• 제목/요약/키워드: minimal hypersurfaces

검색결과 26건 처리시간 0.021초

FINITENESS AND VANISHING RESULTS ON HYPERSURFACES WITH FINITE INDEX IN ℝn+1: A REVISION

  • Van Duc, Nguyen
    • 대한수학회보
    • /
    • 제59권3호
    • /
    • pp.709-723
    • /
    • 2022
  • In this note, we revise some vanishing and finiteness results on hypersurfaces with finite index in ℝn+1. When the hypersurface is stable minimal, we show that there is no nontrivial L2p harmonic 1-form for some p. The our range of p is better than those in [7]. With the same range of p, we also give finiteness results on minimal hypersurfaces with finite index.

LAPLACE-BELTRAMI MINIMALITY OF TRANSLATION HYPERSURFACES IN E4

  • Ahmet Kazan;Mustafa Altin
    • 호남수학학술지
    • /
    • 제45권2호
    • /
    • pp.359-379
    • /
    • 2023
  • In the present paper, we study translation hypersurfaces in E4. In this context, firstly we obtain first, second and third Laplace-Beltrami (LBI, LBII and LBIII) operators of the translation hypersurfaces in E4. By solving second and third order nonlinear ordinary differential equations, we prove theorems that contain LBI-minimal, LBII-minimal and LBIII-minimal translation hypersurfaces in E4.

HYPERSURFACES IN THE UNIT SPHERE WITH SOME CURVATURE CONDITIONS

  • Park, Joon-Sang
    • 대한수학회논문집
    • /
    • 제9권3호
    • /
    • pp.641-648
    • /
    • 1994
  • Let M be a minimally immersed closed hypersurface in $S^{n+1}$, II the second fundamental form and $S = \Vert II \Vert^2$. It is well known that if $0 \leq S \leq n$, then $S \equiv 0$ or $S \equiv n$ and totally geodesic hypersheres and Clifford tori are the only possible minimal hypersurfaces with $S \equiv 0$ or $S \equiv n$ ([6], [2]). From these results, Chern suggested some questions on the study of compact minimal hypersurfaces on the sphere with S =constant: what are the next possible values of S to n, and does in the ambient sphere\ulcorner By the way, S is defined extrinsically but, in fact, it is an intrinsic invariant for the minimal hypersurface, i.e., S = n(n-1) - R, where R is the scalar, curvature of M. Some partial answers have been obtained for dim M = 3: Assuming $M^3 \subset S^4$ is closed and minimal with S =constant, de Almeida and Brito [1] proved that if $R \geq 0$ (or equivalently $S \leq 6$), then S = 0, 3 or 6, Peng and Terng ([5]) proved that if M has 3 distint principal curvatures, then S = 6, and in [3] Chang showed that if there exists a point which has two distinct principal curvatures, then S = 3. Hence the problem for dim M = 3 is completely done. For higher dimensional cases, not much has been known and these problems seem to be very hard without imposing some more conditions on M.

  • PDF

COMPLETE MAXIMAL SPACE-LIKE HYPERSURFACES IN AN ANTI-DE SITTER SPACE

  • Choi, Soon-Meen;Ki, U-Hang;Kim, He-Jin
    • 대한수학회보
    • /
    • 제31권1호
    • /
    • pp.85-92
    • /
    • 1994
  • It is well known that there exist no closed minimal surfaces in a 3-dimensional Euclidean space R$^{3}$. Myers [4] generalized the result to the case of the higher dimension and proved that there are no closed minimal hypersurfaces in an open hemisphere. The complete and non-compact version concerning Myers' theorem is recently considered by Cheng [1] and the following theorem is proved.

  • PDF

SPACE CURVES SATISFYING $\Delta$H = AH

  • Kim, Dong-Soo;Chung, Hei-Sun
    • 대한수학회보
    • /
    • 제31권2호
    • /
    • pp.193-200
    • /
    • 1994
  • Let x : $M^{n}$ .rarw. $E^{m}$ be an isometric immersion of a manifold $M^{n}$ into the Euclidean space $E^{m}$ and .DELTA. the Laplacian of $M^{n}$ defined by -div.omicron.grad. The family of such immersions satisfying the condition .DELTA.x = .lambda.x, .lambda..mem.R, is characterized by a well known result ot Takahashi (8]): they are either minimal in $E^{m}$ or minimal in some Euclidean hypersphere. As a generalization of Takahashi's result, many authors ([3,6,7]) studied the hypersurfaces $M^{n}$ in $E^{n+1}$ satisfying .DELTA.x = Ax + b, where A is a square matrix and b is a vector in $E^{n+1}$, and they proved independently that such hypersurfaces are either minimal in $E^{n+1}$ or hyperspheres or spherical cylinders. Since .DELTA.x = -nH, the submanifolds mentioned above satisfy .DELTA.H = .lambda.H or .DELTA.H = AH, where H is the mean curvature vector field of M. And the family of hypersurfaces satisfying .DELTA.H = .lambda.H was explored for some cases in [4]. In this paper, we classify space curves x : R .rarw. $E^{3}$ satisfying .DELTA.x = Ax + b or .DELTA.H = AH, and find conditions for such curves to be equivalent.alent.alent.

  • PDF