HYPERSURFACES IN THE UNIT SPHERE WITH SOME CURVATURE CONDITIONS

  • Park, Joon-Sang (Department of Mathematics, Dongguk University, Seoul 100-715)
  • Published : 1994.07.01

Abstract

Let M be a minimally immersed closed hypersurface in $S^{n+1}$, II the second fundamental form and $S = \Vert II \Vert^2$. It is well known that if $0 \leq S \leq n$, then $S \equiv 0$ or $S \equiv n$ and totally geodesic hypersheres and Clifford tori are the only possible minimal hypersurfaces with $S \equiv 0$ or $S \equiv n$ ([6], [2]). From these results, Chern suggested some questions on the study of compact minimal hypersurfaces on the sphere with S =constant: what are the next possible values of S to n, and does in the ambient sphere\ulcorner By the way, S is defined extrinsically but, in fact, it is an intrinsic invariant for the minimal hypersurface, i.e., S = n(n-1) - R, where R is the scalar, curvature of M. Some partial answers have been obtained for dim M = 3: Assuming $M^3 \subset S^4$ is closed and minimal with S =constant, de Almeida and Brito [1] proved that if $R \geq 0$ (or equivalently $S \leq 6$), then S = 0, 3 or 6, Peng and Terng ([5]) proved that if M has 3 distint principal curvatures, then S = 6, and in [3] Chang showed that if there exists a point which has two distinct principal curvatures, then S = 3. Hence the problem for dim M = 3 is completely done. For higher dimensional cases, not much has been known and these problems seem to be very hard without imposing some more conditions on M.

Keywords