝑤𝑖𝑘−1

𝑖=0  with 𝑎𝑖 ∈ {0, 1, … , 2
𝑤 − 1} for all 𝑖) 

Output 𝑎𝑏𝑅−1 mod 𝑁 

1. 𝑏0 ← 𝑏 mod 2𝑤  

2. 𝐼 ← −𝑁−1 mod 2𝑤 

3. 𝑆 ← 0 
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4. For 𝑖 = 0 to 𝑘 − 1 

a. 𝑢 ← (𝑠0 + 𝑎𝑖𝑏0)𝐼 mod 2
𝑤 for 𝑠0 = 𝑆 mod 2

𝑤 

b. 𝑆 ← (𝑆 + 𝑎𝑖𝑏 + 𝑢𝑁)/2
𝑤 

5. If 𝑆 ≥ 𝑁, then 𝑆 ← 𝑆 − 𝑁. 

6. Return 𝑆 

 

Even though the Montgomery multiplier shows a good performance feature, it may also have some security-

related pitfalls. In particular, in the view of the security against TA and SPA, the following two points should 

be considered as a potential leakage source. The first one is about Step 4.b of Algorithm 1. Clearly, the step 

will behave differently according to the values of 𝑎𝑖 and 𝑢. More precisely, if they are both nonzero, then 

there must occur two multi-precision integer additions by 𝑎𝑖𝑏 and 𝑢𝑁 followed by a division by 2𝑤 (which 

can be realized by a right-shift operation). On the other hand, if 𝑎𝑖 or 𝑢 is zero, then there is occurring at 

most one multi-precision integer addition followed by a division, which is distinguishable for the previous case 

by TA or SPA attackers. The second point comes from Step 5 of Algorithm 1. That is, the step contains a 

conditional final subtraction 𝑆 − 𝑁 and the triggering condition is obviously dependent on the input values 

𝑎, 𝑏 (for a fixed 𝑁). Consequently, both points may be investigated by TA or SPA attackers, so must be 

removed in the implementation. And, this paper tries to eliminate these two weaknesses to get a highly regular 

multiplier. 

 

3. REGULAR MONTGOMERY MULTIPLIER 

As noted in the previous section, the different behavior in processing digits of the 𝑎-operand in Algorithm 

1 may lead to TA and SPA vulnerabilities. And, to prevent such undesirable phenomenon, we begin with 

converting all digits of 𝑎 into non-zero digits so that 𝑎 is represented without 0-digit. Thus, assuming that, 

for a fixed window size 𝑤(≥ 1) , 𝑎  is represented by 𝑎 = ∑ 𝑎𝑖2
𝑤𝑖𝑘−1

𝑖=0  with  𝑎𝑖 ∈ {0, 1, … , 2
𝑤 − 1} , we 

change the representation into 𝑎 = ∑ 𝑎𝑖
′2𝑤𝑖𝑘

𝑖=0  with  𝑎𝑖
′ ∈ {±1,±2,… ,±2𝑤−1, ±2𝑤} for 𝑖 = 0,1,… , 𝑘 − 1 

and 𝑎𝑘
′ ∈ {0,1}. The following points are worthy of noting for understanding the new representation: 

- The new digit set {±1,±2,… ,±2𝑤−1, ±2𝑤}  for 𝑎𝑖
′, 0 ≤ 𝑖 ≤ 𝑘 − 1  does not contain 0 while it 

includes negative values.  

- For 0 ≤ 𝑖 ≤ 𝑘 − 1, 0 < 𝑎𝑖
′ ≤ 2𝑤−2 or 𝑎𝑖

′ = 2𝑤. Thus, the absolute value of new digits except of 𝑎𝑘
′  

cannot take the values between 2𝑤−1 and 2𝑤. 

- The new representation is incomplete in the sense that the new most significant digit 𝑎𝑘
′  can take 0 

and this problem will be fixed later. 

 

The basic procedure of converting the representation is as follows: from the least significant digit to the most 

significant digit, if we encounter a 0-digit, the digit is converted to −2𝑤 and the next digit is added by 1 to 

adjust the whole value. And, this is repeated until the last digit. More precisely, letting 𝑐0 = 0, the carry bit 

𝑐𝑖+1 and the new digit 𝑎𝑖
′ for 0 ≤ 𝑖 ≤ 𝑘 − 1 are inductively defined as: for 𝑥𝑖 = 𝑎𝑖 + 𝑐𝑖, 

(𝑐𝑖+1, 𝑎𝑖
′) =

{
 

 
(1,−2𝑤)
(0, 𝑥𝑖)

if 𝑥𝑖 = 0

if 0 < 𝑥𝑖 ≤ 2
𝑤−1

(1, 𝑥𝑖 − 2
𝑤)

(0, 2𝑤)
if 2𝑤−1 < 𝑥𝑖 < 2

𝑤

if 𝑥𝑖 = 2
𝑤

                 (1) 
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Also, 𝑎𝑘
′  is defined to be 𝑐𝑘. 

Lemma 1 When (1) is applied to 𝑎 = ∑ 𝑎𝑖2
𝑤𝑖𝑘−1

𝑖=0  with 𝑎𝑖 ∈ {0, 1, … , 2
𝑤 − 1}, the followings hold. 

 (i) 0 ≤ 𝑥𝑖 ≤ 2
𝑤 for 0 ≤ 𝑖 < 𝑘, hence (1) takes into consideration all cases of 𝑥𝑖.  

(ii) 𝑥𝑖 = 𝑐𝑖+12
𝑤 + 𝑎𝑖

′ for 0 ≤ 𝑖 < 𝑘 

(iii) 𝑎 = 𝑐𝑘2
𝑤𝑘 + ∑ 𝑎𝑖

′2𝑤𝑖 = ∑ 𝑎𝑖
′2𝑤𝑖𝑘

𝑖=0
𝑘−1
𝑖=0  

(iv) 𝑎𝑖
′ ∈ {±1,±2,… , ±2𝑤−1, ±2𝑤} for 0 ≤ 𝑖 < 𝑘 and 𝑎𝑘

′ ∈ {0,1}. 

Proof (i) is true since 𝑐𝑖 is 0 or 1 and 0 ≤ 𝑎𝑖 < 2𝑤. (ii) can be proved case by case. If 𝑥𝑖 = 0, (𝑐𝑖+1, 𝑎𝑖
′) = 

(1, −2𝑤)  thus 𝑐𝑖+12
𝑤 + 𝑎𝑖

′ = 0 = 𝑥𝑖 . If 0 < 𝑥𝑖 ≤ 2
𝑤−1 , (𝑐𝑖+1, 𝑎𝑖

′) = (0, 𝑥𝑖)  and 𝑐𝑖+12
𝑤 + 𝑎𝑖

′ = 𝑥𝑖 . If 

2𝑤−1 < 𝑥𝑖 < 2
𝑤 , 𝑐𝑖+12

𝑤 + 𝑎𝑖
′ = (1, 𝑥𝑖 − 2

𝑤) and 𝑐𝑖+12
𝑤 + 𝑎𝑖

′ = 2𝑤 + (𝑥𝑖 − 2
𝑤) = 𝑥𝑖 . Finally, if 𝑥𝑖 =

2𝑤 , 𝑐𝑖+12
𝑤 + 𝑎𝑖

′ = (0, 2𝑤) thus 𝑐𝑖+12
𝑤 + 𝑎𝑖

′ = 2𝑤 = 𝑥𝑖 . (iii) can be shown by mathematical induction. 

That is, letting 𝐴𝑙 = ∑ 𝑎𝑖2
𝑤𝑖𝑙

𝑖=0  and 𝐵𝑙 = 𝑐𝑙+12
𝑤(𝑙+1) + ∑ 𝑎𝑖

′2𝑤𝑖𝑙
𝑖=0  for 𝑙 = 0,… , 𝑘 − 1, it is obvious that 

𝐴0 = 𝐵0 since 𝐴0 = 𝑎0 = 𝑥0 = 𝑐12
𝑤 + 𝑎0

′ = 𝐵0 by (ii). And, assuming that 𝐴𝑙 = 𝐵𝑖 for 0 ≤ 𝑙 < 𝑘 − 2, 

we have 𝐴𝑙+1 = 𝑎𝑙+12
𝑤(𝑙+1) + 𝐴𝑙 = 𝑎𝑙+12

𝑤(𝑙+1) + 𝐵𝑙 = 𝑎𝑙+12
𝑤(𝑙+1) + 𝑐𝑙+12

𝑤(𝑙+1) + ∑ 𝑎𝑖
′2𝑤𝑖𝑙

𝑖=0 =

(𝑎𝑙+1 + 𝑐𝑙+1)2
𝑤(𝑙+1) + ∑ 𝑎𝑖

′2𝑤𝑖𝑙
𝑖=0 . Now, since 𝑎𝑙+1 + 𝑐𝑙+1 = 𝑥𝑙+1  by definition and 𝑥𝑙+1 = 𝑐𝑖+22

𝑤 +

𝑎𝑙+1
′  by (2), we get 𝐴𝑙+1 = (𝑎𝑙+1 + 𝑐𝑙+1)2

𝑤(𝑙+1) +∑ 𝑎𝑖
′2𝑤𝑖𝑙

𝑖=0 = (𝑐𝑖+22
𝑤 + 𝑎𝑙+1

′ )2𝑤(𝑙+1) + ∑ 𝑎𝑖
′2𝑤𝑖𝑙

𝑖=0 =

𝑐𝑙+22
𝑤(𝑙+2) + ∑ 𝑎𝑖

′2𝑤𝑖𝑙+1
𝑖=0 = 𝐵𝑙+1, which complete the proof of (iii). (iv) is obvious. ■ 

From Lemma 1, we can eventually conclude that the new representation does not change the original value 

of 𝑎 and gives the properties explained above. Table 1 gives an example of how the rule (1) can be applied 

to the 22-ary representation of integers in  {0,1,… ,63}. In the table, the bar notation stands for the minus 

value, for example, 1̅ means −1. 

 

Table 1 New representation in a 𝟐𝟐-ary fashion of integers in {𝟎, 𝟏,· · · , 𝟔𝟑} 

Original New Original New Original New Original New 

000 14̅14̅ 100 0114̅ 200 0214̅ 300 11̅14̅ 

001 014̅1 101 024̅1 201 11̅4̅1 301 044̅1 

002 014̅2 102 024̅2 202 11̅4̅2 302 044̅2 

003 14̅11̅ 103 0111̅ 203 0211̅ 303 11̅11̅ 

010 14̅24̅ 110 0124̅ 210 0224̅ 310 11̅24̅ 

011 14̅11 111 0111 211 0211 311 11̅11 

012 14̅12 112 0112 212 0212 312 11̅12 

013 14̅21̅ 113 0121̅ 213 0221̅ 313 11̅21̅ 

020 011̅4̅ 120 021̅4̅ 220 11̅1̅4̅ 320 041̅4̅ 

021 14̅21 121 0121 221 0221 321 11̅21 

022 14̅22 122 0122 222 0222 322 11̅22 

023 011̅1̅ 123 021̅1̅ 223 11̅1̅1̅ 323 041̅1̅ 

030 14̅44̅ 130 0144̅ 230 0244̅ 330 11̅44̅ 

031 011̅1 131 021̅1 231 11̅1̅1 331 041̅1 

032 011̅2 132 021̅2 232 11̅1̅2 332 041̅2 

033 14̅41̅ 133 0141̅ 233 0241̅ 333 11̅41̅ 
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However, there is still an issue in the new representation in that the new last digit 𝑎𝑘
′  can have the value 

0, depending on 𝑎. And this may make the resulting multiplier with the new representation take a variable 

processing time so that it may induce another TA and SPA vulnerabilities. This timing variation, however, can 

be eliminated by appending two more digits to the new representation. That is, for the last carry bit 𝑐𝑘 which 

can have the value 0 or 1, the following two digits 𝑎𝑘+1
′ , 𝑎𝑘

′  will be appended to the new representation:  

 

(𝑎𝑘+1
′ , 𝑎𝑘

′ ) = {
(1,−2) if 𝑐𝑘 = 0
(1,−1) if 𝑐𝑘 = 1

.                          (2) 

 

Since 2𝑎𝑘+1
′ + 𝑎𝑘

′ = 𝑐𝑘  in (2), it is emphasized that (𝑎𝑘+1
′ , 𝑎𝑘

′ ) in (2) should be interpreted as a binary 

representation. Consequently, the new representation can be summarized as: for 𝑎 = ∑ 𝑎𝑖2
𝑤𝑖𝑘−1

𝑖=0  with 𝑎𝑖 ∈

{0, 1, … , 2𝑤 − 1}, 𝑎 is newly represented as 𝑎 = 𝑎𝑘+1
′ 2𝑤𝑘+1 + 𝑎𝑘

′ 2𝑤𝑘 + ∑ 𝑎𝑖
′2𝑤𝑖𝑘−1

𝑖=0 = 2𝑤𝑘+1 + 𝑎𝑘
′ 2𝑤𝑘 +

∑ 𝑎𝑖
′2𝑤𝑖𝑘−1

𝑖=0  with 𝑎𝑖
′ ∈ {±1,±2,… ,±2𝑤−1, ±2𝑤} for 𝑖 = 0,1,… , 𝑘. 

As noted in the previous section, when a cryptographic algorithm is implemented in software or hardware, 

conditional statements should be avoided as much as possible since it causes data-dependent timing variations 

or it can be skipped by fault attackers to give rise to meaningful side-channel information. Thus, implementing 

the new representation conversion with rules (1) and (2) has to keep away from data-dependent conditions as 

well. In this sense, (2) can be expressed as 𝑎𝑘
′ = 𝑐𝑘 − 2  and 𝑎𝑘+1

′ = 1 in a closed formula. And, it is 

preferable to devise a closed formula for (1), hence all the involved variables are implemented without any if-

statements. To achieve this purpose, we need the following lemma. (In the subsequent, ≫ and ≪ stand for 

the right and left shift operations, respectively.) 

 

Lemma 2 For 𝑓, 𝑔, ℎ: {0, 1, … , 2𝑤} → {0,1} defined by 𝑓(𝑥) = (𝑥 + 2𝑤+1 − 1) ≫ (𝑤 + 1), 𝑔(𝑥) = (𝑥 +

2𝑤+1 − 2𝑤−1 − 1) ≫ (𝑤 + 1) and ℎ(𝑥) = (𝑥 + 2𝑤) ≫ (𝑤 + 1), we have 

(i) 𝑓(𝑥) = {
0 if 𝑥 = 0
1 if 𝑥 ≠ 0

 

(ii) 𝑔(𝑥) = {
0 if 0 ≤ 𝑥 ≤ 2𝑤−1

1 if 2𝑤−1 < 𝑥 ≤ 2𝑤
 

(iii) ℎ(𝑥) = {
0 if 𝑥 ≠ 2𝑤

1 if 𝑥 = 2𝑤
 

(iv) 1 − 𝑓(𝑥) + 𝑔(𝑥) − ℎ(𝑥) = {

1 if 𝑥 = 0
0 if 0 < 𝑥 ≤ 2𝑤−1

1 if 2𝑤−1 < 𝑥 < 2𝑤

0 if 𝑥 = 2𝑤

 

Proof The proof is based on the simple observation that, for a non-negative integer 𝑥 and a positive integer 

𝑛, 𝑥 ≫ (𝑤 + 1) is equal to 𝑛 if 2𝑤+1𝑛 ≤ 𝑥 < 2𝑤+1(𝑛 + 1). ■ 

 

Now, comparing with (iv) of Lemma 2 with (1), we can conclude that 𝑐𝑖+1 can be re-written as 𝑐𝑖+1 =

1 − 𝑓(𝑥𝑖) + 𝑔(𝑥𝑖) − ℎ(𝑥𝑖). Also, considering that 𝑎𝑖
′ in (1) can be expressed as 𝑎𝑖

′ = 𝑥𝑖 − (𝑐𝑖+1 ≪ 𝑤), the 

final closed formula of (1) becomes of the form: for 𝑖 ≥ 0 

  𝑐𝑖+1 = 1 − ((𝑥𝑖 + 2
𝑤+1 − 1) ≫ (𝑤 + 1)) + ((𝑥𝑖 + 2

𝑤+1 − 2𝑤−1 − 1) ≫ (𝑤 + 1)) − ((𝑥𝑖 + 2
𝑤) ≫ (𝑤 + 1))  (3) 
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𝑎𝑖
′ = 𝑥𝑖 − (𝑐𝑖+1 ≪ 𝑤). 

 

As noted before, another TA and SPA leakage source of Algorithm 1 may occur at Step 4.b, which adds a 

multiple of the modulus 𝑁 to 𝑆 depending on the value 𝑢. That is, if 𝑢 ≠ 0, then the step must add to 𝑆 a 

non-zero multiple of 𝑁, while, if 𝑢 = 0, no addition occurs, which can be identified by TA and SPA attackers. 

And, this irregular behavior can be avoided by converting 𝑢 into a new value 𝑢′ in a similar manner as in 

𝑎𝑖. However, there is a major difference between conversions of 𝑎𝑖 and 𝑢: 𝑎𝑖 should be converted in the 

manner that the original value 𝑎 remains unchanged after the conversion, while the constraint does not apply 

to 𝑢 since the addition by a different multiple of 𝑁 in Step 4.b do not influence to the output of Algorithm 

1. Keeping this in mind, the basic principle of converting 𝑢 is that 𝑢 is converted to 2𝑤 if 𝑢 = 0 and to 

𝑢 − 2𝑤 if 2𝑤−1 < 𝑢 < 2𝑤. More precisely, 𝑢′ is computed as  

 

𝑢′ = {
2𝑤 if 𝑢 = 0
𝑢 if 0 < 𝑢 ≤ 2𝑤−1

𝑢 − 2𝑤 𝑖𝑓 2𝑤−1 < 𝑢 < 2𝑤
.                          (4) 

 

And, similarly as for (𝑐𝑖+1, 𝑎𝑖
′), (4) can be turned into a closed formula as 

 

             𝑢′ = 𝑢 + ((1 − ((𝑢 + 2𝑤 − 1) ≫ 𝑤)) ≪ 𝑤) − (((𝑢 + 2𝑤−1 − 1) ≫ 𝑤) ≪ 𝑤).        (5) 

  

Summing up all the discussions above, the following algorithm can be obtained. 

 

Algorithm 2 (New Montgomery Multiplier) 

Input (𝑁, 𝑎, 𝑏, 𝑤, 𝑘, 𝑅) with 

- 𝑁, an odd modulus 

- 𝑤, the fixed window size 

- 𝑘, a positive integer satisfying 𝑁 < 2𝑤𝑘 

- 𝑅 = 2𝑤𝑘 

- 𝑎 and 𝑏, two positive integers with 𝑎, 𝑏 < 𝑁 (in the algorithm below, 𝑎 is expressed 

as 𝑎 = ∑ 𝑎𝑖2
𝑤𝑖𝑘−1

𝑖=0  with 𝑎𝑖 ∈ {0, 1, … , 2
𝑤 − 1} for all 𝑖) 

Output 𝑎𝑏𝑅−1 mod 𝑁  

1. 𝑏0 ← 𝑏 mod 2𝑤  

2. 𝐼 ← −𝑁−1 mod 2𝑤 

3. 𝑆 ← 0 

4. 𝑐 ← 0 

5. For 𝑖 = 0 to 𝑘 − 1 

a. 𝑥 ← 𝑎𝑖 + 𝑐 

b. 𝑐 ← 1 − ((𝑥 + 2𝑤+1 − 1) ≫ (𝑤 + 1)) + ((𝑥 + 2𝑤+1 − 2𝑤−1 − 1) ≫ (𝑤 + 1)) − ((𝑥 +

2𝑤) ≫ (𝑤 + 1)) 

c. 𝑥 ← 𝑥 − (𝑐 ≪ 𝑤) 

d. 𝑢 ← (𝑠0 + 𝑥𝑏0)𝐼 mod 2
𝑤 for 𝑠0 = 𝑆 mod 2

𝑤 

e. 𝑢 ← 𝑢 + ((1 − ((𝑢 + 2𝑤 − 1) ≫ 𝑤)) ≪ 𝑤) − (((𝑢 + 2𝑤−1 − 1) ≫ 𝑤) ≪ 𝑤) 
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f. 𝑆 ← (𝑆 + 𝑥𝑏 + 𝑢𝑁) ≫ 𝑤 

6. 𝑥 ← 𝑐 − 2 

7. 𝑢 ← (𝑠0 + 𝑥𝑏0)𝐼 mod 2 for 𝑠0 = 𝑆 mod 2 

8. 𝑢 ← 2 − 𝑢 

9. 𝑆 ← (𝑆 + 𝑥𝑏 + 𝑢𝑁) ≫ 1 

10. 𝑢 ← (𝑠0 + 𝑏0)𝐼 mod 2 for 𝑠0 = 𝑆 mod 2 

11. 𝑢 ← 2 − 𝑢 

12. 𝑆 ← (𝑆 + 𝑏 + 𝑢𝑁) ≫ 1 

13. If 𝑆 ≥ 𝑁, then 𝑆 ← 𝑆 − 𝑁 

14. Return 𝑆 

 

Here are some explanations about Algorithm 2. In the algorithm, Step 5.b and Step 5.c are direct 

applications of the equations (3), while Step 5.e comes from (5). Also, Step 6 and Step 8 (and Step 11) are 

derived from (2), noting that, for 𝑤 = 1, 𝑢 + ((1 − ((𝑢 + 2𝑤 − 1))𝑤)) ≪ 𝑤) − (((𝑢 + 2𝑤−1 − 1))𝑤) ≪

𝑤) is exactly equal to 2 − 𝑢. 

Even though its highly regular behavior, Algorithm 2 still has a leakage source. That is, the subtraction by 

𝑁 in Step 13 may occur or not, depending on input values 𝑎 and 𝑏. Hence, it is desirable to remove the step 

for preventing TA and SPA. And, this can be achieved with the help of the following lemma.  

 

Lemma 3 If |𝑏| < 8𝑁 in Algorithm 2, the intermediate result 𝑆 after Step 12 satisfies that |𝑆| < 8𝑁.  

Proof The proof follows the same approach in [17] and [18]. Let 𝑆′ denote the value of 𝑆 after Step 5. Then, 

we first claim that |𝑆′| < 2𝑁 + 2|𝑏|. For the proof, put the initial and the resulting values of 𝑆 in the loop 

with index 𝑖  of Step 5 to 𝑆𝐼,𝑖 and 𝑆𝑂,𝑖 , respectively. Then, Step 5.f can be re-written as 𝑆𝑂,𝑖 =

(𝑆𝐼,𝑖 + 𝑥𝑏 + 𝑢𝑁) ≫ 𝑤 =
𝑆𝐼,𝑖+𝑥𝑏+𝑢𝑁

2𝑤
  and the followings also hold: 

① 𝑆𝐼,0=0 

② 𝑆𝐼,𝑖+1 = 𝑆𝑂,𝑖 for 0 ≤ 𝑖 ≤ 𝑘 − 2 

③ For 0 ≤ 𝑖 ≤ 𝑘 − 1,  𝑆𝑂,𝑖 is equal to (𝑆𝐼,𝑖 + 𝑥𝑏 + 𝑢𝑁) ≫ 𝑤 =
𝑆𝐼,𝑖+𝑥𝑏+𝑢𝑁

2𝑤
 for some |𝑥|, |𝑢| ≤ 2𝑤.  

Now, we can use the mathematical induction to prove that |𝑆𝑂,𝑖| < 2𝑁 + 2|𝑏| for 0 ≤ 𝑖 ≤ 𝑘 − 1, which 

completes the proof of the claim. Actually, for 𝑖 = 0, 𝑆𝑂,𝑖 =
𝑥𝑏+𝑢𝑁

2𝑤
  for some 𝑥, 𝑢 with |𝑥|, |𝑢| ≤ 2𝑤 . 

Thus, |𝑆𝑂,0| ≤
|𝑥𝑏|+|𝑢𝑁|

2𝑤
≤ |𝑏| + 𝑁 < 2𝑁 + 2|𝑏|. Next, suppose that |𝑆𝑂,𝑖| < 2𝑁 + 2|𝑏| for 0 ≤ 𝑖 ≤ 𝑘 − 2. 

Then, since 𝑆𝑂,𝑖+1 =
𝑆𝐼,𝑖+1+𝑥𝑏+𝑢𝑁

2𝑤
=

𝑆𝑂,𝑖+𝑥𝑏+𝑢𝑁

2𝑤
  for some 𝑥, 𝑢  with |𝑥|, |𝑢| ≤ 2𝑤 , we have |𝑆𝑂,𝑖+1| ≤

|𝑆𝑂,𝑖|+|𝑥𝑏|+|𝑢𝑁|

2𝑤
<

2𝑁+2|𝑏|+2𝑤|𝑏|+2𝑤𝑁

2𝑤
≤ 2𝑁 + 2|𝑏| . Now, since 𝑆′ = 𝑆𝑂,𝑘−1 , we can conclude that |𝑆′| <

2𝑁 + 2|𝑏|, as claimed. Next, let 𝑆𝐼 and 𝑆𝑂 be the initial and the resulting values of the register 𝑆 in Step 9 

and 𝑆𝐼
′ and 𝑆𝑂

′  be the initial and the resulting values of the register 𝑆 in Step 12, respectively. Clearly, 

|𝑆𝐼| < 2𝑁 + 2|𝑏| since 𝑆𝐼 = 𝑆𝑂,𝑘−1. Also, note that the 𝑥-value of Step 6 is −2 or – 1 according to (2). 

Thus, since 𝑆𝑂
′ =

𝑆𝐼
′+𝑏+𝑢1𝑁

2
 for some 𝑢1  with |𝑢1| ≤ 2 and 𝑆𝑂 =

𝑆𝐼+𝑥𝑏+𝑢2𝑁

2
 for some 𝑥  and 𝑢2  with 

𝑥 ∈ {−2,−1}  and  |𝑢1| ≤ 2 , 𝑆𝑂
′  is equal to 

𝑆𝐼
′+𝑏+𝑢1𝑁

2
=

𝑆𝑂+𝑏+𝑢1𝑁

2
=

𝑆𝐼+(𝑥+2)𝑏+(𝑢2+2𝑢1)𝑁

4
 with 𝑥 ∈



26                        International Journal of Internet, Broadcasting and Communication Vol.16 No.1 17-28 (2024) 
 

{−2,−1} and  |𝑢1|, |𝑢2| ≤ 2. Therefore, we have |𝑆𝑂
′ | ≤

|𝑆𝐼|+|𝑏|+6|𝑁|

4
. Since |𝑆𝐼| is already shown to be 

less than 2𝑁 + 2|𝑏| and |𝑏| is assumed to be less than 8𝑁, we can derive that |𝑆𝑂
′ | < 8𝑁, which completes 

the proof of the lemma. ■ 

 

Now, Lemma 3 says that, if the input 𝑏 of Algorithm 2 satisfies that |𝑏| < 8𝑁, then the output satisfies 

the same bound even though Step 13 is removed. Thus, when a multiplication is executed via Algorithm 2 

without Step 13, its result can be reused as an input of another multiplication operation. And, for example, the 

exponentiation algorithm may get some benefits from this process and the step of subtraction by 𝑁 can be 

postponed until the final stage of the exponentiation operation. 

Based on all the discussions above, the final regular Montgomery multiplier can be described as: 

 

Algorithm 3 (Regular Montgomery Multiplier) 

Input (𝑁, 𝑎, 𝑏, 𝑤, 𝑘, 𝑅) with 

- 𝑁, an odd modulus 

- 𝑤, the fixed window size 

- 𝑘, a positive integer satisfying 𝑁 < 2𝑤𝑘 

- 𝑅 = 2𝑤𝑘 

- 𝑎  and 𝑏 , two integers with 𝑎 < 𝑁  and |𝑏|  <  8𝑁  (in the algorithm below, 𝑎  is 

expressed as 𝑎 = ∑ 𝑎𝑖2
𝑤𝑖𝑘−1

𝑖=0  with 𝑎𝑖 ∈ {0, 1, … , 2
𝑤 − 1} for all 𝑖) 

Output 𝑆 = 𝑎𝑏𝑅−1 mod 𝑁 with |𝑆|  <  8𝑁 

1. 𝑏0 ← 𝑏 mod 2𝑤  

2. 𝐼 ← −𝑁−1 mod 2𝑤 

3. 𝑆 ← 0 

4. 𝑐 ← 0 

5. For 𝑖 = 0 to 𝑘 − 1 

a. 𝑥 ← 𝑎𝑖 + 𝑐 

b. 𝑐 ← 1 − ((𝑥 + 2𝑤+1 − 1) ≫ (𝑤 + 1)) + ((𝑥 + 2𝑤+1 − 2𝑤−1 − 1) ≫ (𝑤 + 1)) − ((𝑥 +

2𝑤) ≫ (𝑤 + 1)) 

c. 𝑥 ← 𝑥 − (𝑐 ≪ 𝑤) 

d. 𝑢 ← (𝑠0 + 𝑥𝑏0)𝐼 mod 2
𝑤 for 𝑠0 = 𝑆 mod 2

𝑤 

e. 𝑢 ← 𝑢 + ((1 − ((𝑢 + 2𝑤 − 1) ≫ 𝑤)) ≪ 𝑤) − (((𝑢 + 2𝑤−1 − 1) ≫ 𝑤) ≪ 𝑤) 

f. 𝑆 ← (𝑆 + 𝑥𝑏 + 𝑢𝑁) ≫ 𝑤 

6. 𝑥 ← 𝑐 − 2 

7. 𝑢 ← (𝑠0 + 𝑥𝑏0)𝐼 mod 2 for 𝑠0 = 𝑆 mod 2 

8. 𝑢 ← 2 − 𝑢 

9. 𝑆 ← (𝑆 + 𝑥𝑏 + 𝑢𝑁) ≫ 1 

10. 𝑢 ← (𝑠0 + 𝑏0)𝐼 mod 2 for 𝑠0 = 𝑆 mod 2 

11. 𝑢 ← 2 − 𝑢 

12. 𝑆 ← (𝑆 + 𝑏 + 𝑢𝑁) ≫ 1 

13. Return 𝑆 
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Now, the main achievement of Algorithm 3 lies at its regular behavior, which clearly gives resistance to 

various side-channel attacks. However, it inevitably bears some computational overhead, compared with 

Algorithm 1. Nevertheless, if the window size 𝑤  is small enough, the equations (3) and (5) can be 

implemented using ordinary integer operations, hence their computational cost is negligible, compared with 

the whole modular multiplication operation. Actually, for real software applications, 𝑤 is not greater than 32, 

so the operations in (3) and (5) can be implemented by usual integer arithmetics in the standard C library. Also, 

in hardware implementations, 𝑤 is not greater than 16 and so the logic realizing the equations does not cause 

much overhead of hardware size 

 

4. CONCLUSION 

The Montgomery multiplier is popularly used for efficiently implementing some big-number based 

cryptosystems including RSA. And, this paper proposed a new Montgomery-like multiplier which is expected 

to behave in a highly regular manner.  

In general, the constant-time implementation does not give a full specification of SCA countermeasures. 

For example, to defeat DPA, it is believed that some randomization techniques should be applied to the 

implementations. So, in addition to the work in this paper, it will be interesting to devise a randomized version 

of Montgomery multipliers, which is left for the future research. 
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