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LAPLACE-BELTRAMI MINIMALITY OF TRANSLATION

HYPERSURFACES IN E4

Ahmet Kazan∗ and Mustafa Altın

Abstract. In the present paper, we study translation hypersurfaces in
E4. In this context, firstly we obtain first, second and third Laplace-

Beltrami (LBI, LBII and LBIII) operators of the translation hypersurfaces

in E4. By solving second and third order nonlinear ordinary differential
equations, we prove theorems that contain LBI-minimal, LBII-minimal

and LBIII-minimal translation hypersurfaces in E4.

1. General Information and Basic Concepts

The Laplacian is formed in differential equations that define a lot of physical
phenomena like quantum mechanics, the diffusion equation for fluid flow and
heat, electric potential, gravitational potential, and wave propagation. Using
the Laplace equation, the Laplace operator naturally occurs in the mathe-
matical definition of equilibrium in the physical theory of diffusion. Also, the
Laplacian indicates the flux density of a function’s gradient flow. For example,
the proportionality of chemical concentration at a point to Laplacian can be
thought of as the net velocity at which a chemical dissolved in a liquid moves
away from a point or towards a point, and this equation obtained when con-
sidered symbolically is the diffusion equation. As it is in a sense confirmed by
the diffusion equation, the Laplace operator itself has a physical interpretation
for out-of-equilibrium diffusion to the extent that a point represents a chemical
concentration source or collapse. Another reason why Laplacian is useful in
physics is that solutions for ∆f = 0 in the U region make Dirichlet energy

functional stationary: E(f) = 1
2

∫
U

∥∇f∥2 dx.

Furthermore, lots of geometry processing applications (for instance, includ-
ing mesh filtering, parameterization, pose transfer, segmentation, reconstruc-
tion, re-meshing, compression, simulation, and interpolation via barycentric co-
ordinates) can be characterized by discrete Laplace operators on triangular sur-
face meshes ([26], [68], [72], [81]). Structural properties of discrete Laplacians
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such as symmetry, sparsity, linear precision, positivity, convergence require-
ments that are motivated by an attempt to keep properties of the continuous
case can be used in many application areas. In [75], an important theoretical
limitation ”discrete Laplacians cannot satisfy all natural properties; retroac-
tively, this explains the diversity of existing discrete Laplace operators” has
been proved with the aid of an old theorem stated by Cremona and Maxwell in
[22] and [46]. Also, the behaviour of nodal lines for eigenfunctions of Laplacians
has been first investigated by E. F. Chladni, a German physicist ([17], [74]).
In [78]-[80], S. T. Yau has considered questions about the number and the dis-
tribution of critical points of eigenfunctions of the Laplacian on Riemannian
manifolds. An overview of some new and old results on geometric properties
of eigenfunctions of Laplacians on Riemannian manifolds has been given and
some properties of nodal sets and critical points, the number of nodal domains,
and asymptotic properties of eigenfunctions in the high-energy limit have been
discussed in [35].

As it is known that, Laplace-Beltrami (LB) operator that defined on a Rie-
mannian manifold is a generalization of Laplacian and LB operator plays a
central role in many areas, such as image processing (see [14], [41], [58], [76]),
signal processing (see [73]), surface processing (see [12], [20], [23], [48], [60],
[61]), and the study of geometric partial differential equations (PDE) (see [14],
[47], [55], [58]). For instance, the mathematical formulation of the mean curva-
ture flow, surface diffusion flow ([47]) and Willmore flow (see [66]) etc. involves
the first and second order LB operators. Also, LB operators are for solving
geometric partial differential equations, such as numerical simulation of vari-
ous geometric flows (mean curvature flow, surface diffusion flow, Willmore flow
etc.), surface smoothing, surface construction and surface image processing.
Also, the convergence property of the discrete LB operators is the foundation
of convergence analysis of the numerical simulation process of some geomet-
ric partial differential equations which involve the operator. In [77], several
simple discretization schemes of LB operators over triangulated surfaces have
been proposed. Convergence results for these discrete LB operators have been
established under various conditions. Numerical results that support the theo-
retical analysis have been given. Application examples of the proposed discrete
LB operators in surface processing and modelling have also been presented.

On the other hand, lots of spectral methods have been used recently in the
computing science areas such as graph theory, computer vision, machine learn-
ing, visualization, graph drawing, high performance computing, and computer
graphics ([29]-[31]). The main purpose of spectral graph theory is to derive
relationships between the eigenvalues of the Laplacian or adjacency matrices of
a graph and various fundamental properties of the graph, e.g., its diameter and
connectivity [18]. It has long been known that the graph Laplacian can be seen
as a combinatorial version of the LB operator from Riemannian geometry [49].
Thus the interplay between spectral Riemannian geometry [16] and spectral
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graph theory has also been a subject of study [18]. In this context, spectral
methods for mesh processing and analysis have been examined in [82].

Furthermore, since the LB operator completely specifies the behavior of dif-
fusion processes, it can be seen as a generalization of the analysis of spectral
dimensional and by analyzing the eigenvectors and eigenvalues of the LB op-
erator, a novel set of observables for CDT configurations, based on spectral
method has been investigated in [21]. In this context, the authors want to em-
phasis that, even if CDT configurations are defined by means of triangulations,
the ultimate goal of the approach is to perform a continuum limit in order to
obtain results describing continuum physics of quantum gravity. Here we must
note that, spectral methods have many application areas in different sciences
such as shape analysis in computer aided design and medical physics. The
use of the surface-based LB and the volumetric Laplace eigenvalues and eigen-
functions as shape descriptors for the analysis and comparison of shapes has
been introduced and it has been stated that these spectral measures are isom-
etry invariant and therefore allow for shape comparisons with minimal shape
pre-processing in [53]. [54] introduces a method to extract ‘Shape-DNA’, a
numerical fingerprint or signature, of any 2D or 3D manifold by taking the
eigenvalues (i.e. the spectrum) of its LB operator. A feature that distinguishes
different stages in many different fields of physics is the presence or absence of a
gap in the spectrum: think for example of Quantum Chromodynamics, where
the absence/presence of a gap in the spectrum of the Dirac operator distin-
guishes between the phases with spontaneously broken/unbroken chiral sym-
metry [21]. Besides, in [57], a deformation invariant representation of surfaces,
the GPS embedding, is introduced using the eigenvalues and eigenfunctions of
the LB differential operator.

Also, the LB operator is approximated by the weighted Laplacian of the
adjacency graph with weights chosen appropriately. The key role of the LB
operator in the heat equation enables us to use the heat kernel to choose the
weight decay function in a principled manner. Thus, the embedding maps
for the data approximate the eigenmaps of the LB operator, which are maps
intrinsically defined on the entire manifold [13].

As another application areas of Laplacian and LB operator, the graph Lapla-
cian has been widely used for different clustering and partition problems ([52],
[64], [65]). Although the connections between the LB operator and the graph
Laplacian are well known to geometers and specialists in spectral graph the-
ory [18], [19], so far we are not aware of any application to dimensionality
reduction or data representation. We note, however, recent work on using dif-
fusion kernels on graphs and other discrete structures [42]. In [13], the problem
of constructing a representation for data lying on a low-dimensional manifold
embedded in a high-dimensional space has been considered. Drawing on the
correspondence between the graph Laplacian, the LB operator on the manifold,
and the connections to the heat equation, we propose a geometrically motivated
algorithm for representing the high-dimensional data. In [25], a finite element



362 Ahmet Kazan and Mustafa Altın

method for elliptic differential equations on arbitrary two-dimensional surfaces
has been developed and the most important point in this method is that the
LB operator in terms of the tangential gradient has been written down.

Also, 3-dimensional space (3D) can be thought of as the space used to
describe the dimensions or positions of objects in the simplest sense. A 4-
dimensional space (4D) can be thought as a geometrical extension of the 3D.
Jean le Rond d’Alembert has added a fourth dimension to 3D space firstly in his
article titled “Dimensions” published in 1754, then J-L. Lagrange has developed
this space and this concept of 4-dimensional space has been fully defined by
B. Riemann about 100 years later. The notion of 4D space has become more
popular after Charles Howard Hinton’s paper entitled ”What is the Fourth
Dimension” in 1880. Thus, spaces more than 3-dimensions have become one
of the fundamental concepts in expressing modern physics and mathematics.
Although the 4-dimensional Minkowski space has a more complex structure
than the 4-dimensional Euclidean space, Einstein’s concept of spacetime also
has begun to be used. For more details about 4D, we refer to [1], [15], [27],
[33], [34], [56], [59], and etc.

On the other hand, translation surfaces arise naturally in the theory of
billiards, physics, dynamics and Teichmüller theory.

In 1991, the notion of a translation hypersurface in the Euclidean space
En+1 is given as the graph of a

f : Rn −→ R, (x1, x2, ..., xn) 7−→
n∑

i=1

fi(xi),

where fi, i = 1, 2, ..., n, are smooth functions depending on one variable [24].
After Dillen has defined this notion, lots of studies about translation (hy-
per)surfaces have been done by mathematicians in Euclidean, Minkowskian,
Galilean and pseudo-Galilean spaces. For instance, some results for the mean
and Gauss–Kronecker curvatures of generalized translation graphs to be con-
stant have been obtained and a complete description of all translation hyper-
surfaces with constant r-curvature Sr in Euclidean space have been given in
[43] and [44], respectively. Minimal translation graphs, by imposing natural
conditions on two independent functions ψ and φ, like eikonality, minimality
and harmonicity have been studied in [51]. In [10], translation hypersurfaces
(Mn, f) whose Allen’s matrices of f are singular in Rn+1 have been classified
completely; the translation hypersurfaces satisfying the Tzitzeica condition are
only hyperplanes in Rn+1 has been stated and an application of such hypersur-
faces to production functions in microeconomics has been given. In [50], the
authors have studied on hypersurfaces in Euclidean 4-space E4 defined as the
sum of a curve and a surface with zero mean curvature and given a classifica-
tion of these hypersurfaces. The theorem of ”A translation surface is flat in E4

if and only if it is either a hyperplane or a hypercylinder” has been proved and
a necessary and sufficient condition for a quadratic triangular Bezier surface in
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E4 to become a translation surface has been given in [8]. A construction and
classification of translation surfaces with zero mean curvature in E3 have been
given in [32].

Furthermore, for more studies about translation surfaces or different types of
(hyper)surfaces in different spaces such as Euclidean, Minkowski and Isotropic
spaces, we refer to [2]-[7], [9], [11], [36]-[40], [45], [62], [67], [69]-[71], and etc.

Since we will study translation hypersurface in E4 and give some character-
izations about these hypersurfaces in this paper, let us recall some fundamental
notions for E4.

Let −→u = (u1, u2, u3, u4),
−→v = (v1, v2, v3, v4) and −→w = (w1, w2, w3, w4) be

three vectors in E4. The inner product, norm of a vector and vector product
are given by

(1) ⟨−→u ,−→v ⟩ = u1v1 + u2v2 + u3v3 + u4v4,

∥−→u ∥ =
√
⟨−→u ,−→u ⟩

and

(2) −→u ×−→v ×−→w = det


e1 e2 e3 e4
u1 u2 u3 u4
v1 v2 v3 v4
w1 w2 w3 w4

 ,
respectively.

If

Γ : E3 −→ E4,

Γ(x1, x2, x3) = (Γ1(x1, x2, x3),Γ2(x1, x2, x3),Γ3(x1, x2, x3),Γ4(x1, x2, x3))

(3)

is a hypersurface in E4, then the unit normal vector field, the matrix forms of
the first and second fundamental forms are

(4) NΓ =
Γx1 × Γx2 × Γx3

∥Γx1
× Γx2

× Γx3
∥
,

(5) [gij ] =

 g11 g12 g13
g21 g22 g23
g31 g32 g33


and

(6) [hij ] =

 h11 h12 h13
h21 h22 h23
h31 h32 h33

 ,
respectively. Here gij =

〈
Γxi ,Γxj

〉
, hij =

〈
Γxixj , NΓ

〉
, Γxi = ∂Γ(x1,x2,x3)

∂xi
,

Γxixj
= ∂2Γ(x1,x2,x3)

∂xixj
, i, j ∈ {1, 2, 3}.
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Also, the shape operator of the hypersurface (3) is

(7) S = [gij ]
−1.[hij ],

where [gij ]
−1 is the inverse matrix of [gij ].

Using (4)-(7), the Gaussian and mean curvatures of a hypersurface in E4

are defined by

(8) K = det(S) =
det[hij ]

det[gij ]

and

(9) 3H = tr(S),

respectively [28].
Moreover, the inverse of an arbitrary matrix

(10) [Aij ] =

 A11 A12 A13

A21 A22 A23

A31 A32 A33


is
(11)

[Aij ] =
1

det[Aij ]

 A22A33 −A23A32 A13A32 −A12A33 A12A23 −A13A22

A23A31 −A21A33 A11A33 −A13A31 A13A21 −A11A23

A21A32 −A22A31 A12A31 −A11A32 A11A22 −A12A21

 ,
where

det[Aij ] =−A13A22A31 +A12A23A31 +A13A21A32 −A11A23A32

−A12A21A33 +A11A22A33.(12)

2. Translation Hypersurfaces in E4

In this section, we give the Gaussian and mean curvatures of translation
hypersurfaces in E4.

Let M be an immersion in E4 given by

Γ : R3 −→ R4

(x, y, z) −→ (x, y, z, f(x) + g(y) + h(z)),(13)

where f, g and h are smooth functions. Then M is called a translation hyper-
surface in E4.

From (4) and (13) the unit normal vector field of Γ in E4 is

(14) NΓ =
1

W
(f ′(x), g′(y), h′(z),−1) ,

where W =
√
1 + f ′2(x) + g′2(y) + h′2(z).
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Also, from (5), (6) and (14), the first fundamental form, second fundamental
form and their determinants are obtained by

(15) [gij ] =

 1 + f ′2(x) f ′(x)g′(y) f ′(x)h′(z)
f ′(x)g′(y) 1 + g′2(y) g′(y)h′(z)
f ′(x)h′(z) g′(y)h′(z) 1 + h′2(z)

 ,

(16) [hij ] =
1

W

 −f ′′(x) 0 0
0 −g′′(y) 0
0 0 −h′′(z)

 ,
(17) det[gij ] =W 2

and

(18) det[hij ] = −f
′′(x)g′′(y)h′′(z)

W 3
,

respectively.

So, from (8), (17) and (18), we have

Theorem 2.1. The Gaussian curvature of the translation hypersurface (13)
in Euclidean 4-space is

(19) K = −f
′′(x)g′′(y)h′′(z)

W 5
.

Also, the inverse of the first fundamental form is

(20) [gij ] =

 g11 g12 g13

g21 g22 g23

g31 g32 g33

 ,
where

g11 =
1 + g′2(y) + h′2(z)

W 2
, g22 =

1 + f ′2(x) + h′2(z)

W 2
, g33 =

1 + f ′2(x) + g′2(y)

W 2
,

g12 = g21 = −f
′(x)g′(y)

W 2
, g13 = g31 = −f

′(x)h′(z)

W 2
, g23 = g32 = −g

′(y)h′(z)

W 2
.

So, using (16) and (20) in (7), the shape operator of the translation hypersurface
(13) is obtained by

S =

1

W 3

[
−

(
1 + g′2(y) + h′2(z)

)
f ′′(x) f ′(x)g′(y)g′′(y) f ′(x)h′(z)h′′(z)

f ′(x)g′(y)f ′′(x) −
(
1 + f ′2(x) + h′2(z)

)
g′′(y) g′(y)h′(z)h′′(z)

f ′(x)h′(z)f ′′(x) g′(y)h′(z)g′′(y) −
(
1 + f ′2(x) + g′2(y)

)
h′′(z)

]
.

(21)

Hence from (9) and (21), we get
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Theorem 2.2. The mean curvature of the translation hypersurface (13) in
Euclidean 4-space is

(22) H = −

( (
1 + g′2(y) + h′2(z)

)
f ′′(x) +

(
1 + f ′2(x) + h′2(z)

)
g′′(y)

+
(
1 + f ′2(x) + g′2(y)

)
h′′(z)

)
3W 3

.

Here, we must note that the curvatures of translation hypersurfaces in Eu-
clidean n-space has been obtained in [24] and [63].

3. Laplace-Beltrami Operators of Translation Hypersurfaces in E4

In this section, we obtain the first, second and third Laplace-Beltrami (LBI,
LBII and LBIII) operators of the translation hypersurface (13) in E4 and prove
theorems that contain LBI-minimality, LBII-minimality and LBIII-minimality
of translation hypersurfaces in E4.

3.1. LBI-Minimal Translation Hypersurfaces in E4

The first LB (LBI) operator of a smooth function φ = φ(x1, x2, x3)|D,
(D ⊂ R3) of class C3 with respect to (or wrt) the first fundamental form
of a hypersurface is defined as follows:

(23) ∆Iφ =
1√

det[gij ]

3∑
i,j=1

∂

∂xi

(√
det[gij ]g

ij ∂φ

∂xj

)
.

Thus, using (11), (12) and (23), the LBI operator of φ = φ(x, y, z) can be
written as
(24)

∆Iφ =
1√

det[gij ]



∂
∂x

(
(g22g33−g2

23)φx+(g13g23−g12g33)φy+(g12g23−g13g22)φz√
det[gij ]

)
+ ∂

∂y

(
(g13g23−g12g33)φx+(g11g33−g2

13)φy+(g12g13−g11g23)φz√
det[gij ]

)
+ ∂

∂z

(
(g12g23−g13g22)φx+(g12g13−g11g23)φy+(g11g22−g2

12)φz√
det[gij ]

)


.

Here, if we denote the LBI operator of the translation hypersurface (13) in E4

as ∆IΓ, then from (17) and (24), we have

∆IΓ = ((∆IΓ)1, (∆
IΓ)2, (∆

IΓ)3, (∆
IΓ)4)

=
1

W

(
(U1)x + (V1)y + (W1)z, (U2)x + (V2)y + (W2)z,
(U3)x + (V3)y + (W3)z, (U4)x + (V4)y + (W4)z

)
,(25)
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where
(26)

Ui =
1
W

{
(g22g33 − g223)(Γi)x + (g13g23 − g12g33)(Γi)y + (g12g23 − g13g22)(Γi)z

}
,

Vi =
1
W

{
(g13g23 − g12g33)(Γi)x + (g11g33 − g213)(Γi)y + (g12g13 − g11g23)(Γi)z

}
,

Wi =
1
W

{
(g12g23 − g13g22)(Γi)x + (g12g13 − g11g23)(Γi)y + (g11g22 − g212)(Γi)z

}
.

Now, using (13), (15) and (17), we have

(27)



U1 = 1+g′2+h′2

W , U2 = − f ′g′

W , U3 = − f ′h′

W , U4 = f ′

W ,

V1 = − f ′g′

W , V2 = 1+f ′2+h′2

W , V3 = − g′h′

W , V4 = g′

W ,

W1 = − f ′h′

W , W2 = − g′h′

W , W3 = 1+f ′2+g′2

W , W4 = h′

W .

So, using (27) in (25), the LBI operator of the translation hypersurface (13)
is obtained as follows:

Theorem 3.1. The LBI operator of the translation hypersurface (13) in
E4 is

(28) ∆IΓ = (−f ′Q,−g′Q,−h′Q,Q),

where Q = (1+g′2+h′2)f ′′+(1+f ′2+h′2)g′′+(1+f ′2+g′2)h′′

W 4 .

We say that a hypersurface Γ is called LBI-minimal, if it satisfies ∆IΓ = 0.
Thus, from Theorem 3.1, we can prove the following theorem:

Theorem 3.2. LBI-minimal translation hypersurfaces (13) in E4 can be
parametrized by

Γ(x, y, z) = (x, y, z, a1x+ a2y + a3z + d1) ,(29)

Γ(x, y, z) =

x, y, z, a4x+ c1 ln

cos
(√

1+(a4)2(y−c1c3)

c1

)
cos

(√
1+(a4)2(z+c1c2)

c1

)
+ d2

 ,(30)

Γ(x, y, z) =

x, y, z, a5y + c4 ln

cos
(√

1+(a5)2(x−c4c6)

c4

)
cos

(√
1+(a5)2(z+c4c5)

c4

)
+ d3

 ,(31)

Γ(x, y, z) =

x, y, z, a6z + c7 ln

cos
(√

1+(a6)2(x−c7c9)

c7

)
cos

(√
1+(a6)2(y+c7c8)

c7

)
+ d4

 ,(32)

where ai, ci, di are constants and ci ̸= 0.
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Proof. If the components of the LBI operator of the translation hypersurface
(13) in E4 is zero, then from (28) we have Q = 0, that is we get the following
second order nonlinear ordinary differential equation:

(33) (1 + g′2 + h′2)f ′′ + (1 + f ′2 + h′2)g′′ + (1 + f ′2 + g′2)h′′ = 0.

Here, let we solve the last equation according to the following cases:

Case 1. Let f ′′(x) = g′′(y) = h′′(z) = 0.
In this case, one can easily see that LBI-minimal translation hypersurface

is parametrized by (29).

Case 2. Let f ′′(x) = g′′(y) = 0 and h′′(z) ̸= 0.
If we take f(x) = m1x+n1 and g(y) = m2y+n2, where m1,m2, n1, n2 ∈ R,

then the equation (33) becomes

(34) (1 + (m1)
2 + (m2)

2)h′′(z) = 0.

Since 1 + (m1)
2 + (m2)

2 ̸= 0, it must be h′′(z) = 0 and this is a contradiction.
So, there aren’t any I-minimal translation hypersurfaces in this case.

For the cases of f ′′(x) = h′′(z) = 0, g′′(y) ̸= 0 and g′′(y) = h′′(z) = 0,
f ′′(x) ̸= 0, we get similar contradictions. So, there aren’t any LBI-minimal
translation hypersurfaces for these cases, too.

Case 3. Let f ′′(x) = 0 and g′′(y) ̸= 0 ̸= h′′(z).
If we take f(x) = a4x+b1, where a4, b1 ∈ R, then the equation (33) becomes

(35) (1 + (a4)
2 + (h′(z))2)g′′(y) + (1 + (a4)

2 + (g′(y))2)h′′(z) = 0.

From g′′(y) ̸= 0 ̸= h′′(z) and (35) we get

(36)
(1 + (a4)

2 + (h′(z))2)

h′′(z)
= − (1 + (a4)

2 + (g′(y))2)

g′′(y)
.

Since y and z are independent variables, each side of the equation (36) must
be constant, i.e.

(37)
(1 + (a4)

2 + (h′(z))2)

h′′(z)
= − (1 + (a4)

2 + (g′(y))2)

g′′(y)
= c1, c1 ∈ R.

If we take c1 = 0 in (37), then there is no real solutions for g(y) and h(z).
If we solve the second order nonlinear ordinary differential equation (37) by

taking c1 ̸= 0, then we have

(38)


h(z) = b2 − c1 ln

[
cos

(√
1+(a4)2(z+c1c2)

c1

)]
,

g(y) = b3 + c1 ln

[
cos

(√
1+(a4)2(y−c1c3)

c1

)]
.

Taking b1 + b2 + b3 = d2 and using f(x) = a4x+ b1 and (38) in (13), we obtain
the LBI-minimal translation hypersurface as (30).
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With similar calculations for the cases of g′′(y) = 0, f ′′(x) ̸= 0 ̸= h′′(z) and
h′′(z) = 0, f ′′(x) ̸= 0 ̸= g′′(y), we get the LBI-minimal hypersurfaces as (31)
and (32), respectively.

Case 4. Let f ′′(x) ̸= 0, g′′(y) ̸= 0 and h′′(z) ̸= 0.
Differentiating (33) with respect to x and y, we get

(39) 2g′(y)g′′(y)f ′′′(x) + 2f ′(x)f ′′(x)g′′′(y) = 0.

Since f ′′(x) ̸= 0 ̸= g′′(y), from (39) we have

(40)
g′′′(y)

g′(y)g′′(y)
= − f ′′′(x)

f ′(x)f ′′(x)
.

Also, since x and y are independent variables, each side of the equation (40)
must be constant, i.e.

(41)
g′′′(y)

g′(y)g′′(y)
= − f ′′′(x)

f ′(x)f ′′(x)
= c8, c8 ∈ R.

Now, differentiating (33) with respect to x and z, since f ′′(x) ̸= 0 ̸= h′′′(z) we
have

(42)
h′′′(z)

h′(z)h′′(z)
= − f ′′′(x)

f ′(x)f ′′(x)
= c9, c9 ∈ R

and differentiating (33) with respect to y and z, since g′′(y) ̸= 0 ̸= h′′′(z) we
have

(43)
h′′′(z)

h′(z)h′′(z)
= − g′′′(y)

g′(y)g′′(y)
= c10, c10 ∈ R.

From (41)-(43), we get

(44) c8 = c9 = c10 = 0.

If we solve the equations (41)-(43) by considering (44), then we obtain that

(45)


f(x) = c11x

2 + c12x+ c13,

g(y) = c14y
2 + c15y + c16,

h(z) = c17z
2 + c18z + c19.

 , ci ∈ R, i = 11, 12, ..., 19.

Finally, putting (45) in (33), we get

0 = 4xc11(xc11 + c12)(c14 + c17) + 4zc17(zc17 + c18)(c11 + c14)

+ 4yc14(yc14 + c15)(c11 + c17) + (1 + (c12)
2 + (c15)

2)c17

+ (1 + (c12)
2 + (c18)

2)c14 + (1 + (c15)
2 + (c18)

2)c11

and from the last equation we have c11 = c14 = c17 = 0. From (45), this
contradicts with our assumption that f ′′(x) ̸= 0, g′′(y) ̸= 0 and h′′(z) ̸= 0. So,
there aren’t any LBI-minimal translation hypersurfaces for this case.
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Also it is known that, a hypersurface is minimal if and only if the first
Laplace-Beltrami operator of this hypersurface vanishes. So, for other versions
of the above proof (in En), one can see [24] or [63].

3.2. LBII-Minimal Translation Hypersurfaces in E4

The second LB (LBII) operator of the smooth function φ = φ(x1, x2, x3)|D,
(D ⊂ R3) with respect to the second fundamental form of a hypersurface is
defined as follows:

(46) ∆IIφ =
1√

det[hij ]

3∑
i,j=1

∂

∂xi

(√
det[hij ]h

ij ∂φ

∂xj

)
.

Thus, using (11), (12) and (46), the LBII operator φ = φ(x, y, z) can be written
as
(47)

∆IIφ =
1√

det[hij ]



∂
∂x

(
(h22h33−h2

23)φx+(h13h23−h12h33)φy+(h12h23−h13h22)φz√
det[hij ]

)
+ ∂

∂y

(
(h13h23−h12h33)φx+(h11h33−h2

13)φy+(h12h13−h11h23)φz√
det[hij ]

)
+ ∂

∂z

(
(h12h23−h13h22)φx+(h12h13−h11h23)φy+(h11h22−h2

12)φz√
det[hij ]

)


.

Here, if we denote the LBII operator of the translation hypersurface (13) in E4

as ∆IIΓ, then from (18) and (47), we have

∆IIΓ = ((∆IIΓ)1, (∆
IIΓ)2, (∆

IIΓ)3, (∆
IIΓ)4)

=
1√

det[hij ]

(
(U1)x + (V1)y + (W1)z, (U2)x + (V2)y + (W2)z,
(U3)x + (V3)y + (W3)z, (U4)x + (V4)y + (W4)z

)
,(48)

where
(49)

Ui =
1√

det[hij ]

{
(h22h33 − h2

23)(Γi)x + (h13h23 − h12h33)(Γi)y + (h12h23 − h13h22)(Γi)z
}
,

Vi =
1√

det[hij ]

{
(h13h23 − h12h33)(Γi)x + (h11h33 − h2

13)(Γi)y + (h12h13 − h11h23)(Γi)z
}
,

Wi =
1√

det[hij ]

{
(h12h23 − h13h22)(Γi)x + (h12h13 − h11h23)(Γi)y + (h11h22 − h2

12)(Γi)z
}
.
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Now, using (13), (16) and (18), we have
(50)

U1 = g′′(y)h′′(z)√
−f ′′(x)g′′(y)h′′(z)W

, U2 = 0, U3 = 0, U4 = f ′(x)g′′(y)h′′(z)√
−f ′′(x)g′′(y)h′′(z)W

,

V1 = 0, V2 = f ′′(x)h′′(z)√
−f ′′(x)g′′(y)h′′(z)W

, V3 = 0, V4 = g′(y)f ′′(x)h′′(z)√
−f ′′(x)g′′(y)h′′(z)W

,

W1 = 0, W2 = 0, W3 = f ′′(x)g′′(y)√
−f ′′(x)g′′(y)h′′(z)W

, W4 = h′(z)f ′′(x)g′′(y)√
−f ′′(x)g′′(y)h′′(z)W

.

So, using (50) in (48), the LBII operator of the translation hypersurface (13)
is obtained as follows:

Theorem 3.3. The LBII operator of the translation hypersurface (13) in
E4 is

(51) ∆IIΓ =

 f ′f ′′2+W 2f ′′′

2Wf ′′2 , g
′g′′2+W 2g′′′

2Wg′′2 , h
′h′′2+W 2h′′′

2Wh′′2 ,
1+5W 2

−2W + W
2

(
f ′f ′′′

f ′′2 + g′g′′′

g′′2 + h′h′′′

h′′2

)  .

We say that a hypersurface Γ is called LBII-minimal, if it satisfies ∆IIΓ = 0.
Thus, from Theorem 3.3, we can prove the following theorem:

Theorem 3.4. The translation hypersurface (13) is never LBII-minimal in
E4.

Proof. Let us suppose that the translation hypersurface (13) is LBII-minimal
in E4. Then, all components of ∆IIΓ obtained as (51) must be zero. For in-
stance, let the first component of (51) vanishes, i.e.

(52) f ′f ′′2 +W 2f ′′′ = 0.

Using W =
√
1 + f ′2(x) + g′2(y) + h′2(z) > 0 in the third order nonlinear

ordinary differential equation (52), eitherW is a function which doesn’t depend
on y and z, or f ′′′(x) = 0. If W doesn’t depend on y and z, then the functions
g(y) and h(z) must be linear. And if f ′′′(x) = 0, then from (52), we have
f ′f ′′2 = 0. Hence, from (51), these two statements are contradictions. So, the
proof completes. (If the other components of ∆IIΓ are zero, this proof can be
done similarly.)

3.3. LBIII-Minimal Translation Hypersurfaces in E4

The third LB (LBIII) operator of the smooth function φ = φ(x1, x2, x3)|D,
(D ⊂ R3) with respect to the third fundamental form of a hypersurface is
defined as follows:

(53) ∆IIIφ =
1√

det[mij ]

3∑
i,j=1

∂

∂xi

(√
det[mij ]m

ij ∂φ

∂xj

)
,

where [mij ] is the third fundamental form matrix and mij are the components
of inverse matrix [mij ]

−1. Here, the third fundamental form matrix, the inverse
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matrix and the determinant of the third fundamental form matrix of (13) are
obtained by

[mij ] =

 m11 m12 m13

m21 m22 m23

m31 m32 m33


(54)

=
1

W 4

 (1 + g′2 + h′2)f ′′2 −f ′g′f ′′g′′ −f ′h′f ′′h′′
−f ′g′f ′′g′′ (1 + f ′2 + h′2)g′′2 −g′h′g′′h′′
−f ′h′f ′′h′′ −g′h′g′′h′′ (1 + f ′2 + g′2)h′′2

 ,

(55) [mij ] =W 2


1+f ′2

f ′′2
f ′g′

f ′′g′′
f ′h′

f ′′h′′

f ′g′

f ′′g′′
1+g′2

g′′2
g′h′

g′′h′′

f ′h′

f ′′h′′
g′h′

g′′h′′
1+h′2

h′′2


and

(56) det[mij ] =
f ′′2g′′2h′′2

W 8
,

respectively. Here, mij =
〈
(NΓ)xi

, (NΓ)xj

〉
. Thus, using (11), (12) and (53)

the LBIII operator of φ = φ(x, y, z) can be written as

(57)

∆IIIφ =
1√

det[mij ]



∂
∂x

(
(m22m33−m2

23)φx+(m13m23−m12m33)φy+(m12m23−m13m22)φz√
det[mij ]

)
+ ∂

∂y

(
(m13m23−m12m33)φx+(m11m33−m2

13)φy+(m12m13−m11m23)φz√
det[mij ]

)
+ ∂

∂z

(
(m12m23−m13m22)φx+(m12m13−m11m23)φy+(m11m22−m2

12)φz√
det[mij ]

)


.

Here, if we denote the LBIII operator of the translation hypersurface (13)
in E4 as ∆IIIΓ, then from (13) and (57), we get

∆IIIΓ = ((∆IIIΓ)1, (∆
IIIΓ)2, (∆

IIIΓ)3, (∆
IIIΓ)4)

=
1√

det[mij ]

(
(U1)x + (V1)y + (W1)z, (U2)x + (V2)y + (W2)z,
(U3)x + (V3)y + (W3)z, (U4)x + (V4)y + (W4)z

)
,(58)

where
(59)

Ui =
1√

det[mij ]

(
(m22m33 −m2

23)(Γi)x + (m13m23 −m12m33)(Γi)y + (m12m23 −m13m22)(Γi)z
)
,

Vi =
1√

det[mij ]

(
(m13m23 −m12m33)(Γi)x + (m11m33 −m2

13)(Γi)y + (m12m13 −m11m23)(Γi)z
)
,

Wi =
1√

det[mij ]

(
(m12m23 −m13m22)(Γi)x + (m12m13 −m11m23)(Γi)y + (m11m22 −m2

12)(Γi)z
)
.
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Now, taking i = 1, 2, 3, 4 and using (13), (54), (56), we have

(60)



U1 = (1+f ′2)g′′h′′

W 2f ′′ , U2 = f ′g′h′′

W 2 ,

U3 = f ′h′g′′

W 2 , U4 =
f ′(h′2f ′′g′′+(g′2f ′′+(1+f ′2)g′′)h′′)

W 2f ′′ ;

V1 = f ′g′h′′

W 2 , V2 = (1+g′2)f ′′h′′

W 2g′′ ,

V3 = g′h′f ′′

W 2 , V4 =
g′(h′2f ′′g′′+(f ′2g′′+(1+g′2)f ′′)h′′)

W 2g′′ ;

W1 = f ′h′g′′

W 2 , W2 = g′h′f ′′

W 2 ,

W3 = (1+h′2)f ′′g′′

W 2h′′ , W4 =
h′(f ′2g′′h′′+(g′2h′′+(1+h′2)g′′)f ′′)

W 2h′′ .

Thus, using (60) in (58), we obtain the LBIII operator of the translation
hypersurface (13) as follows:

Theorem 3.5. The LBIII operator of the translation hypersurface (13) in
E4 is
(61)

∆IIIΓ =


W 2(2f ′f ′′2−f ′′′−f ′2f ′′′)

f ′′3 ,
W 2(2g′g′′2−g′′′−g′2g′′′)

g′′3 ,
W 2(2h′h′′2−h′′′−h′2h′′′)

h′′3 ,

W 2

f ′′3g′′3h′′3

 (
1 + 3f ′2

)
f ′′2g′′3h′′3 − f ′

(
1 + f ′2

)
g′′3h′′3f ′′′

−f ′′3
(

g′
(
1 + g′2

)
h′′3g′′′ −

(
1 + 3g′2

)
g′′2h′′3

+g′′3
(
h′
(
1 + h′2

)
h′′′ −

(
1 + 3h′2

)
h′′2
) )



 .

We say that a hypersurface Γ is called LBIII-minimal, if it satisfies ∆IIIΓ =
0. Thus, from Theorem 3.5, we can prove the following theorem:

Theorem 3.6. LBIII-minimal translation hypersurfaces (13) in E4 can be
parametrized by
(62)

Γ(x, y, z) =

(
x, y, z,

−
(

ln[cos(k1(x+k2))]
k1

+ ln[cos(k3(y+k4))]
k3

+ ln[cos(k5(z+k6))]
k5

)
+ k7

)
,

where k1 = −k3k5

k3+k5
, ki ∈ R.

Proof. Let us suppose that the translation hypersurface (13) is LBIII-minimal
in E4. Then all components of ∆IIIΓ obtained as (61) must be zero. So, for the
first three components of (61) to be zero, the following third order nonlinear
ordinary differential equations must hold:

2f ′f ′′2 − f ′′′ − f ′2f ′′′ = 0,(63)

2g′g′′2 − g′′′ − g′2g′′′ = 0,(64)

2h′h′′2 − h′′′ − h′2h′′′ = 0.(65)
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The solutions of the third order nonlinear ordinary differential equations (63)-
(65) are

f(x) = − ln[cos(k1(x+ k2))]

k1
+ k8,(66)

g(y) = − ln[cos(k3(y + k4))]

k3
+ k9,(67)

h(z) = − ln[cos(k5(z + k6))]

k5
+ k10,(68)

respectively. For the last component of (61) to be zero, it must be(
1 + 3f ′2

)
f ′′2g′′3h′′3 − f ′

(
1 + f ′2

)
g′′3h′′3f ′′′

− f ′′3
(

g′
(
1 + g′2

)
h′′3g′′′ −

(
1 + 3g′2

)
g′′2h′′3

+g′′3
(
h′
(
1 + h′2

)
h′′′ −

(
1 + 3h′2

)
h′′2
) ) = 0.(69)

If we use (66)-(68) in (69), then we have
(70)

k2
1k

2
3k

2
5 (k3k5 + k1k3 + k1k5) (sec(k1(x+ k2)) sec(k3(y + k4)) sec(k5(z + k6)))

6 = 0.

Here, one can easily see that the equation (70) holds for k3k5+k1(k3+k5) = 0.
And the proof completes for k7 = k8 + k9 + k10.

4. Conclusion and Future Work

As we have stated in the first section of this study, the Laplacian and also
LB operator is used in many application areas, such as physics (quantum me-
chanics, the diffusion equation for fluid flow and heat, electric potential, grav-
itational potential, and wave propagation); geometry processing applications
(mesh filtering, parameterization, pose transfer, segmentation, reconstruction,
re-meshing, compression, simulation, and interpolation via barycentric coor-
dinates); image processing, signal processing, surface processing; the study of
geometric partial differential equations; CDT configurations; Shape-DNA; a
numerical fingerprint or signature; different clustering and partition problems
and etc.

In addition, by expanding the surface examinations from 3D to 4D space,
more optimal results can be obtained in different applications using this geomet-
ric information. For example, images accepted as a surface in image processing
will be subjected to 4D surface analysis and will contribute to the solution of
different engineering problems such as fingerprint recognition, face recognition,
object detection and classification of radar images. With the help of derivative,
eigenvalue-eigenvector calculations, Gaussian and mean curvature calculations
and the calculation of the LB operator, which are widely used in these fields,
distinctive pixel behaviors in the image can be analyzed by moving them to 4D
instead of 3D. Thus, the negativities caused by the situations such as trans-
lation, rotation and illumination changes, which are frequently encountered in
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the images, will be eliminated and the change information of the neighboring
pixels will be obtained in a more detailed way in 4-dimensional form.

Also, in the near future LBI, LBII and LBIII operators can be handled for
different hypersurfaces in different four dimensional spaces, such as Lorentz-
Minkowski 4-space, Galilean 4-space or pseudo-Galilean 4-space. And we hope
that, this study will bring a new viewpoint and break fresh ground to scientists
from different areas who are dealing with the application areas of Laplacian or
LB operator.
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