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FINITENESS AND VANISHING RESULTS ON

HYPERSURFACES WITH FINITE INDEX IN Rn+1:

A REVISION

Nguyen Van Duc

Abstract. In this note, we revise some vanishing and finiteness results
on hypersurfaces with finite index in Rn+1. When the hypersurface is

stable minimal, we show that there is no nontrivial L2p harmonic 1-form

for some p. The our range of p is better than those in [7]. With the same
range of p, we also give finiteness results on minimal hypersurfaces with

finite index.

1. Introduction

Let M be an n-dimension complete, noncompact hypersurface in Rn+1. If
A denotes the second fundamental form of M and S = |A|2, then M is said to
satisfy a stable inequality if ∫

M

|∇ψ|2 − Sψ2 ≥ 0

for any compact supported function ψ. In particular, the stable inequality is
always true on stable minimal hypersurfaces. Moreover, this notation has a
close relationship with the index of a minimally immersed hypersurface in Rn
which is defined to be the limit of the indices of an increasing sequence of
exhausting compact domains in M . Note that the index of a domain D is the
number of negative eigenvalues of the eigenvalue problem

(∆ + S)f + λf = 0, f |∂D= 0.

Geometrically, the index of M can be described as the maximum dimension of a
linear space of compactly supported deformations that decrease the volume up
to second order. This also has the geometric interpretation that there is only a
finite dimensional space of normal variations violating the stability inequality.
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In [20], the author proved that if M has finite index, then M \B2R(p) is stable
for R large enough. Here p ∈ M is a fixed point, and B2R is the geodesic ball
centered at p with radius 2R.

The study of stable minimal hypersurfaces can be viewed as an effort to
prove a generalized Bernstein’s theorem. Bernstein first established that an
entire minimal graph in R3 must be a plane. The validity of Bernstein’s theo-
rem in higher dimensions was established for the entire minimal graph in Rn+1

by Simons, and many other authors, for the lower dimensional cases. Simons
[19] proved for n ≤ 8, and gave a conjecture that whether or not entire minimal
graph in Rn+1 is plane for any n. In 1969, Bombieri, De Giorgi, and Guisti
[2] proved that Simons’s conjecture is not true for higher dimension; in fact,
they showed us that there exist complete minimal graphs in Rn which are not
hyperplanes if n ≥ 9. In 1984, Gulliver [9] studied a yet larger class of sub-
manifolds in R3. He proved that a complete, oriented, minimally immersed
hypersurface with finite index in R3 must have finite total curvature, which
means

∫
M
|A|2 < ∞. In 1989, J. Tysk [20] showed this result for some larger

dimension; he proved that an oriented minimally immersed complete hypersur-
face Mn in Euclidean space, with 3 ≤ n ≤ 6 satisfying the following volume
growth condition has finite index if and only if it has finite total curvature;
which means

∫
M
|A|n < ∞. It is worth to note that in that article, Tysk

said that his theorem cannot be generalized for higher dimension. In 1997,
Cao, Shen, and Zhu [3] proved that a complete, oriented, stable, minimally
immersed hypersurface in Euclidean space must have only one end. This the-
orem was generalized by Li and Wang [14] when they showed that a complete,
oriented, minimally immersed hypersurface Mn in Rn+1 with finite index must
have finitely many ends. In a later paper [15], Li and Wang also generalized
their theorem to minimal hypersurfaces with finite index in a complete manifold
with nonnegative sectional curvature.

On the other hand, it is well-known that the L2 harmonic function theory
has played an important role in the study of stable minimal hypersurfaces. For
example, the constant in the mean value inequality depends only on the lower
bound of the Ricci curvature and the radius of the ball is essential in some of the
geometric applications. Palmer [17] proved that if there exists a codimension
one cycle C in M which does not separate M , then M is unstable. In [13],
Li and Tam proved that the number of ends with infinite volume is bounded
by the dimension of the space of L2 harmonic functions. This means that we
can apply the theory of L2 harmonic functions, and in general the theory of L2

harmonic 1-forms, to investigate the connectedness of manifolds at infinity.
In this paper, we study the structure of space of harmonic 1-forms with

finite Lp energy for some p > 0 on hypersurface immersed in Rn+1. Using
Bochner’s technique, we prove some results about the vanish and the finiteness
of Lp harmonic 1-form on miminal stable hypersurface Mn immersed in Rn+1

for some positive number p. The first result is stated as follows.
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Theorem 1.1. Let M be an n-dimensional complete noncompact, stable, min-
imal hypersurface in Rn+1, with n ≥ 2. Then, for

n−
√

2n

n− 1
< p <

n+
√

2n

n− 1
,

there is no nontrivial L2p harmonic 1-form on M .

It is worth to remark that Dung and Seo proved this theorem for hyper-
surfaces without minimal condition in [7]. However, this theorem is not just a
corollary of their results. In fact, by performing a more careful computation,
we improve the range of p and n when M is minimal. Indeed, it is easy to see
that our range of p and n are wider than those in [7].

Besides the vanishing theorem, we also investigate some finiteness results.
We obtain an interesting theorem about minimal hypersurfaces with finite index
in Euclidean space.

Theorem 1.2. Let M be an n-dimensional complete, noncompact, minimal
hypersurface in Rn+1, with n ≥ 3. Assume that M has finite index. Then, for

n−
√

2n

n− 1
< p <

n+
√

2n

n− 1
,

we have

dimL2p(H1(M)) <∞.

We remark that without minimality, we also can obtain a finiteness result
(see Theorem 3.3). However, Theorem 1.2 is not only a consequence of Theorem
3.3. In fact, when the hypersurface is minimal, we can perform a more careful
computation, to improve the range of p and n as stated in Theorem 1.2.

The remainder of this paper is organized as follows. In Section 2, we recall
some useful fact regarding the estimation of the Ricci curvature on immersed
hypersurfaces and the bounded of the number of dimension of harmonic form
with finite energies, then we prove vanishing properties. Final, we use Section
3 to verify finiteness results.

2. Vanishing theorem for Lp harmonic 1-forms

To begin with, we need to have an estimation of Ricci curvature as follows.

Lemma 2.1 ([11]). Let M be an n-dimensional submanifold in a Riemannian
manifold N with sectional curvature KN satisfying that KN ≥ k where k is a
constant. Then the Ricci curvature of M satisfies

Ric ≥ (n− 1)k +
1

n2

{
2(n− 1)|H|2 − (n− 2)

√
n− 1|H|

√
n|A|2 − |H|2

}
− n− 1

n
|A|2.

Now, we give a proof of Theorem 1.1
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Proof of Theorem 1.1. Let ω be an L2p harmonic 1-form on M . Then, we have
Bochner’s formula:

|ω|∆|ω| = |∇ω|2 − |∇|ω||2 +Ric(ω], ω]).

Using the Kato inequality

|∇|ω||2 ≤ n− 1

n
|∇ω|2

and the Ricci curvature estimate in Lemma 2.1

Ric(ω], ω]) ≥ −n− 1

n
|ω|2S,

we have

|ω|∆|ω| ≥ 1

n− 1
|∇|ω||2 − n− 1

n
|ω|2S.

Combining with the identity

|ω|p∆|ω|p =
p− 1

p
|∇|ω|p|2 + p|ω|2p−2|ω|∆|ω|,

|∇|ω|p|2 = p2|ω|2p−2|∇|ω||2

we have that

|ω|p∆|ω|p ≥
(

1

p(n− 1)
+
p− 1

p

)
|∇|ω|p|2 − p(n− 1)|ω|2pS

n
.

Choose a cut off function f ∈ C∞0 (M). Multiplying both sides by f2, inte-
grating over M , and using the following identity obtained from the divergence
theorem ∫

M

f2|ω|p∆|ω|p = −
∫
M

f2|∇|ω|p|2 − 2

∫
M

f |ω|p〈∇f,∇|ω|p〉,

we get

−2

∫
M

f |ω|p〈∇f,∇|ω|p〉 ≥
(

2p− 1

p
+

1

p(n− 1)

)∫
M

f2|∇|ω|p|2

− p(n− 1)

n

∫
M

f2|ω|2pS.

Using Cauchy’s and Young inequalities, and strong stability, we infer

−2f |ω|p〈∇f,∇|ω|p〉 ≤ 1

a
|∇f |2|ω|2p + af2|∇|ω|p|2,∫

M

f2|ω|2pS ≤
∫
M

|∇(f |ω|p)|2

≤ (1 + c)

∫
M

|ω|2p|∇f |2 +

(
1 +

1

c

)∫
M

|∇|ω|p|2f2,

we get that[
1

a
+
p(n− 1)

n
(1 + c)

] ∫
M

|ω|2p|∇f |2(1)
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≥
[

2p− 1

p
+

1

p(n− 1)
− a− p(n− 1)

n

(
1 +

1

c

)]∫
M

f2|∇|ω|p|2.

We have that:
2p− 1

p
+

1

p(n− 1)
− p(n− 1)

n
> 0,

so we can choose positive numbers a small and c large enough such that

2p− 1

p
+

1

p(n− 1)
− a− p(n− 1)

n

(
1 +

1

c

)
> 0.

So from (1) we have:

A

∫
M

|ω|2p|∇f |2 ≥ B
∫
M

f2|∇|ω|p|2 + C

∫
M

f2|ω|2p,

where A, B, C are positive numbers.
Now, we choose function f ∈ C∞0 (M) such that 0 ≤ f ≤ 1, f = 1 on BR(p)

for some p ∈M , f = 0 on M \B2R(p), and |df | ≤ 1
R . Then we get:

A

R2

∫
B2R(p)

|ω|2p ≥ B
∫
BR(p)

|∇|ω|p|2 + C

∫
BR(p)

|ω|2p.

Because ω ∈ L2p(M), letting R → ∞, we see that ω = 0, which complete the
proof. �

3. Finiteness results

We begin with the following useful facts in order to prove our main theorems.

Lemma 3.1 ([6, 12, 18]). Let K be a finite-dimensional subspace of L2p har-
monic q-forms on an m-dimensional complete noncompact Riemannian mani-
fold M for any p > 0. Then, there exists ω ∈ K such that

(dimK)min{1,p}
∫
Bx(r)

|ω|2p ≤ Vol(Bx(r)) min

{(
m
q

)
,dimK

}min{1,p}

sup
Bx(r)

|ω|2p

for any x ∈M and r > 0.

We also note that there is a Sobolev inequality on immersed hypersurfaces
in Rn. In fact, the following Sobolev inequality was pointed out by Hoffman
and Spruck in [10].

Lemma 3.2. Suppose that Mn is a complete oriented submanifold isometri-
cally immersed in an (n+ p)-dimensional manifold with non-positive sectional
curvatures. Then there exists a positive constant Cs such that(∫

M

|f |
2n
n−2

)n−2
n

≤ Cs
∫
M

(|∇f |2 + |H|2f2)

for any nonnegative C1-functions f : M → R with a compact support. Here
|H| stands for the length of the mean curvature of M .
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By adapting the argument of [4] and [5], we are now able to prove the
following theorem.

Theorem 3.3. Let M be an n-dimensional complete noncompact submanifold
in Rn+m, with 3 ≤ n ≤ 6. Assume that M has a finite index. Then, for any

1−
√

1− n−2
2
√
n−1

√
n−1
2

< p <
1 +

√
1− n−2

2
√
n−1

√
n−1
2

,

we have

dimL2p(H1(M)) <∞.

Proof. We can assume that there is a ball BR(o) such that M has the strong
stable inequality on M \BR(o), that mean∫

M\BR(o)

f2|ω|2pS ≤
∫
M\BR(o)

|∇(f |ω|p)|2.

Let ω be an L2p harmonic 1-form on M . By Bochner formula, we have

|ω|∆|ω| = |∇ω|2 − |∇|ω||2 +Ric(ω], ω]).

Note that the Ricci curvature estimate in Lemma [11] infers

Ric(ω], ω]) ≥ |ω|
2

n2

[
2(n−1)H2 − (n−2)|H|

√
(n− 1)(nS −H2)− n(n−1)S

]
.

Hence, using the refined Kato inequality (see [6])

|∇|ω||2 ≤ n− 1

n
|∇ω|2,

we have

|ω|∆|ω|

≥ 1

n−1
|∇|ω||2+

|ω|2

n2

[
2(n−1)H2−(n−2)|H|

√
(n−1)(nS −H2)−n(n−1)S

]
.

It is easy to see that

|ω|p∆|ω|p =
p− 1

p
|∇|ω|p|2 + p|ω|2p−2|ω|∆|ω|,

|∇|ω|p|2 = p2|ω|2p−2|∇|ω||2.

This implies

|ω|p∆|ω|p(2)

≥
(

1

p(n− 1)
+
p− 1

p

)
|∇|ω|p|2

+
p|ω|2p

n2

[
2(n− 1)H2 − (n− 2)|H|

√
(n− 1)(nS −H2)− n(n− 1)S

]
.
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Let f ∈ C∞0 (M). Multiplying both sides of the above inequality by f2 and
integrate over M , we get

− 2

∫
M

f |ω|p〈∇f,∇|ω|p〉

≥
(

2p− 1

p
+

1

p(n− 1)

)∫
M

f2|∇|ω|p|2 +
2p(n− 1)

n2

∫
M

f2|ω|2pH2

− p(n− 2)
√
n− 1

n2

∫
M

f2|ω|2p|H|
√
nS −H2 − p(n− 1)

n

∫
M

f2|ω|2pS,

where we used the divergence theorem∫
M

f2|ω|p∆|ω|p = −
∫
M

f2|∇|ω|p|2 − 2

∫
M

f |ω|p〈∇f,∇|ω|p〉.

For any positive numbers a, b, using Cauchy inequalities

−2f |ω|p〈∇f,∇|ω|p〉 ≤ a|∇f |2|ω|2p +
1

a
f2|∇|ω|p|2,

2f2|ω|2p|H|
√
nS −H2 ≤ bf2|ω|2pH2 +

1

b
f2|ω|2p(nS −H2),

we have

a

∫
M

|ω|2p|∇f |2(3)

≥
(
−1

a
+

2p− 1

p
+

1

p(n− 1)

)∫
M

f2|∇|ω|p|2

+

(
2p(n− 1)

n2
− p(n− 2)

√
n− 1b

2n2
+
p(n− 2)

√
n− 1

2n2b

)∫
M

f2|ω|2pH2

−
(
p(n− 2)

√
n− 1

2nb
+
p(n− 1)

n

)∫
M

f2|ω|2pS.

Since M has a finite index, there exists a compact subset Ω ⊂ M such that
M \ Ω is stable (see [8, 20] for example). Hence, there exists R large enough
such that ∫

M\BR(o)

f2|ω|2pS ≤
∫
M\BR(o)

|∇(f |ω|p)|2

for any f ∈ C∞0 (M \ BR(o)). Therefore, for such smooth f , Young inequality
implies ∫

M\BR(o)

f2|ω|2pS

≤
∫
M\BR(o)

|∇(f |ω|p)|2

≤ (1 + c)

∫
M\BR(o)

|ω|2p|∇f |2 +

(
1 +

1

c

)∫
M\BR(o)

|∇|ω|p|2f2
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for any positive number c. Plugging this inequality into (3), it turns out that[
a+ (1 + c)

(
p(n− 2)

√
n− 1

2nb
+
p(n− 1)

n

)]∫
M

|ω|2p|∇f |2(4)

≥
[
−1

a
+

2p− 1

p
+

1

p(n− 1)
−
(
p(n− 2)

√
n− 1

2nb
+
p(n− 1)

n

)(
1 +

1

c

)]∫
M

f2|∇|ω|p|2

+

[
2p(n− 1)

n2
− p(n− 2)

√
n− 1b

2n2
+
p(n− 2)

√
n− 1

2n2b

] ∫
M

f2|ω|2pH2.

Now, we observe that if 0 < b < 2
√
n−1+n
n−2 , then

2p(n− 1)

n2
− p(n− 2)

√
n− 1b

2n2
+
p(n− 2)

√
n− 1

2n2b
> 0.

By the assumption on p, we have that:

2p− 1

p
+

1

p(n− 1)
− p(n− 1)

n
>
p(n− 2)

√
n− 1

2n 2
√
n−1+n
n−2

.

Combining the above two observations, we conclude that there is a positive
number b satisfying

2p− 1

p
+

1

p(n− 1)
− p(n− 1)

n
>
p(n− 2)

√
n− 1

2nb
.

Hence, we can choose a and c large enough such that

−1

a
+

2p− 1

p
+

1

p(n− 1)
−
(
p(n− 2)

√
n− 1

2nb
+
p(n− 1)

n

)(
1 +

1

c

)
> 0.

In conclusion, we have show that there exist positive numbers A,B,C such
that

(5) A

∫
M\BR(o)

|∇f |2|ω|2p ≥ B
∫
M\BR(o)

f2|∇|ω|p|2 + C

∫
M\BR(o)

f2|ω|2pH2.

On the other hand, applying the Sobolev inequality and Young’s inequality,
we get

1

Cs

(∫
M\BR(o)

|f |ω|p|
2n
n−2

)n−2
n

≤
∫
M\BR(o)

|∇(f |ω|p)|2 +

∫
M\BR(o)

H2f2|ω|2p

≤ (1 + ε)

∫
M\BR(o)

f2|∇|ω|p|2 +

(
1 +

1

ε

)∫
M\BR(o)

|∇f |2|ω|2p

+

∫
M\BR(o)

H2f2|ω|2p
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for any positive number ε. This together with (5) implies

1

Cs

(∫
M\BR(o)

|f |ω|p|
2n
n−2

)n−2
n

≤
(

1 +
1

ε
+ (1 + ε)

A

B

)∫
M\BR(o)

|∇f |2|ω|2p

+

(
1− (1 + ε)C

B

)∫
M\BR(o)

H2f2|ω|2p.

Because C
B is positive number, so we can choose ε large enough such that

1− (1 + ε)C

B
< 0.

Hence, there exists a positive constant C1 such that

(6)

(∫
M\BR(o)

(f |ω|p)
2n
n−2

)n−2
n

≤ C1

∫
M\BR(o)

|∇f |2|ω|2p.

Now, given r > R+ 1, we choose f ∈ C∞0 (M \BR(o)) satisfying 0 ≤ f ≤ 1 and
f = 1 on Br(o) \BR+1(o);

f = 0 on BR(o) ∪ (M \B2r(o));

|∇f | ≤ C2 on BR+1(o) \BR(o);

|∇f | ≤ C2

r on B2r(o) \Br(o)

for some constant C2 > 0. Applying this test function to (6), we infer that(∫
Br(o)\BR+1(o)

|ω|
2pn
n−2

)n−2
n

≤ C3

∫
BR+1(o)\BR(o)

|ω|2p +
C3

r2

∫
B2r(o)\Br(o)

|ω|2p.

Letting r →∞ and using the fact that ω ∈ L2p, we obtain(∫
M\BR+1(o)

|ω|
2pn
n−2

)n−2
n

≤ C3

∫
BR+1(o)\BR(o)

|ω|2p.

Moreover, by Hölder inequality, we have∫
BR+2(o)\BR+1(o)

|ω|2p

≤ (Vol(BR+2(o) \BR+1(o)))
2
n

(∫
BR+2(o)\BR+1(o)

|ω|
2pn
n−2

)n−2
n

.

Therefore, the above two inequalities imply∫
BR+2(o)\BR+1(o)

|ω|2p ≤ C3(Vol(BR+2(o) \BR+1(o)))
2
n

∫
BR+1(o)\BR(o)

|ω|2p.
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By adding
∫
BR+1(o)\BR(o)

|ω|2p to both sides of the last inequality, we get∫
BR+2(o)\BR(o)

|ω|2p

≤
(
C3(Vol(BR+2(o) \BR+1(o)))

2
n + 1

)∫
BR+1(o)\BR(o)

|ω|2p.

Again, adding
∫
BR(o)

|ω|2p to both sides of the above inequality, it turns out

that

(7)

∫
BR+2(o)

|ω|2p ≤ C4

∫
BR+1(o)

|ω|2p,

where C4 = C3(V ol(BR+2(o) \BR+1(o)))
2
n + 1.

On the other hand, by (2), we have

|ω|∆|ω| ≥ 1

n− 1
|∇|ω||2 − T |ω|2,

where T = 1
n2 |2(n− 1)H2 − (n− 2)|H|

√
(n− 1)(nS −H2)− n(n− 1)S|.

Fix o ∈ M , and take f ∈ C1
0 (Br(o)) with sufficiently large r. Multiplying

both sides of the above inequality by f2|ω|s−2, with s ≥ 2p then integrating by
parts, we obtain

−2

∫
Br(o)

f |ω|s−1〈∇f,∇|ω|〉 ≥
(
s− 1 +

1

n− 1

)∫
Br(o)

|ω|s−2f2|∇|ω||2(8)

−
∫
Br(o)

Tf2|ω|s.

Note that for any positive constant a, Young inequality infers

−2f |ω|s−1〈∇f,∇|ω|〉 ≤ a|ω|s|∇f |2 +
1

a
|ω|s−2f2|∇|ω||2.

Applying this inequality in (8), we have(
s− 1 +

1

(n− 1)
− a
)∫

Br(o)

|ω|s−2f2|∇|ω||2

≤
∫
Br(o)

Tf2|ω|s +
1

a

∫
Br(o)

|ω|s|∇f |2.

Again, applying the Young inequality, it turns out that∫
Br(o)

|∇(f |ω| s2 )|2 ≤ 2

∫
Br(o)

|ω|s|∇f |2 +
s2

2

∫
Br(o)

|ω|s−2f2|∇|ω||2.

Combining the above two inequalities, we obtain

(9)

∫
Br(o)

|∇(f |ω| s2 )|2 ≤
∫
Br(o)

ATf2|ω|s +B|ω|s|∇f |2,
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where

A =
s2

2

(
s− 1 +

1

n− 1
− a
)−1

,

B =
s2

2
.
1

a
.

(
s− 1 +

1

n− 1
− a
)−1

+ 2.

By simple calculations, we see that

s− 1 +
1

n− 1
≥ 2p− 1 +

1

n− 1

>
2n−2n−1

1 +
√

1− n−2
2
√
n−1

− 1 +
1

n− 1
=

(n−2)2

2(n−1)
3
2(

1 +
√

1− n−2
2
√
n−1

)2 .
Choosing a = 1

2

(
s− 1 + 1

n−1

)
, and note that n ≥ 3, so

s− 1 +
1

n− 1
− a >

(n−2)2

4(n−1)
3
2(

1 +
√

1− n−2
2
√
n−1

)2 > 1

16n2
.

Therefore, for such constant a, we have

A < 8n2s2 and B < 128n4s2 + 2.

Since

s ≥ 2p >
2n−2n−1

1 +
√

1− n−2
2
√
n−1

>
n− 2

n− 1
,

we infer n4s2 > 2. In particular, A < 129n4s2 and B < 129n4s2.
Using Sobolev inequality and (9), we have

C−1s

(∫
Br(o)

(f |ω| s2 )
2n
n−2

)n−2
n

≤
∫
Br(o)

|∇(f |ω| s2 )|2 + (H2 + 1)(f |ω| s2 )2

≤
∫
Br(o)

((AT +H2 + 1)f2 +B|∇f |2)|ω|s.

For simplicity, we write

(10)

(∫
Br(o)

(f |ω| s2 )
2n
n−2

)n−2
n

≤ 129n4s2Cs

∫
Br(o)

(Gf2 + |∇f |2)|ω|s,

where G = T +H2 + 1.

Given an integer k ≥ 0, we set sk = 2pnk

(n−2)k and ηk = R + 1 + 1
2k

. Take

a function fk ∈ C∞0 (Bηk(o)) satisfying: 0 ≤ fk ≤ 1, fk = 1 in Bηk+1
(o) and
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|∇fk| ≤ 2k+3. Using (10) with s = sk and f = fk, we obtain(∫
Bηk+1

(o)

|ω|sk+1

) 1
sk+1

≤ (129n4s2kCs)
1
sk

(∫
Bηk (o)

(4k+3 +G)|ω|sk
) 1
sk

≤ (129n4s2kCs(4
k+3+ sup

BR+2(o)

G))
1
sk

(∫
Bηk (o)

|ω|sk
) 1
sk

≤ (sk)
2
sk (4k+k0)

1
sk

(∫
Bηk (o)

|ω|sk
) 1
sk

,

where k0 is an integer such that 129n4Cs(4
3 + 1

4k
sup

BR+2(o)

G) ≤ 4k0 . By recur-

rence, this implies

||ω||Lsk+1 (B
R+1+ 1

2k+1
(o)) ≤

k∏
l=0

s
2
sl

l 4
l
sl 4

k0
sl ||ω||L2p(BR+2(o)).

Notice that s
2
sl

l , 4
l
sl ≤ Clc

l

, and 4
k0
sl ≤ Cdc

l

, where c = n−2
n and C, d are

suitable positive constants. Thus,
∞∏
l=0

s
1
sl

l 4
l
sl 4

k0
sl ≤ C

∑
l

cl(l+d)
≤ D,

where D > 0 depends only on n and sup
B1(x)

G. Taking k →∞, we obtain

(11) ||ω||L∞(BR+1(o)) ≤ D||ω||L2p(BR+2(o)).

Now, take y ∈ B̄R+1(o) so that supBR+1(o) |ω|
2p = |ω(y)|2p. Since B1(y) ⊂

BR+2(o), using (11), we obtain

sup
BR+1(o)

|ω|2p ≤ D||ω||L2p(B1(o)) ≤ D||ω||L2p(BR+2(o))

for some positive number D. Together with (7) this yields

(12) sup
BR+1(o)

|ω|2p ≤ E||ω||L2p(BR+1(o))

for some positive constant E.
To prove that dimH1(L2p(M)) < ∞, let us consider any finite dimensional

subspace K ⊂ H1(L2p(M)). It suffices to show that the dimension of K is
bounded above by some constant that is independent of K. According to
Lemma 3.1, we can see that there exists an L2p harmonic 1-form ω ∈ K such
that

(dimK)min{1,p}
∫
BR+1(o)

|ω|2p

≤ V ol(BR+1(o)) min{n,dimK}min{1,p}. sup
BR+1(o)

|ω|2p.
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From (12), it follows that

(dimK)min{1,p} ≤ F

 ∫
BR+1(o)

|ω|2p


1
2p−1

for some positive constant F . This implies that dimK is bounded by a fixed
constant. Because K is an arbitrary subspace of finite dimension, we obtain
the desired conclusion. �

Remark 3.4. Note that since 1
p(n−1) + p−1

p may not positive, we can not use

the argument as in [6] (Lemma 2.1) in our proof. Therefore, we need to use
the Moser iteration to conclude that

||ω||L∞(BR+1(o)) ≤ D||ω||L2p(BR+2(o)).

We note that if the hypersurface is δ-stable for some 0 < δ < 1, then Dung
and Seo proved a vanishing result for Lp harmonic 1 forms with the same value
of p in [7]. When H = 0, namely the manifold is minimal, we can improve the
bounds of p and n as in the statement of Theorem 1.2. Now, we will give a
proof of this theorem.

Proof of Theorem 1.2. Since M has a finite index, as in the proof of Theorem
3.3, we can assume that there is a ball BR(o) such that M has the strong stable
inequality on M \BR(o), that means∫

M\BR(o)

f2|ω|2pS ≤
∫
M\BR(o)

|∇(f |ω|p)|2

for any smooth function f ∈ C∞0 (M \ BR(o)). We use the same arguments of
Theorem 3.3, then the inequality (4) becomes[

a+ (1 + c)
p(n− 1)

n

] ∫
M\BR(o)

|ω|2p|∇f |2

≥
[
−1

a
+

2p− 1

p
+

1

p(n− 1)
− p(n− 1)

n

(
1 +

1

c

)]∫
M\BR(o)

f2|∇|ω|p|2.

By the assumption on the range of p, we see that

2p− 1

p
+

1

p(n− 1)
− p(n− 1)

n
> 0.

Hence, we can choose a and c large enough such that

−1

a
+

2p− 1

p
+

1

p(n− 1)
− p(n− 1)

n

(
1 +

1

c

)
> 0.

Therefore, we can conclude that there exist positive constants A,B,C such
that

A

∫
M\BR(o)

|ω|2p|∇f |2 ≥ B
∫
M\BR(o)

f2|∇|ω|p|2 + C

∫
M\BR(o)

f2|ω|2p.
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The rest of the proof now is similar with the proof of Theorem 3.3, we omit
the details. �

We remark that our results also hold true for submanifolds of higher dimen-
sion. In fact, if the manifold M is a submanifolds of Rn+m and M satisfies
a super stable inequality then Theorems 1.1-1.2 are still valid. Moreover, the
proof of such results in this setting are the same with our proof here. The in-
terested readers are referred to [1,16,21] for further discussion on super stable
manifolds.
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