
Commun. Korean Math. Soc. 31 (2016), No. 2, pp. 355–363
http://dx.doi.org/10.4134/CKMS.2016.31.2.355

SOME INEQUALITIES AND ABSOLUTE MONOTONICITY

FOR MODIFIED BESSEL FUNCTIONS OF THE FIRST KIND

Bai-Ni Guo and Feng Qi

Abstract. By employing a refined version of the Pólya type integral
inequality and other techniques, the authors establish some inequalities
and absolute monotonicity for modified Bessel functions of the first kind
with nonnegative integer order.

1. Main results

It is well known that modified Bessel functions of the first kind I±ν(z) are
solutions of the differential equation

z2
d2 w

d z2
+ z

dw

d z
−
(

z2 + ν2
)

w = 0.

They are holomorphic functions of z throughout the z-plane cut along the
negative real axis, and are entire functions of ν for fixed z 6= 0. When ν = ±n,
Iν(z) are entire functions of z. In [1, p. 375, 9.6.7], it is listed that

Iν(z) =

∞
∑

k=0

1

k!Γ(ν + k + 1)

(

z

2

)2k+ν

, z ∈ C, ν ∈ R \ {−1,−2, . . .},

where

Γ(z) = lim
n→∞

n!nz

∏n

k=0(z + k)
, z ∈ C \ {0,−1,−2, . . .}

is the classical gamma function, see [1, p. 255, 6.1.2].
On [12, p. 63], the following three double inequalities are derived:
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, z > 0, ν ≥ −
1

2
;
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< Γ(ν + 1)

(

2

z

)ν
Iν(z)

ez
(1.2)

<
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+
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[

1 +
(2ν + 3)z
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, z > 0, −
1

2
≤ ν ≤

1

2
;

1

ez
< Γ(ν + 1)

(

2

z

)ν
Iν(z)

ez
<

1

2

(

1 +
1

e2z

)

, z > 0, ν > −
1

2
.(1.3)

The left-hand inequality in (1.1) is very weak unless z is quite small.
The equation (3.20) in [9, p. 226] reads that

(1.4) Γ(ν + 1)

(

2

y

)ν

Iν(y) >

(

1 +
y2

j2ν,1

)j2ν,1/4(ν+1)

, y > 0, ν > −1

which is more stringent than the left hand side inequality in (1.3), where jν,1
is the first zero of the Bessel function of the first kind

Jν(z) =

(

z

2

)ν ∞
∑

k=0

(−1)k(z/2)2k

k!Γ(ν + k + 1)
, ν ∈ R, z ∈ C.

In [18, Theorem 7.1] and [21, Theorem 1.3], it was derived that

(1.5) αI1(x) >
(x/2)3

1− e−(x/2)2
and I1(x) ≥

1
β

(

x
2

)3

1− exp
[

− 1
β

(

x
2

)2]

on (0,∞) if and only if α ≥ 1 and β ≥ 1. More strongly, it was discovered
in [18, Theorem 5.1] that

(1) when β ≥ 1, the function

Fβ(u) =
u

1− e−u

√
βu

I1
(

2
√
βu

)

is decreasing on (0,∞);
(2) when 0 < β < 1, it is unimodal (that is, it has a unique maximum)

and 1
Fβ(u)

is convex on (0,∞).

When α = 1 or β = 1 and x > 5.14 . . . , the inequality in (1.5) is better
than (1.4).

In [17, Theorem 1.2], it was obtained that

(1) when 1 ≤ k ≤ 5, the inequality

(1.6)
Ik
(

2
√
u
)

uk/2
≥

dk−1

duk−1

(

u

1− e−u

)

is valid on (0,∞);
(2) when β ≥ 1, the function

Gβ(u) =
βu

I2
(

2
√
βu

)

d

du

(

u

1− e−u

)



INEQUALITIES AND MONOTONICITY FOR BESSEL FUNCTIONS 357

is decreasing on (0,∞); when 0 < β < 1, it is unimodal and 1
Gβ(u)

is

convex on (0,∞).

The inequality (1.6) for k = 1 includes the ones in (1.5) for α = β = 1. For
more information on recent results of Bessel functions, please refer to [3, 4] and
closely related references therein.

Recall from [13, 22, 23] that a function f is said to be completely monotonic
on an interval I if it has derivatives of all orders on I such that

0 ≤ (−1)kf (k)(x) < ∞

for x ∈ I and k ≥ 0. Recall also from [13, 22, 23] that a function f is said to
be absolutely monotonic on an interval I if it has derivatives of all orders and

0 ≤ f (k−1)(t) < ∞

for t ∈ I and k ∈ N, where N denotes the set of all positive integers. It is
easy to see that a function f(x) is completely monotonic in (a, b) if and only
if f(−x) is absolutely monotonic in (−b,−a). See [23, p. 145, Definition 2c].
Theorem 12a in [23, p. 160] reads that a necessary and sufficient condition that
f(x) should be completely monotonic in 0 ≤ x < ∞ is that

f(x) =

∫ ∞

0

e−xt dα(t),

where α(t) is bounded and non-decreasing and the integral converges for 0 ≤
x < ∞. Theorem 12c in [23, p. 162] states that a necessary and sufficient
condition that f(x) should be absolutely monotonic in −∞ < x < 0 is that

f(x) =

∫ ∞

0

ext dα(t),

where α(t) is non-decreasing and the integral converges for −∞ < x < 0. For
more information on these kinds of functions, please refer to [13, Chapter XIII],
[23, Chapter IV], [6, 19, 22] and closely related references therein.

The main aim of this paper is, by employing a refined version of the Pólya
type integral inequality and other techniques, to establish some lower and upper
bounds and absolute monotonicity for modified Bessel functions of the first kind
In(t) with nonnegative integer order n ≥ 0.

The main results may be stated as the following theorems.

Theorem 1.1. The double inequalities

(1.7) |I0(t)− cosh t| ≤



1−
2

π

sinh t
√√

1+4t2 −1
2 exp

√
1+4t2 −1

2



 sinh t, t > 0

and

(1.8) |I0(t)− cosh t| <
π

4
t sinh t, t 6= 0

are valid.
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Theorem 1.2. The function

I0(t)−
sinh t

t

is absolutely monotonic on (0,∞) and complete monotonic on (−∞, 0). Hence,
we have

I
(ℓ)
0 (t) ≥

(

sinh t

t

)(ℓ)

, t > 0

and

(−1)ℓI
(ℓ)
0 (t) ≥ (−1)ℓ

(

sinh t

t

)(ℓ)

, t < 0

for ℓ ≥ 0. Consequently,

(1) when t > 0,

(1.9) I0(t) >
sinh t

t
and I1(t) >

t cosh t− sinh t

t2
.

(2) when t < 0, the first inequality in (1.9) keeps the same direction, but

the second inequality in (1.9) reverses.

2. A lemma

In order to prove Theorem 1.1, we need the Pólya type integral inequality
below.

Lemma 2.1 ([2, Theorem 2] and [14, Proposition 2]). If f(x) is continuous

and not identically a constant on [a, b], and if f(x) is differentiable and m ≤
f ′(x) ≤ M on (a, b), then

∣

∣

∣

∣

1

b− a

∫ b

a

f(x) dx−
f(a) + f(b)

2

∣

∣

∣

∣

(2.1)

≤ −
[M − S0(a, b)][m− S0(a, b)]

2(M −m)
(b− a),

where

S0(a, b) =
f(b)− f(a)

b− a
.

For more detailed information on the inequality (2.1), please refer to [16,
pp. 25–31, Section 5] and closely related references therein.

3. Proofs of Theorems 1.1 and 1.2

Now we are in a position to prove Theorems 1.1 and 1.2.

Proof of the inequality (1.7). Let ft(x) = et cosx on [0, π] and t > 0. Then

f ′
t(x) = −t sinxet cosx, f ′′

t (x) = t
(

t sin2 x− cosx
)

et cosx,

ft(0) = et, ft(π) = e−t, f ′
t(0) = f ′

t(π) = 0.
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Since the equation t sin2 x − cosx = t − cosx − t cos2 x = 0 of the variable x

has only one positive root x0 = arccos
√
1+4t2 −1

2t and

f ′
t(x0) = −

√√
1 + 4t2 − 1

2
exp

√
1 + 4t2 − 1

2

which is the minimum of f ′
t(x) for x ∈ [0, π].

In [1, p. 376, 9.6.16], it was listed that

(3.1) I0(z) =
1

π

∫ π

0

e±z cos θ d θ =
1

π

∫ π

0

cosh(z cos θ) d θ.

Combining (2.1) and (3.1), using the above properties of the function ft(x),
and directly arranging give
∣

∣

∣

∣

I0(t)−
et + e−t

2

∣

∣

∣

∣

≤
et − e−t

2

[

1−

√
2

π

et − e−t

√√
1 + 4t2 − 1

exp
1−

√
1 + 4t2

2

]

which is equivalent to the double inequality (1.7). The proof of the inequal-
ity (1.7) is complete. �

Proof of the double inequality (1.8). Let ht(x) = cosh(t cos x) for x ∈ [0, π] and
t ∈ R. Then

ht(0) = ht(π) = cosh t.

Since ft(x) is symmetric with respect to x0 = π
2 , its derivative f ′

t(x) is anti-
symmetric with respect to x0 = π

2 . Hence, we have

max
x∈[0,π]

h′
t(x) = − min

x∈[0,π]
h′
t(x).

Applying ht(x) to the inequality (2.1) yields

|I0(t)− cosh t| ≤
π

4
max

x∈[0,π]
h′
t(x).

A simple computation gives

h′
t(x) = −t sinx sinh(t cosx) ≤ t sinh t, x ∈ [0, π].

Therefore, the double inequality (1.8) follows immediately. �

Proof of Theorem 1.2. From the power series expansion

sinh t

t
=

∞
∑

k=0

t2k

(2k + 1)!

and

I0(t) =

∞
∑

k=0

1

(k!)2

(

t

2

)2k

,

it follows that

(3.2) I0(t)−
sinh t

t
=

∞
∑

k=0

[

1

(2k + 1)!
−

1

22k(k!)2

]

t2k.
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Since

(2k + 1)! = (2k + 1)!!(2k)!! > [(2k)!!]2 = 22k(k!)2,

the coefficients 1
(2k+1)! −

1
22k(k!)2

in the power series (3.2) is nonnegative for

all k ≥ 0. This implies the absolute monotonicity on (0,∞) and complete
monotonicity on (−∞, 0) of the function I0(t)−

sinh t
t

. As a result, by definitions
of the absolute and complete monotonicity, we obtain

[

I0(t)−
sinh t

t

](ℓ)

≥ 0, t > 0

and

(−1)ℓ
[

I0(t)−
sinh t

t

](ℓ)

, t < 0

for ℓ ≥ 0. The proof of Theorem 1.2 is complete. �

4. Remarks and comparisons

Remark 4.1. The lower bound in the double inequality (1.7) is better than
sinh t

t
, but the lower bound in the double inequality (1.8) is not better than

sinh t
t

.
When 0 < t < 0.523 · · · , the double inequality (1.8) is better than (1.7);

when t > 0.523 · · · , the double inequality (1.7) is better than (1.8).

Remark 4.2. If ν = 0, the inequalities in (1.1) and (1.2) become the same
inequality

(4.1)
2− z

2 + z
ez < I0(z) <

6 + 3z

3(2 + 3z)
ez, z > 0

and the inequality (1.3) is reduced to

(4.2) 1 < I0(z) <
1

2

(

ez +
1

ez

)

, z > 0.

It is easy to see that the first inequality in (1.9) is better than the lower
bounds in inequalities (4.1) and (4.2).

The inequality (1.8) is worse than the double inequalities (4.1) and (4.2).
The upper bound in (1.7) is worse than the upper bounds of the double

inequalities (4.1) and (4.2).
When x > 0.85 · · · and x > 1.1 · · · respectively, the lower bound in (1.7) is

better than the lower bounds in the double inequalities (4.1) and (4.2).
In conclusion, the inequalities for I0 obtained in Theorems 1.1 and 1.2 are

more or less significant.

Remark 4.3. When ν = 1, from (1.1) and (1.3), it follows that

(4.3)
z(2− z)

2(z + 2)
ez < I1(z) <

z(z + 4)

2(5z + 4)
ez
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and

(4.4)
z

2
< I1(z) <

z

4

(

ez +
1

ez

)

for z > 0. The inequality (1.4) for ν = 1 is

(4.5) I1(y) >
y

2

(

1 +
y2

j21,1

)j21,1/8

for y > 0, where j1,1 = 3.83 · · · is the first zero of J1.
It is clear that the inequality (4.5) is better than the left-hand side inequal-

ities in (4.3) and (4.4).
When t > 1.2894 · · · , the second inequality in (1.9) is better than the left

hand side inequality in (4.3).
When t > 6.14 · · · , the second inequality in (1.9) is better than (4.5).
When t > 5.898 · · · , the second inequality in (1.9) is better than the corre-

sponding one in (1.5) for α = β = 1.
In a word, the inequality for I1 in Theorem 1.2 is somewhat significant.

Remark 4.4. The inequality (2.1) was generalized in [15] as

m(b3 − a3)

6
+

{

f(a)− f(b) + bf ′(b)− af ′(a) +m(a2 − b2)/2
}2

2[(a− b)m− f ′(a) + f ′(b)]

≤

∫ b

a

f(x) d x− bf(b) + af(a) +
b2f ′(b)− a2f ′(a)

2

≤
M(b3 − a3)

6
+

{

f(a)− f(b) + bf ′(b)− af ′(a) +M(a2 − b2)/2
}2

2[(a− b)M − f ′(a) + f ′(b)]
,

where f(x) is a 2-times differentiable function satisfying m ≤ f ′′(x) ≤ M on
[a, b]. For more information on the inequality (2.1) and its generalizations,
please refer to the papers [2, 5, 10, 11, 15], especially the expository and survey
article [16], and plenty references therein.

Remark 4.5. The method used in this paper has been employed in [7] to eval-
uate the complete elliptic integrals. It can also be used to derive bounds for

Iν(z) =
(z/2)ν

√
π Γ(ν + 1/2)

∫ π

0

e±z cos θ sin2ν θ d θ, ℜ(ν) > −
1

2
.

Remark 4.6. The first inequality in (1.9) has been applied in [20]. All inequal-
ities for I0 can be applied as did in [20].

Remark 4.7. This paper is a revised version of the preprint [8].
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