• Title/Summary/Keyword: modified Bessel function

Search Result 27, Processing Time 0.019 seconds

ON THE GENERALIZED MODIFIED k-BESSEL FUNCTIONS OF THE FIRST KIND

  • Nisar, Kottakkaran Sooppy
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.909-914
    • /
    • 2017
  • The recent research investigates the generalization of Bessel function in different forms as its usefulness in various fields of applied sciences. In this paper, we introduce a new modified form of k-Bessel functions called the generalized modified k-Bessel functions and established some of its properties.

FRACTIONAL INTEGRATION AND DIFFERENTIATION OF THE (p, q)-EXTENDED MODIFIED BESSEL FUNCTION OF THE SECOND KIND AND INTEGRAL TRANSFORMS

  • Purnima Chopra;Mamta Gupta;Kanak Modi
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.755-772
    • /
    • 2023
  • Our aim is to establish certain image formulas of the (p, q)-extended modified Bessel function of the second kind Mν,p,q(z) by employing the Marichev-Saigo-Maeda fractional calculus (integral and differential) operators including their composition formulas and using certain integral transforms involving (p, q)-extended modified Bessel function of the second kind Mν,p,q(z). Corresponding assertions for the Saigo's, Riemann-Liouville (R-L) and Erdélyi-Kober (E-K) fractional integral and differential operators are deduced. All the results are represented in terms of the Hadamard product of the (p, q)-extended modified Bessel function of the second kind Mν,p,q(z) and Fox-Wright function rΨs(z).

CERTAIN UNIFIED INTEGRAL FORMULAS INVOLVING THE GENERALIZED MODIFIED k-BESSEL FUNCTION OF FIRST KIND

  • Mondal, Saiful Rahman;Nisar, Kottakkaran Sooppy
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.47-53
    • /
    • 2017
  • Generalized integral formulas involving the generalized modified k-Bessel function $J^{b,c,{\gamma},{\lambda}}_{k,{\upsilon}}(z)$ of first kind are expressed in terms generalized Wright functions. Some interesting special cases of the main results are also discussed.

SOME INEQUALITIES AND ABSOLUTE MONOTONICITY FOR MODIFIED BESSEL FUNCTIONS OF THE FIRST KIND

  • Guo, Bai-Ni;Qi, Feng
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.355-363
    • /
    • 2016
  • By employing a refined version of the $P{\acute{o}}lya$ type integral inequality and other techniques, the authors establish some inequalities and absolute monotonicity for modified Bessel functions of the first kind with nonnegative integer order.

ESTIMATION OF A MODIFIED INTEGRAL ASSOCIATED WITH A SPECIAL FUNCTION KERNEL OF FOX'S H-FUNCTION TYPE

  • Al-Omari, Shrideh Khalaf Qasem
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.125-136
    • /
    • 2020
  • In this article, we discuss classes of generalized functions for certain modified integral operator of Bessel-type involving Fox's H-function kernel. We employ a known differentiation formula of Fox's H-function to obtain the definition and properties of the distributional modified Bessel-type integral. Further, we derive a smoothness theorem for its kernel in a complete countably multi-normed space. On the other hand, using an appropriate class of convolution products, we derive axioms and establish spaces of modified Boehmians which are generalized distributions. On the defined spaces, we introduce addition, convolution, differentiation and scalar multiplication and further properties of the extended integral.

FRACTIONAL CALCULUS OPERATORS OF THE PRODUCT OF GENERALIZED MODIFIED BESSEL FUNCTION OF THE SECOND TYPE

  • Agarwal, Ritu;Kumar, Naveen;Parmar, Rakesh Kumar;Purohit, Sunil Dutt
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.557-573
    • /
    • 2021
  • In this present paper, we consider four integrals and differentials containing the Gauss' hypergeometric 2F1(x) function in the kernels, which extend the classical Riemann-Liouville (R-L) and Erdélyi-Kober (E-K) fractional integral and differential operators. Formulas (images) for compositions of such generalized fractional integrals and differential constructions with the n-times product of the generalized modified Bessel function of the second type are established. The results are obtained in terms of the generalized Lauricella function or Srivastava-Daoust hypergeometric function. Equivalent assertions for the Riemann-Liouville (R-L) and Erdélyi-Kober (E-K) fractional integral and differential are also deduced.

MONOTONICITY PROPERTIES OF THE BESSEL-STRUVE KERNEL

  • Baricz, Arpad;Mondal, Saiful R.;Swaminathan, Anbhu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1845-1856
    • /
    • 2016
  • In this paper our aim is to study the classical Bessel-Struve kernel. Monotonicity and log-convexity properties for the Bessel-Struve kernel, and the ratio of the Bessel-Struve kernel and the Kummer confluent hypergeometric function are investigated. Moreover, lower and upper bounds are given for the Bessel-Struve kernel in terms of the exponential function and some $Tur{\acute{a}}n$ type inequalities are deduced.

EXTENSIONS OF MULTIPLE LAURICELLA AND HUMBERT'S CONFLUENT HYPERGEOMETRIC FUNCTIONS THROUGH A HIGHLY GENERALIZED POCHHAMMER SYMBOL AND THEIR RELATED PROPERTIES

  • Ritu Agarwal;Junesang Choi;Naveen Kumar;Rakesh K. Parmar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.575-591
    • /
    • 2023
  • Motivated by several generalizations of the Pochhammer symbol and their associated families of hypergeometric functions and hypergeometric polynomials, by choosing to use a very generalized Pochhammer symbol, we aim to introduce certain extensions of the generalized Lauricella function F(n)A and the Humbert's confluent hypergeometric function Ψ(n) of n variables with, as their respective particular cases, the second Appell hypergeometric function F2 and the generalized Humbert's confluent hypergeometric functions Ψ2 and investigate their several properties including, for example, various integral representations, finite summation formulas with an s-fold sum and integral representations involving the Laguerre polynomials, the incomplete gamma functions, and the Bessel and modified Bessel functions. Also, pertinent links between the major identities discussed in this article and different (existing or novel) findings are revealed.

APPARENT INTEGRALS MOUNTED WITH THE BESSEL-STRUVE KERNEL FUNCTION

  • Khan, N.U.;Khan, S.W.
    • Honam Mathematical Journal
    • /
    • v.41 no.1
    • /
    • pp.163-174
    • /
    • 2019
  • The veritable pursuit of this exegesis is to exhibit integrals affined with the Bessel-Struve kernel function, which are explicitly inscribed in terms of generalized (Wright) hypergeometric function and also the product of generalized (Wright) hypergeometric function with sum of two confluent hypergeometric functions. Somewhat integrals involving exponential functions, modified Bessel functions and Struve functions of order zero and one are also obtained as special cases of our chief results.

COMPLETE MONOTONICITY OF A DIFFERENCE BETWEEN THE EXPONENTIAL AND TRIGAMMA FUNCTIONS

  • Qi, Feng;Zhang, Xiao-Jing
    • The Pure and Applied Mathematics
    • /
    • v.21 no.2
    • /
    • pp.141-145
    • /
    • 2014
  • In the paper, by directly verifying an inequality which gives a lower bound for the first order modified Bessel function of the first kind, the authors supply a new proof for the complete monotonicity of a difference between the exponential function $e^{1/t}$ and the trigamma function ${\psi}^{\prime}(t)$ on (0, ${\infty}$).