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Abstract. We prove an equality that holds on G-invariant minimal hy-

persurfaces with constant scalar curvatures in S2.

0. Introduction

Let M™ be a closed minimally immersed hypersurface in the
unit sphere S"*! and h its second fundamental form. Denote by
R and S its scalar curvature and the square norm of A, respec-
tively. It is well known that S = n(n — 1) — R from the structure
equations of both M™ and S™*!. In particular, S is constant if
and only if M has constant scalar curvature. In 1968, J. Simons
[8] observed that if S < n everywhere and S is constant, then
S € {0, n}. Clearly, M™ is an equatorial sphere if S = 0. And
when § = n, M" is indeed a product of spheres, due to the works
of Chern, do Carmo, and Kobayashi [3] and Lawson [5].

We are concerned about the following conjecture posed by Chern

[9]-
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CHERN CONJECTURE. For any n > 3, the set R, of the real
numbers each of which can be realized as the constant scalar cur-
vature of a closed minimally immersed hypersurface in S™t1! is
discrete.

C. K. Peng and C. L. Terng [7] proved

THEOREM [Peng and Terng, 1983]. Let M* be a closed min-
imally immersed hypersurface with constant scalar curvature in
S5. IfS >4, then S > 4 + Zlﬁ'

S. Chang (2] proved

THEOREM [Chang, 1993]. A closed minimally immersed hyper-
surface with constant scalar curvature in S* is either an equatorial
3-sphere, a product of spheres, or a Cartan’s minimal hypersur-
face. In particular, R,, = {0, 3,6}.

Let G~ O(k)xO(p) xO(q) C O(k+p+q) andset k+p+q =
n + 2. Then W. Y. Hsiang [4] investigated G-invariant, minimal
hypersurfaces, M™ in S™*1, by studying their generating curves,
M™/G, in the orbit space S"*1/G and proved

THEOREM [Hsiang, 1987|. For each dimension n > 3, there
exist infinitely many, mutually noncongruent closed G-invariant
minimal hypersurfaces in S™*1, where G ~ O(k) x O(k) x O(q)
and k = 2 or 3.

We are going to study G-invariant minimal hypersurfaces, in
stead of minimal ones, with constant scalar curvatures in S°. Let
M* be a G-invariant hypersurface in S°. Then, we proved in
[6] that there is a local orthonormal frame field {e4} in S° such
that after restriction to M4, the ey, ..., e4 are tangent to M* and
hij =0if ¢ # j.

In this paper, we shall prove the following equality that holds
under such a frame field and plays an important role in study-
ing G-invariant minimal hypersurfaces with constant scalar cur-
vatures in S°:

THEOREM. Let M* be a G-invariant minimal hypersurface with
constant scalar curvature in S°. Then, there exists a local or-
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thonormal frame field under which everywhere the following equal-
ity holds

> hlm =S8(S—4)(S - 11) + 3(4 - 2B),

ilj’l?m
where

hii hjj.

A=) h%hi and B=)_ h%,
k

i, i3,k

REMARK. The above equality also appeared in C. K. Peng and
C. L. Terng [7] holds at some one point. They proved it by using
the fact Ahi; = Y 4 hijrer and Ahij =Y hijimm, i-€., by using a
frame field {v4} such that V,,v; = 0 for all ¢, j. But for our frame
field {ea}, in general Ah;; # Y, hiju and Ahijs # 3., hijimm.
Moreover, the above equality holds everywhere.

1. Preliminaries.

Let M™ be a manifold of dimension n immersed in a Rie-
mannian manifold N**! of dimension n + 1. Let V and (,)
be the connection and metric tensor respectively of N™t! and
let R be the curvature tensor with respect to the connection V
on N™*1. Choose a local orthonormal frame field e;, ..., e, in
N7™*+1 such that after restriction to M™, the e, ..., e, are tangent
to M™. Denote the dual coframe by {wa}. Here we will always use
i,7,k,..., for indices running over {1,2,...,n} and A, B,C,...,
over {1,2,...,n+ 1}.

As usual, the second fundamental form h and the mean curvature
H of M™ in N™*! are respectively defined by

h(v,w) = (Vyw, eny1) and H = h(e;, €;).

And the scalar curvature R of N™**! is defined by

R= Z(?@(e,;, eB)en, €4).
A B
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Then the structure equations of N**1 are given by

dwy = ZWAB Awp, wap+wpa =0,
B

1
dwap =Y wac AwoB — 3 > Kapopwo Awp,
c C.D

where K pcp = (R(ea, eB)ep, ec). When N™*! is the unit
sphere S™t1, we have

Kapcp =6acdpp —dapdBC.

Next, we restrict all tensors to M™. First of all, w,+; = 0 on M".
Then

Zw(n+1)i Aw; = dwn+1 = 0.

By Cartan’s lemma, we can write
Wnt1)i = — Z hij w;.
J

Here,
hij = _w(n+1)i(ej) = "’(Ve]' €ntl, €i)
= <—V_6J €4, 6n+1> - h(ej,ei) = h(e,-,ej).

Second, from

dw; = Zwij ANwj, Wij +Wj; = 0,
J
1
dw,-j = El:w“ ANwy; — EIZRijlm wp A Wy,
,m

we find the curvature tensor of M™ is

(L.1) Rijim = Kijim + hit hjm — him hji.
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If M™ is a piece of minimally immersed hypersurface in the unit
sphere S"*1 and R is the scalar curvature of M™, then we have

(1.2) R=n(n-1)-S5,
where S = )7, . h; is the square norm of h.

Given a symmetrlc 2-tensor T' = Z . Tij wiw; on M™, we also de-
fine its covariant derivatives, denoted by VT, V2T and V3T, etc.

with components Tj; x, Tij ki and Tjj kip , respectively, as follows:
(1.3)
Y Tijkwe =dTy + D Tojwai+ Y Tis gy
k 8 s
Z Tijrwr = dTijk + Z Tsjk wsi + Z Tiokwsj + Y Tijs Wak,
8
Z Tt] klpWp = th] Kkt + Z ng klWsi + Z Tv,s kl Wsj

+ ZTzJ sl Wsk + ZT‘U ks Wsl.

In general, the resulting tensors are no longer symmetric, and
the rule to switch sub-index obeys the Ricci formula as follows:
(1.4)

Tijit = Tijak = Y Toj Raint + > " Tis Rojua,
-] 8§
Tijetp — Tijpt = 3 Tojk Roitp + > Tien Rojip
L] L)
+ Z Tij,s Rsklpa
]
Tij,klpm - Tij,klmp = Z Tsj,kl Rsipm + Z Tis,kl stpm

8 8

+ Z Tij,sl Rskpm + Z Tij,ks Rslpm-
s 8

For the sake of simplicity, we always omit the comma (, ) between
indices in the special case T = Y, ; hy; w; w; with N*+1 = g+,
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Since 3¢ p K(nt1)icowe Awp = 0 on M™ when N™+1 =
Sn+1 we find

d(z h,‘j wj) = Z hj; wy A wy.
J il

Therefore,
Z hiﬂ W Aw; = Z(dhij + Z hlj Wy + E hi w;j) Aw; =0
Jok J l l

i.e., hyj is symmetric in all indices.

In the case M™ is minimal, we have
(1.5)

Z hiju = Z hiji = Z{htuj + Z(hmilejl + him Bmiji) }
! i i m
= (n - l)h,‘j
+ Z {—hmihmibi; + Bim (6m;0i — 6muibi; + hmihi — hmihij)}

I,m

= nh;; — Zhlmhmlhij =(n~— S)hij- '

lm

It follows that

1
(1.6) S AS = (n—8)S+> h.

1,54
2. G-invariant Hypersurface in S"+t!.

For G >~ O(k) x O(p) x O(g), R™*? splits into the orthogonal
direct sum of irreducible invariant subspaces, namely

R**? ~RF* @ R? @ R? = {(X,Y, 2)}

where X is a generic k-vector, Y is a generic p-vector and Z is a
generic g-vector. Here if we set = |X|,y = |Y| and 2 = |Z|, then
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the orbit space R**2/G can be parametrized by (z, y, 2); , y, 2 €
R, and the orbital distance metric is given by ds? = dz? +
dy? + dz%. By restricting the above G-action to the unit sphere
Snt+l c R™t+2) it is easy to see that

S"Y G ~ {(z,y,2): 2 +y*+ 22 =1z, ¥, 2 > 0}

which is isometric to a spherical triangle of S%(1) with 7/2 as its
three angles. The orbit labeled by (z,y, 2) is exactly S¥~1(z) x
SP=1(y) x §971(2). To investigate those G-invariant minimal
hypersurfaces, M™, in S™*! we study their generating curves,
v(s) = M™/G, in the orbit space S**1/G [4, 6].

The following two lemmas are immediate consequences of The-
orem and Corollary, respectively in [6].

LEMMA 2.1. Let M™ be a G-invariant hypersurface in S™*1.
Then there is a local orthonormal frame field ey, ..., e, in S™+!
such that after restriction to M™, the e,,...,e, are tangent to
M™ and hy; =0 ifi# j.

Proof. Let (Xo, Yo, Zo) € M™ C S™! with z = | Xo|, y = |Yo]

and z = |Zp| and choose a local orthonormal frame field on a
neighborhood of (Xy, Yy, Zp) as follows.
First, we choose vector fields uy,..., k-1, V1, ..., Up_1, W1,

..., Wq—1 on a neighborhood U of (Xo, Yo, Zo) in the orbit S*~1(z)
x SP~1(y) x S771(z) such that:

(1) wy,...,ux—1 are lifts of orthonormal tangent vector fields
u1,...,ug_1 on a neighborhood of Xy in S*¥~1(z) to
Sk=1(z) x SP~1(y) x S971(z) respectively

(2) v1,...,0p_ are lifts of orthonormal tangent vector fields
v1,...,Up—1 on a neighborhood of Yj in SP~1(y) to
Sk—1(z) x SP~1(y) x S91(z) respectively,

(3) w1,...,Wq—1 are lifts of orthonormal tangent vector fields
w1, ..., wy—1 on a neighborhood of Zg in §971(z) to

Sk=1(z) x SP~1(y) x S971(z) respectively.

Second, let c(t) = (c1(t), ca(t), c3(t)) be the unit speed geodesic
in §7*1/G orthogonal to the curve (s) = (z(s), y(s), z(s)). For
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each P = (X, Y, Z) e U, let ¥(P, s) and ¢(P,t) be the horizontal
lifts in S™*! of v(s) and c(t) through P respectively. Then we see

V(Ps) = ((6) 5, ¥ (6)%, #(92), and

# P = (G0 405, o)

Third, we extend these vector fields over a neighborhood of
(Xo, Yo, Zo) in S"*1! as follows:

(1) we translate u;, ..., Ug—1, U1, ..., Up—1, Wi, -.., Wy_1
parallel along ¥ and ¢.
(2) we extend ¥’ and ¢ in the usual fashion.

Then these extended vector fields uy, ..., Ug_1, v1, ..., Up1,
Wi, ..., We—1, ¥, € is a local orthonormal frame field in S™+1.
After restriction these vector fields to M™, uy,..., ux_1, 01, ...,
Up—1, Wi, ..., Wg-1, 7 are tangent to M™. For convenience, we
write them as e;, ..., e,41, in order.

Then, we have

_ _ "0) _ - 1(0) _
(2.1) VE,-(P) ’)” = .’Ei ) U; and Vﬁi(p)a’ = 61.’1(8 ) Ug,
and so
= —c}(0) df tanédr

h,’j = (Vgi(p)ﬁj, 8(0)) = 51'1' = (COS

"ds " sinr E) R
In the same way, we get
(2.2) hi; =0 ifi#jforall 1<4,j<n

and

(2.3)

cosr (d@/ds) + (tan@/sinr)(dr/ds) if 1<i<k-1,

cost (dB/ds) — (cot8/sinr)(dr/ds) f k<i<k+p-2
—(sin? r/ cos r)(d8/ds) if k+p-1<i<n-—1,
(da/ds) + cosr(df/ds) if i =n,

hi; =

where « is the angle between the curve v and the radial direction
0/0r (cf. [4,6]). The proof is complete.
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LEMMA 2.2. Let M™ be a G-invariant hypersurface in S™*1

and let {e4} be a local orthonormal frame field in S™*! as in
Lemma 2.1. Then,

(a) all hiji = 0 except when {i, j,l} is a permutation of either
{i,1,n},

(b) if j # k, then h,ﬁ,‘jk =0, hjkii =0, hjjjk =0 and hkjjj =
0,

(c) if i, j,k,l are distinct, then h;jx; = 0.

Proof. cf. [6].

Under such frame field as Lemma 2.1, we have

(24) ek = nk Zhszwst ek thswsz ek uk-

Hence, in the case M™ is minimal, by differentiating ), hxr = 0
we have
(2.5)

0= (ejei — Ve,ei) (O huk)
k

= Z{ej(hkki) - Zwis(ej)hkks}

k s
= Z Pickij

k
- Z{hski wsk(ej) + h'ksi wsk(ej) + hkks wsi(ej) + hkkswis (6j)}
= hikij-

k
3. G-invariant minimal Hypersurface in S°.

Throughout this section, we assume that G ~ O(2) x O(2) x
O(2) and M* is a closed G-invariant minimal hypersurface with
constant scalar curvature in S°. Let {e4} be a local orthonor-
mal frame field in S° as in Lemma 2.1. Then by differentiating
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S hii = 0 and Y, h% = S with respect to e4 respectively, we
have

(3.1) hi14 + ha24 + hazq + hasq = 0,
(3.2) hi1hi14 + ho2ho2a + hazhazs + haghaas = 0.

From (2.5), we have

(3.3) hivii + hagii + hagii + haas = 0.
From (1.5), we also have

(3.4) hii11 + hiioa + hiizz + hiiag = (4 — S)hqs.

Since S is constant, (1.6) and Lemma 2.2 imply

i3, i#4

Unlike the C. K. Peng and C. L. Terng [7], for the local or-
thonormal frame field {e4} in S° as in Lemma 2.1, in general

Ahij # Zk hz’jkk and Ahijl # Em hijlmm-
For example, by Lemma 2.1, Lemma 2.2 and (2.4) we see

exer(h11) = ex(h11k)

= hi1kk — Z hs1cwsi(ex)

(3.6) s
- Z hlskwsl(ek) - Z hllswsk(ek)-
8 8
That is,
(3.7)

ere1(h11) = hi111 — 3h11awar(er), ezea(hi1) = h1122 — h11awaz(e2),

esez(h11) = hi1133 — h11awss(es), eses(h11) = h1144.
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Hence, from (2.4) and (3.7) we have
(38)  Ahy=) (exex — Veyer)(hn)
k
=) {exer — ) wis(ex)es}(hnr)
k ]
= Z exek(hi1) + Z hi14wak(ex)

= Z hi1kk — 2h114w41 61 Z hi1kk-

Nevertheless, we also have our Theorem:

THEOREM. Let {e4} be a local orthonormal frame field in S°
as in Lemma 2.1. Then, everywhere

(3.9) > Bin = S(S —4)(S - 11) + 3(A - 2B),

i,75,,m

where

A=Y h¥;h% and B=Y_ hZy hihj;
7.7k ,]k

Proof. Now, we have

(3.10)
em ( Z hin) =2 hijiem (i)
4.4 R
=2 Z hz]l[hz]lm Z{hsﬂ Wgi (em) + hzslws] (em) + hz]swsl(em)}]
.5,
=2 Z hijihijim,
2,558
since

Z{hsjl wsi(em) + hislwsj (em) + hijswsl(em)} =0
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whenever h;j;; # 0. Hence, we have

(3 11)
= A Z hzﬂ Z emem — Ve, €m) Z h’z]l
i, m Lk
= Z em (hijihijim) — Z hijihijiswWms(em)
i,5,l,m ,7,,m,s
= 2 { ijlm — Zhsglwsz (em)

i,7,0,m

- Z hisiwsj(em) — Z hijswsi(em) Hijim
8 8

+ hijl{hijlmm - Z hsjlmwsi (em)

=) istmwsi(em) — O hijamwsi(em)
8 8

— Z hijiswsm (em) Hhijim

Z hijlhijlswms (em)

i’le)mis
= Y (Bt + ijthijtmm)
i,j’l’m
Z {hsjthijimwsi(em) + hijihsjimwsi(em )}

Z’J!lﬁm’s

Z {histhijimwsj(em) + Rijthisimwsj(em)}

i,3,5,m,s

Z {hijshijimwsi(em) + hijihijsmwsi(€m)}

’)j’l’m s
= Z (hzﬂm + hijlhijlmm)»
i,7.,m

Since S is constant in (3.5), >, ; hfj, is also constant. Hence,
(3.11) becomes

(312) > A== 2. (Bhiishiismm + hasshasamm)-

i,5,l,m m i#4
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Since Y, hgki; = 0 from (2.5), we have
(3.13

)
hikiji = ez(z Prkij) + Z{hskij wek(€r) + Prsij wer(er)
k % ks

+ hkksj wsi(el) + hikis wsj(el)}

= e;(z hkkij) = 0.
k

To compute the right side of (3.12), from now on, we will use
i, 7 (i # j) for indices running over {1, 2, 3}.

Since hii4j = hiij4 = hj4iz' = 0, (13), (14) and Lemma 2.2
imply

hiiaj; = €j(hjais) + hisjj wis(ej) + hijaq waj(e;)
= hjais; — {haais waz(e5) + hjjii wia(e;)}
+ hiijj wia(e;) + hiiag waj(e;)

= hjgiji + ) hatiRejij + > " hjsiRasij + > hjseRaiis
8 8 8

— {hagii waj(e;) + hjjii wjale;) }
+ hiijj wia(e;) + hijaq waj(e;)
= €;(Rjaij) + hjiij wis(ei) + hjsas wai(es)
+ higi Rijij + hja; Rjiij
— {hagis waj(ej) + hjjii wiale;) }
+ hiijj wia(ej) + hiiaa waj(e;)
= hyjjaii + higiRijij + hjaj Rjiij
— hjjii wis(ei) — hjjaq waile;)
+ hjiij wis(e:) + hjaaj wai(es)
— hagii waj(e5) — hyjjii wia(e;)
+ hiij; wia(e;) + hiiag waj(e;)
Here, from (1.1) we have

(3.14) _
Rijij = Kijij + hishjj = 1+ hiihj;  and Ry = —1 — hyjhii.
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Hence, we have
(3.15)
hiiajj — hjjaie = (1 + hishjj)hiia — (1 + hishjj)hjja
+ (hjjis = hiijs + haajj — hjjaa) wai(e;)
+ (hjjii — hiijj — haii + hiisa) waj(e;).
In the similar way, since 64(’14,;4,’) = 64(h44,;i) = hy4iis and
hasia = 0 = hyyy,,

hiigas = eq(hiiga) = eq(haiia)
= e4{haiai + (his — haa)(1 + hishaa)}
= hagiia + (hiia — haaa)(1 + hishaa)
+ (his — haa)(hisahas + hiihasq)
= Pagigi + Rigi Rigia + hagi Rigia + haaa Rajia
+ (hiia — haaa)(1 + hishas) + (hii — hasg)(Riiahag + hishaas)
= €i(hagis) + higig wis(ei) + Paiia wia(€;) + hagaq wai(e;)
+ hagii wis(es) + higi Rigia + haiiRisia + hasa Rasig
+ (hiia — haaa) (1 + hishag) + (his — haa) (Risahag + Rishygs)
= haaaii — Migas wig(€i) — haiai wis(e;) — hagis wia(e;)
— hagaa waile;) + higiq wia(ei) + haiia wig(e;) + hagaq wai(e;)
+ hasii wig(e;) + higi Rigia + haii Risia + haaa Raiia
+ (hiia — haaa) (1 + hishas) + (hii — haa)(hiiahag + hishags)
= haaaii + 2(haasi — hiisa) wai(€;) + 2hia Rigia + hagaRaiia
+ (hiia — haaa)(1 4 hishag) + (hii — haa)(hisahag + hiihags).

Hence,
(3.16)
Piiaaa — haagis = (3 + 4hishas — hig)hisa — (2 + 3hihag — hE)haag
+ 2(haais — hiiga) waile;).

Here, from (1.3) we know
(3.17)
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Hence, by using (3.1),...,(3.4), (3.13) and (3.15),...,(3.17) we
get

(3.18)
3hi114(h11411 + ha1a22 + R11433 + A11444)

= 3h114(h11411 + ho2411 + h3za11 + hagarn)
+ 3h114{(h11422 — h22411) + (h11433 — h33411)
+ (h11444 — h4aa11)}
= 3(1 + h11h22)h?14 — 3(1 + harhaz)hi1ahang
+ 3(1 + h1rhaa)h?, — 3(1 + h11has)hi14hass
+ 3(3 + 4h11haa — h3g)h3 14 — 3(2 + 3hyrhag — hi1)h114hass
+ (h2211 — h1122 + hagze — ha2aa)h1111
+ 3(h2211 — h1122 — haa11 + R1144)P1122
+ (ha311 = h1133 + hagss — hazsa)ha11
+ 3(haa11 — h1133 — haa11 + Pi144)PR113s + 2(hasrr — hi1aa)hi1a
= 15h3;4 + 3(h2a + has + haa)h11h3 1, — 3ha1a(haoza + haze + haas)
— 3h11h114(haohaos + haszhasa + hashasa)
+ 9hgahy1h3 1y — 3h3,h31, — 3h11ahaay
— 6h11h114hashass + 3R 1 hi1ahasy
+ (h1111 + ha211 + has11 + hasrn)hun
— (h1111 + h1122 + h1133 + R1144) 11
+ (haa11 + hadze + haass + hagaa) h1in
— (h1144 + ha244 + R33aq + hagaa) R111a
+ 3(ha211 — h1122 — had1r + h1144) h1122
+ 3(has11 — h1133 — haarr + hi1a4)h113s
= 18h%1, + Yhi1haah? , — 32,2, — 3h114haas
— 6h11h114hashass + 33 hy1ghaas + 3(4 — S)RZ,,
+ 3(h2211 — h1122 — haa11 + h1144) h1122
+ 3(haa11 — h1133 — haa11 + ha14a)Ba1ss.



128 Jae-Up So

In the same way, we have

3ha24(ha2411 + haza22 + haoasz + hozaaq)
= 18h3,4 + Yhashashdyy — 3h3,h30s
— 3h224h444 — 6h22h224haah a4

3.19)
( + 3h§2h224h444 + 3(4 - S)h§24
+ 3(—ha211 + h1122 — haaza + hasaa)hoon
+ 3(h3s22 — haass — haaz + ho244)ha233,
and
3hasa(hazar1 + hazaze + hasass + h3zgaq)
= 18’7’%34 '+‘ 9h33h44h§34 - 3hi4h§34
— 3h33zqhaas — 6h3zhgsahashass
(20)

-+ 3h§3h334h444 + 3(4 — S)h§34
— 3(hss11 — h1133 + haass — hasaa)hazin

— 3(has22 — ho2ss + haass — hazaa)hazon.

Moreover, since

haii — hiias = (haa — hii)(1 + haghis), (haa — hi) wai(e;) = hia,

we have
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(3.21)
haaa(Paga11 + haaaz + haaass + Rasaas)

= haas(P11444 + Ro2444 + h33sas + hadqss)
+ haaa{(Pasar1 — h11444) + (Pasao2 — hooaas) + (hasass — hazaaa)}
= —(3 4 4hy1hag — h,)h11ahaa + (2 + 3hirhag — K2 )2,
— (34 4hgohas — hig)hooahass + (2 + 3hoshas — h3,)hi4,
— (34 4hazhas — his)hasahaas + (2 + 3hashas — h35)hi4,
— 2(hg4a11 — P1144)hasg wai(e1) — 2(haazz — hazaa)hasg waa(es)
~ 2(ha433 — h3za4)haea waz(es)
= —5(h114 + h224 + h334)haqq
— 6(h11h114 + hoohoza + hashaza)haahaas
+ (h114 + haza + haza)hishass
+ 6h344 + 3(h11 + hoz + haz)haahis, — (S — hi b2,
= (11 = S)h3yy + 33 i,

Here,
(3.22)
3(A - 2B) = —12(h%,,h11has + h§24h22h44 + h334hazhas)

+ 3(h314 + h3aq + h334) R, — 3h34ah5,

Hence, from (3.18),...,(3.22) we obtain

(3.23)
3 Z hiiaRiiamm + Z hasahssamm

= S(S—4)(11 - S) — 3(A—2B) — 5(S — 4)
— 3 hlghiihas + 3 hZhiiahass + 6h%,,h3, + 4h3,,

- 3Z(hiijj — hjjii)? — 3Z(h44ii — hiiaa)hiij;-

i<y i#7

On the other hand, since hjjii‘z hjj4 W4 (8,7), (h44 - h,',;) w4,-(ei)
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= h;;4, We have

(3.24)

(haaii — hiiaa)hiiji = (hasii — hiiaa) hjjii

+ (haaii — hiiaa) (hiijs
= (1 + hiihaa)hiiahjja
+ (haa — hii)(1 + hizhaa) (his

— hjjis)

— hj;)(1 + hishy;)-

Now, we know
(3.25)
-3 Z(l + hiihaa)hiish;ja

t£]
"‘3(h114 + h224 + h334) + 3h114 + 3h224 + 3h334

— 3(h11h114 + hozhaasa + hazhaza)(R11a + ho2e + hss4)haa

+ 3(h%,4h11has + h2, hazhas + h334h33has)
= (S — 4) — 4h4q — 3h3ehis + 3D hlishishaa,

and
(3.26)
> (hisjs — hyjii)”
i<j

+ Z(h44 — hi,')(l -+ hiih44)(hii - h’jj)(l + hiih‘jj)

i#]
=Y (b — hjj)(haa — h
i<j
Hence, (3.25) and (3.26) imply that

(3.27)
- 3Z(hu_1j - h_”u)z 32 h44u - h'u44)hu]_7
i<j 1#J

= 5(S — 4) — 4hlsq — 3h3eehdy + 3D hhighiihas

~ 3 (his — hyj)?(has — his)(haa — hj) (1 + hishs;).

1<j

i) (hag — hj;) (1 + hiihjz).
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By substituting the equality (3.27) into (3.23), we have
(3.28)

3 Z hu4hu4mm + Z h444h444mm

1m

= S(S-4)(11 - S) - 3(A—2B) + 3 _ Al hiiahasa + 3h3hd,

- 3Z(h" = hj;)?(haa — hii)(has — hj;) (1 + hishjj).

i<j

Now, by using (has — hi;) wai(e:) = Riia, hiia waj(e;) = hiijj we
have

(3.29) hiiahjja = (haa—hii)hjji and hjjahiia = (haa—hjj)hiijj-
From (3.29), we have
hijahiia = (hag — hjj)hiij;
(3.30) = (hag — hjj){hjjii + (hii — ;) (1 + hishy;)}
= (hasa — hii)hjjis.
Hence, from (3.30) it follows that if hy; # h;;, then

(3.31) hjjii = (hj; — haa)(1 + hishjj).

(3.29) and (3.31) give

3. 32)

( ) zz4hjj4 = (hu )2(h44 - hii)(hjj - h’44)(1 + hﬁh’jj)'

Hence, by using (3.1), (3.2) and (3.32), we have
(3.33)

= —3(h2,h114 + h3yho0a + hizhaza) (h114 + haza + h3ag)
+ 3(h11h114 + haohaza + hazhazs)®
= =3 (hii — hj;)hiishjja
i<j

- 32 i J] (h44 - hu)(h44 - ]_1)(1 + huhj])

i<j



132

Jae-Up So

Hence, by substituting the equality (3.33) into (3.28) we obtain

> Biim = =3 hiishiitmm — > hasshasamm

i,7,0,m t,m m

= S(S — 4)(S - 11) + 3(A - 2B),

which completes the proof of Theorem.

(1]
(2]
[3]

References

E. Cartan, Sur des familles remarquables d‘hypersurfaces isoparametriques
dans les espaces spherigues, Math. Z. 45 (1939), 335-367.

S. Chang, On minimal hypersurfaces with constant scalar curvatures in
54, 1.Diff.Geom. 37 (1993), 523-534.

8. S. Chern, M. do Carmo & S. Kobayashi, Minimal submanifolds of a
sphere with second fundamental form of constant length, Duke Math. J.
61 (1990), 195-206.

W. Y. Hsiang, On the construction of infinitely many congruence classes
of imbedded closed minimal hypersurfaces in S™(1) for all n > 3 Math.
J..

H. B. Lawson, Local rigidity theorems for minimal hypersurfaces, Annals
of Math. (2) 89 (1969), 187-191.

H. B. Park, J. H. Park & J. U. So, On scalar curvatures of G-invariant
minimal hypersurfaces in S™*1, Korean Ann. of Math. 17 (2000), 247-260.
C. K. Peng & C. L. Terng, Minimal hypersurface of spheres with con-
stant scalar curvature, Annals of Math. Studies, No. 103, Princeton Uni-
versity Press, Princeton, NJ, (1983), 177-198.

J. Simons, Minimal varieties in a Riemannian manifold, Ann. of Math.
(2) 88 (1968), 62-105.

S. T. Yau, Problem section, Annals of Math. Studies, No. 102, Princeton
University Press, Princeton, NJ, (1982), 693.



