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BIHARMONIC HYPERSURFACES WITH RECURRENT

OPERATORS IN THE EUCLIDEAN SPACE

Esmaiel Abedi and Najma Mosadegh

Abstract. We show how some of well-known recurrent operators such as

recurrent curvature operator, recurrent Ricci operator, recurrent Jacobi
operator, recurrent shape and Weyl operators have the significant role for

biharmonic hypersurfaces to be minimal in the Euclidean space.

1. Introduction

The phrase harmonic map f : (M, g) → (N,h) between two Riemannian
manifolds is which refers to the critical points of the energy functional E(f) =
1
2

∫
M
|df |2 ? 1. The studying K-harmonic maps, correspondingly, k-harmonic

submanifolds began with J. Eells and L. Lemair. It was proposed to investigate
K-harmonic maps as critical points of the functional

E : C∞(M,N)→ R, EK(f) =

∫
m

‖d+ d?‖kf ? 1,

where d and d? are the exterior differentiation and codifferentiation on the
vector bundle on M , respectively (see [7, 8]). The idea was supported in case
K = 2, which is called biharmonic maps and deal with E2(f) = 1

2

∫
M
|τ(f)|2dυ,

where τ(f) = trace∇df is the tension field of f [13,14]. Furthermore, the Euler-
Lagrange equation associated to E2 is given by vanishing of the bitension field
written as:

τ2(f) = −∆τ(f)− traceRN (df, τ(f))df = 0.

The interesting is in the non harmonic biharmonic maps which are called proper
biharmonic. The first ambient spaces to investigate the proper biharmonic sub-
manifolds are spaces of the constant sectional curvature. In this case, the bihar-
monic concept of submanifold in the Euclidean space with the harmonic mean
curvature vector was established by B. Y. Chen. Indeed the well known conjec-
ture was posted: any biharmonic submanifold in Euclidean space is harmonic
see [4]. By following the Chen’s conjecture, hypersurfaces are the first class
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of submanifolds to be studied such that up to now, the following classification
results reached.

• Biharmonic hypersurfaces in En, n = 3, 4, 5, are minimal [5, 11,12];
• Biharmonic hypersurfaces in 4-dimensional space form H4 are minimal [2];
• The biharmonic submanifold with the constant mean curvature and bihar-

monic hypersurfaces with at most two distinct principal curvatures in the
Euclidean space are minimal [6];
• Biharmonic hypersurfaces with three distinct principal curvatures in Rn

and Sn are minimal [9, 10];

Furthermore, a result of K. Akutagawa and Maeta [1] states that the bihar-
monic complete submanifolds in the Euclidean space are minimal too. Moti-
vated by the results, authors in [15, 16] deal with the biharmonic Hopf hyper-
surfaces in the complex Euclidean spaces and in the odd dimensional spheres
and showed they are minimal. Specifically, they proved the nonexistence result
of the proper biharmonic Ricci Soliton hypersurfaces in the Euclidean space
En+1, if the potential vector field is a principal direction.

In this survey we shall focus on the biharmonic hypersurfaces in the Eu-
clidean space En+1 with an important object, so-called the recurrent operator,
attached to them. The key observation throughout is that the recurrent op-
erators can be a property of the biharmonic hypersurfaces, which can not be
proper one. Indeed, we show that the biharmonic hypersurfaces with some
recurrent operators in the Euclidean space are minimal. Clearly, the results
are given in Section 3, following the works in [6, 9] .

2. Preliminaries

Let x : Mn → En+1 be an isometric immersion of an n-dimensional hyper-
surface (Mn, g) into the Euclidean space En+1. Let∇ and∇ be the Levi-Civita
connections on Mn and En+1, respectively. Let N be a local unit normal vec-

tor field to Mn in En+1 and
−→
H = HN be the mean curvature vector field. One

of the considerable equations in differential geometry is 4x = −n
−→
H , where 4

the Laplacian-Beltrami operator is defined 4 = - trace ∇2. It is well-known
that the tension field and bitension field are satisfied

τ(x) = n
−→
H, τ2(x) = −n∆

−→
H.

So, the immersion x is biharmonic if and only if 4
−→
H = 0, where

0 = 4
−→
H = 2A(gradH) + nHgradH + (4⊥H +HtraceA2).

In particular, by considering the normal component and tangential component
in the above equation, one can obtain one of main tools to study the proper
biharmonic hypersurfaces in the Euclidean spaces.

Theorem 2.1 ([3]). Let x : Mn → En+1 be an isometric immersion of an
n-dimensional hypersurface (Mn, g) into the Euclidean space En+1. Then Mn
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is a biharmonic hypersurface if and only if{
4⊥H +HtraceA2 = 0;
2A(gradH) + nHgradH = 0,

where A denotes the Weingarten operator and ∆⊥ the Laplacian in the normal
bundle of Mn in En+1.

In the rest of the content, we deal with an orthonormal frame field {ei}ni=1 on
biharmonic hypersurface Mn in such a way that ei are the principal directions
and e1 = gradH

|gradH| and we call it is an appropriate frame field.

Lemma 2.2. Let Mn be a biharminic hypersurface in the Euclidean space
En+1. Suppose that the mean curvature of Mn is not constant. Then for the
appropriate frame field {ei}ni=1

∇e1ei =

n∑
k=1

ωk
1iek = 0 for i = 1, . . . , n, ∇eie1 = −ω1

iiei for i 6= 1,

where ωk
ij are called connection forms for any i, j, k = 1, . . . , n.

Proof. Let x : Mn → En+1 be an isometric immersion of the biharmonic
hypersurface Mn with the non constant mean curvature. So, there exists a
point p ∈ Mn, where gradH 6= 0 at p then there is an open subset U of Mn

such that gradH 6= 0 on U . By Theorem 2.1 we have gradH is a principal
direction corresponding to the unique principal curvature −n2 H. Suppose that
the Weingarten operator A takes the form Aei = λiei, i.e., ei is an eigenvector
of A with eigenvalue λi. We choose e1 such that e1 is parallel to gradH where
it expresses gradH =

∑n
i=1(eiH)ei, this shows that (e1H) 6= 0 and (eiH) = 0

for any i = 1, . . . , n. For following our approach, we need to estimate the
connection forms ωk

ij which is given ∇eiej =
∑n

i=1 ω
k
ijek. By this we have

ωi
ki = 0, ωj

ki + ωi
kj = 0 i 6= j, i, j, k = 1, . . . , n(1)

since ∇ek〈ei, ej〉 = 0. Moreover, by the above and the Codazzi equation we
find

ek(λj)ei + (λi − λj)ωj
kiej = ei(λk)ek + (λk − λj)ωj

ikej

which yields

ei(λj) = (λi − λj)ωj
ji,

(λi − λj)ωj
ki = (λk − λj)ωj

ik

(2)

for distinct i, j and k where i, j, k = 1, . . . , n. Now, we set λ1 = −n
2 H, this

implies (e1λ1) 6= 0 and (eiλ1) = 0 for any i = 2, . . . , n. Then we have

0 = [ei, ej ]λ1 = (ω1
ij − ω1

ji)(e1λ1), 2 ≤ i, j ≤ n, i 6= j

which shows

ω1
ij = ω1

ji, 2 ≤ i, j ≤ n, i 6= j.(3)
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Observe that for indices j = 1 and 2 ≤ i, k ≤ n the equation (2) follows

(λi − λ1)ω1
ki = (λk − λ1)ω1

ik,

where λi 6= λk. Then, because of uniqueness of λ1 and (3) by the above we
have

ω1
ij = ω1

ji = 0, i 6= j, 2 ≤ i, j ≤ n.

On the one hand, from (1) it follows ω1
k1 = 0 and ωj

k1 + ω1
kj = 0 for any

i, j, k = 1, . . . , n. Then, ω1
1i = ωi

11 = 0 where i = 1, . . . , n. So,

ω1
ij = ω1

ji = 0, i 6= j, i, j = 1, . . . , n.

Afterall, putting this all together, we obtain our claim. �

3. Biharmonic hypersurfaces in the Euclidean space En+1 with the
recurrent operators

Let T be a tensor on a Rimannian manifold Mn. We say T is recurrent
if there exists a certain 1-form η on Mn such that for any X tangent to Mn

satisfies ∇XT = η(X)T . So, the recurrent (1, 1)-tensor is an extension of the
parallel one.

Theorem 3.1. Let Mn be a biharmonic hypersurface with the recurrent Ricci
operator in the Euclidean space En+1. Then Mn is a minimal hypersurface.

Proof. Let x : Mn → En+1 be an isometric biharmonic immersion. Consider
the appropriate frame field {ei}ni=1 on Mn consisting of eigenvectors of the
Weingarten operator A. Then, by the Gauss equation we have Ric(ei) = αiei
for any i = 1, . . . , n where αi = nHλi−λ2i . Since the Ricci operator is recurrent,
i.e.,

(
∇XRic

)
Y = η(X)Ric(Y ) for X and Y tangent to Mn, we get

∇ei

(
Ric(ei)

)
=
(
∇eiRic

)
(ei) + Ric(∇eiei)

= η(ei)αiei +
∑
k

ωk
iiRic(ek),

= η(ei)αiei +
∑
k

ωk
iiαkek, i = 1, . . . , n.(4)

On the one hand

∇ei

(
Ric(ei)

)
= ∇ei(αiei)

= (eiαi)ei + αi

∑
k

ωk
iiek, i = 1, . . . , n.(5)

Hence, we get from (4) and (5) the following(
eiαi − η(ei)αi

)
ei =

∑
k

(
αk − αi

)
ωk
iiek.

From linear independent, the above equation for i 6= 1 follows (α1−αi)ω
1
ii = 0

in which by applying Lemma 2.2 we have ω1
ii 6= 0. Now, the equation αi =
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nHλi − λ2i has at most two distinct roots. Then, we reach that Mn has at
most two distinct principal curvatures at each point. Therefore, by following
the studying in [6], we obtain the result. �

Theorem 3.2. Let Mn be a biharmonic hypersurface in the Euclidean space
En+1 with the recurrent curvature operator. Then Mn is minimal.

Proof. Let x : Mn → En+1 be an isometric immersion of a biharmonic hy-
persurface Mn in the Euclidean space En+1. Choosing the appropriate frame
field {e1, . . . , en}, the Guass equation yields R(ei, ej)ek = 0 for distinct i, j
and k. According to the assumption the curvature operator R is recurrent,
i.e., (∇XR(Y, Z))W = η(X)R(Y,Z)W for all X,Y, Z and W tangent to Mn

so, (∇eiR(ej , ek))el = η(ei)R(ej , ek)el = 0. Then, take the Guass equation we
have

0 = ∇eiR(ej , ek)el =
(
∇eiR(ej , ek)

)
el +R(ej , ek)∇eiel

= η(ei)R(ej , ek)el +R(ej , ek)

n∑
t=1

ωs
iles

= ωk
ilλkλjej − ω

j
ilλjλkek,

where i, j, k, l 6= 1 because by Lemma 2.2 ω1
ij = 0 for i 6= j . Then, from the

linear independence of {ei} follows that ωk
ilλkλj = 0. Now, for all nonzero

principal curvatures it follows ωk
il = 0 for distinct indices. Thus, all we need is

to use the Codazzi equation (2) in which

0 = (λl − λk)ωk
il = (λi − λk)ωk

li,

this yields λi = λk or ωk
li = 0 for j 6= k. In particular if ωk

li = 0, then the
Codazzi equation implies λl = λk too. Hence, by the above there exist at most
two distinct principal curvatures at each point of Mn. Note that λ1 = −n

2 H

that is corresponding to the principal direction e1 = gradH
|gradH| . Now, by following

the studying in [6], we obtain the result. �

Now, directly by the above theorem we will have the following result.

Corollary 3.3. The biharmonic locally symmetric hypersurfaces in the Eu-
clidean space En+1 are minimal.

Theorem 3.4. Let Mn be a biharmonic hypersurface in the Euclidean space
En+1, with the recurrent Jacobi operator RX for any X ∈ Γ(T (Mn)). Then
Mn is minimal.

Proof. Let x : Mn → En+1 be an isometric immersion of a biharmonic hyper-
surface Mn in the Euclidean space En+1. Now we use the assumption that the
Jacobi operator is recurrent, i.e., (∇YRX)(Z) = η(Y )RX(Z) for all X,Y and
Z tangent to Mn. Consider the appropriate frame field {ei}ni=1 and the Guass
equation then we see that the recurrent Jacobi operator expresses

∇eiRej (ek) =
(
∇eiRej

)
(ek) +Rej (∇eiek)
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= η(ei)Rej (ek) +Rej (∇eiek)

= η(ei)R(ek, ej)ej +R(∇eiek, ej)ej

= −η(ei)λjλkek − λj
n∑

l=1,l 6=j

ωl
ikλlel.

Note that

∇eiRej (ek) = ∇ei

(
R(ek, ej)ej

)
= −ei(λjλk)ek − λjλk

n∑
l=1

ωl
ikel.

Comparing the components follows that λj
∑n

l=1,l 6=j ω
l
ilλlel = λjλk

∑n
l=1 ω

l
ikel.

If λj 6= 0, then

n∑
l=2

(λl − λk)ωl
ikel − λjω

j
ikej = 0.

One consequence of the above is that λl = λk for 2 ≤ l, k ≤ n. Then take
λ1 = −n

2H and its uniqueness turns out that there are two distinct principal

curvatures at each points of Mn. Furthermore, because λj 6= 0 so ωj
ik = 0 that

the Codazzi equation follows (λi − λj)ωj
ki = 0, which yields λi = λj for i 6= j.

Similarly, we get the same result. Now, by following the work in [6] we obtain
what was claimed. �

Theorem 3.5. Let Mn be a biharmonic hypersurface with the recurrent Weyl
operator WX,Y for any X,Y ∈ Γ(T (Mn)) in the Euclidean space En+1. Then
Mn is minimal.

Proof. Let x : Mn → En+1 be an isometric immersion of a biharmonic hyper-
surface Mn in the Euclidean space En+1. In this case we see that with the
appropriate frame field {ei}ni=1 on Mn, the Weyl operator Wei,ej (ek) vanishes
for distinct indices, since

Wei,ej (ek) = R(ei, ej)ek −
1

n− 2
{Ricci(ej , ek)ei − Ricci(ei, ek)ej

+ g(ej , ek)Ricci(ei)− g(ei, ek)Ricci(ej)}

+
s

(n− 1)(n− 2)
{g(ej , ek)ei − g(ei, ek)ej},

where R and s are the curvature tensor and the scalar curvature, respectively
and all terms are zero. Note that, Wei,ej (ej) = αei where α = λiλj − (λi +
λj)(H − λi − λj) + s

n−2 . Consider the assumption that the Weyl operator is

recurrent, i.e., (∇VWX,Y )(Z) = η(V )WX,Y (Z) for all X,Y, Z and V tangent
to Mn. In particular, it shows

0 = ∇ejWei,ej (e1) = Wei,ej (∇eje1) = ωj
j1Wei,ej (ej) = ωj

j1αei,
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where by Lemma 2.2 ∇eje1 = ω1
jjej for j 6= 1. Thus, α = 0, i.e.,

λiλj − (λi + λj)(H − λi − λj) = a, i 6= j(6)

in which a = s
2−n . Now, to reach the purpose we need to consider

λiλk − (λi + λk)(H − λi − λk) = a, i 6= k.(7)

Then from (6) and (7) it follows

3λi + λj + λk −H = 0, 2 ≤ i, j, k ≤ n,

which leads to that all the principal curvatures are equal. Now, take the unique
principal curvature λ1 = −nH

2 corresponding to the principal direction e1 =
gradH
|gradH| . So, there exist two distinct principal curvatures at each point of Mn.

Then, by following the studying in [6] we get the result. �

Theorem 3.6. Let Mn be a biharmonic hypersurface with the recurrent shape
operator in the Euclidean space En+1. Then Mn is minimal.

Proof. Let x : Mn → En+1 be an isometric immersion of a biharmonic hy-
persurface Mn in the Euclidean space En+1. We use the assumption that the
shape operator is recurrent, i.e., (∇XA)Y = η(X)A(Y ) for X and Y tangent
to Mn such that for the appropriate frame field {ei}ni=1 it satisfies

g((∇eiA)ej , ek) = η(ei)g(λjej , ek) = 0.

Then the Codazzi equation yields

0 = g((∇eiA)ej , ek) = (λj − λk)g(∇eiej , ek)

= (λj − λk)ωk
ij

for 2 ≤ i, j, k ≤ n where by Lemma 2.2 ∇eiej =
∑n

l=2,l 6=j ω
l
ijel. By the

above, one consequence is λj = λk for 2 ≤ j, k ≤ n. Add the unique principal

curvature −nH2 corresponding with the principal direction e1 = gradH
|gradH| then it

determines that there exist two distinct principal curvatures at each point of
Mn. If λj 6= λk, then ωk

ij = 0 and in this case the Codazzi equation expresses

0 = (λj − λk)ωk
ij = (λi − λk)ωk

ji,

so, λi = λk where 2 ≤ i, k ≤ n. Similarly, take the λ1 = −nH
2 it leads to there

are two distinct principal curvatures at each point. Then we get the result by
the work in [6]. �
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