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HYPERSURFACES IN THE UNIT SPHERE
WITH SOME CURVATURE CONDITIONS

JOONSANG PARK

Let M be a minimally immersed closed hypersurface in S**! I the
second fundamental form and S = ||I]|2. It is well known that if 0 < S <
n, then § = 0 or § = n and totally geodesic hyperspheres and Clifford
tori are the only possible minimal hypersurfaces with S = 0or S = n ([6],
2]). From these results, Chern suggested some questions on the study of
compact minimal hypersurfaces on the sphere with S =constant: what
are the next possible values of S to n, and does the value S determine the
minimal hypersurface up to a rigid motion in the ambient sphere? By
the way, S is defined extrinsically but, in fact, it is an intrinsic invariant
for the minimal hypersurfaces, ie., S = n(n - 1) — R, where R is the
scalar curvature of M. Some partial answers have been obtained for
dim M = 3: Assuming M?® C $* is closed and minimal with S =constant,
de Almeida and Brito [1] proved that if R > 0 (or equivalently S < 6),
then S = 0,3 or 6, Peng and Terng ([5]) proved that if M has 3 distinct
principal curvatures, then S = 6, and in [3] Chang showed that if there
exists a point which has two distinct principal curvatures, then S =
3. Hence the problem for dim M = 3 is completely done. For higher
dimensional cases, not much has been known and these problems seem
to be very hard without imposing some more conditions on M.

Nice examples for this problem are isoparametric hypersurfaces in
S"*!. A hypersurface is called isoparametric if all the principal curva-
tures are constants. It is well known that given an isoparametric hyper-
surface M in S"*!, there exists a minimal 1soparametric hypersurface
parallel to M. In [4], Peng and Terng showed that if M is a minimal
isoparametric hypersurface in §**! with p distinct principal curvatures,
then S = (p — 1)n and hence S = 0,n,2n, 3n or 5n.

Received April 1, 1994,
Partially supported by Basic Science Research Institute.



642 Joonsang Park

In the following, we will put a condition on the principal curvatures
that their means are constant up to certain order to find possible values

of S.

THEOREM. Suppose M* is a closed hypersurface in 8¢ with 4 distinct
principal curvatures. Let A be the shape operator of M and let R be
the scalar curvature. If tr A* = ¢; are constants (+ <£3)and R > 0,
then tr A* is constant and R = 0 . Therefore, M is isoparametric in S°.
Moreover, if M is minimal, then S = 12.

We will prove this theorem through several lemmas. Let f = ;11- tr A*
and let dv be the volume form on M. Choose an orthonormal frame field
ei, (1 < 4) and its coframe field w; such that

Ae,- = /\,‘6,‘,
(1) {

wy Awg Aws Awy =dv

where A; < A; < A3 < A4 are the principal curvatures of M.
The curvature form w;; corresponding to the Levi-Civita connection
V and the Christoffel symbol ;i are defined as follows:

Ve,- = Zwij ® €5,
J
Wij = Z'}'i]’kwk'
k
Define a 3-form 1 by

Y= (-1D)w; Al

i<j
where 0;; = wy A---D; A+~ ©; - - - Awy. This form is well-defined globally
if we keep the rule (1). For, suppose w! satisfies (1) and wi;, 0i;,9" are
defined by w;]. From dv = w} Aw} A wj Aw}, it suffices to prove

wi; AL = wij ABi;

for w!=-—w; i=12, w;zwj, J > 2.
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It 1s easy to show that
, —Wij if 1=1,2and j > 2,
Wr: =
w;;  otherwise,

. {—9,'1' 1fZ‘—‘1,23.I1d]>2,
6;; otherwise.
Hence ¢’ = ¢.

LEMMA 1.

1
dy = 5Ralv + Z Z(—”rkmm + VkijVeji)dv.

k 1<)
Proof.

dl/) = Z(_l)H_jdwij A 91’]’ + Z(“l)i+j+IWiJ' A da,‘j
i<y it
=0 +0’2 .

For o1, use the curvature equations

dw;j = Zwik Awij — Sy,
k

1 .
where §;; = 3 Z Rijkiwx A w; is the curvature form. Then
k#l

643

o1 = Z Z(_l)i+jwik Awij A 8ij + Z(—l)i+j+lRijijw,' Awj A b;j

k i<y 1<y
" 1
= ZZ(—l)H-]wik /\wk]- A 9,']' + §Rdv
k i<y

since R = Z R;ji; and w; Awj A 0;; = (_.1)i+j+1dv_
#)
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For o,, use the structure equations dw; = Zw,’j A wj to calculate

J
df;;. Then it is easy to obtain

09 = 222(—1)i+i+1w,‘k A wk]- A 9,;1'.
k

i<y
Hence
1 it
d¢ = ERdv - ZZ(—].) +]w,-k /\wk]' A 9,']‘
k 1<y
1 .
= §Rdv - Z Z(—l)’“ Z'nknkjmwz A wm A By
k 1<y l,m
1 it
= ;Rdv - >, Z(—l) T (Fikivkiiwi A wj + YikgYhjiws A wi) A Bij
k 1<)
1
= §Rdv + z Z(—’Ykiﬁkjj + Vkij Vhji)dv
k1<)
since 7k = —7;ix and (=1 w; Aw; A B, = du.

Now, define h;; and h;;x by

hij = Aidij,
VA= Z h,‘jkwk Rw; ®e;.
1,7,k

It is well known that h;;x is symmetric in ¢, j, k and

(2) 3 hijewr = dhi; + Y (hmjwmi + himwm;).
k m

Let dX; = Z Airwk. Then by (2), we have
k

Aik = hiik,
(3) hijk

’yijkzr_"-)‘—; if 275]
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LEMMA 2.
a = Z Z’Ykiﬂkji =0.

k i<y

Proof. By (3),

2a= ) Yinsi= Y. (O — A Uf\k—A‘)

kA kefints
_ (Aj — A)RZ,
k#i# (A = A)(A5 = M)Ak = Ai)
—_ Z h?]k
- i<j<k (’\l - ’\])(/\J - /\k)(/\k — )\,)
{202 = X))+ 200 = A;) +2(\ — Ap)}
=0.

From tr A’ =¢;, 1 <3 and f = %trA4, we have

1 1 1 1 d 0
(a) Mo A Ml [y 0
o A A )| dhs 0
ANoa AL ) \da, df
Let
df = Zf,w,, y=TIv =2, wm= I u-2.
1<j i<j
(i,j#k)
. LEMMA 3.
S Y iy = X R
1Ykjj = .
koi<y ki< )‘k_’\)’\k_’\)’y
Proof. By (3),
heii ki Aik

At VI W Vi S W

645
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If we solve (4) for A, then Lemma follows from

:Yifk
Aip = (=1)——.
= (-1) "

As a consequence of Lemma 3, we see that

_ 1 ( 1)z+1+ YiYi f
(5) dw_—Rdv+2k: > TP WEve '7ka’

(1) +lyy;
Br = > 0.
2 B0 - 1)
(¢,5%#k)
Proof.
8, = Y273 Y274 N Y3Y4

Gz =) =2) (e —A)a = M)
Y2 (/\4 — /\1)’73 - (/\3 - f\1)74
Az—A1 (A= A)(Aa = A1)
()\4 = 21)2 (A = A2) = (s = M) (A3 = A2)
(A3 = An)(As = A1)

(A3 = A1)(Aa — A1)

>

> 0.

By = — 7173 + Y174 + Y374
(Az = A)(A2 = A3) (2 = A2 = A1) (A2 — As)(Az — M)
S (A — A2)ys — (A3 = Az)a

Ay — A (A3 — A2)(As — A2)
()\4*>\2)2()\4 M) — (A3 = X2)*(As = A1)
(A3 — A2)(Ag — A2)

> 0.
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By = Y172 + Y174 _ Y274
3 (AS - Al )(AS - A?) (A3 - )‘1)(/\3 - A4) (A3 - /\2)(/\3 — ’\4)
S (A3 =A)v2— (A3 — )\2)71
Ag— A3 (A3 — A2)(Az — Ap)
()\3 — A1) (A = M) = (A — A2)?(Ad — Ao)
(Az = A2)(Az — A1)

> 0.

By = Y172 _ Y173 n Y273
T =AM —A2) (e =A)0a = As) T (= A2)( = As)

3 (A=A — (A= da)n

S VIS VR VS W TG by
(,\4_,\)()\3_,\)_(,\4_,\2) (A3 — A2)

- (A = A2)(As = A1)

> 0.

Proof of Theorem. Integrate (5) on M:

1 f2
o:/d¢:§/Rdv+/Zﬁk:rgdv.
M M Mok

Since R > 0 and A% > 0, we have R = 0 and fy = 0 Vk, i.e., df =0 and
hence f = itr A% is a constant.
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