COMPLETE MAXIMAL SPACE-LIKE HYPERSURFACES IN AN ANTI-DE SITTER SPACE

Soon Meen Choi, U-Hang Ki and He-Jin Kim

1. Introduction

It is well known that there exist no closed minimal surfaces in a 3-dimensional Euclidean space \mathbb{R}^3 . Myers [4] generalized the result to the case of the higher dimension and proved that there are no closed minimal hypersurfaces in an open hemisphere. The complete and non-compact version concerning Myers' theorem is recently considered by Cheng [1] and the following theorem is proved.

THEOREM. Let M be a complete minimal hypersurface in an (m+1)-dimensional sphere. If M is contained in the hemisphere and if the volume of M is finite, then it is totally geodesic.

On the other hand, it is pointed out in a series of papers by Choquet, Fisher and Marsden [2], Marsden and Tipler [3], Stumbles [5] and so on that maximal space-like hypersurfaces or space-like hypersurfaces of constant mean curvature in a Lorentzian space form play an important role in relativity theory. Let R_2^{m+2} be an (m+2)-dimensional indefinite Euclidean space with index 2 whose scalar product is defined by

$$\langle x, x \rangle = \sum_{j=1}^{m} (x_j)^2 - (x_{m+1})^2 - (x_{m+2})^2,$$

where $x = (x_1, \ldots, x_{m+2})$ in R_2^{m+2} . Let $H_1^{m+1}(c)$ be an (m+1)- dimensional anti-de Sitter space of constant curvature c which is defined by

$$H_1^{m+1}(c) = \left\{ x \in R_2^{m+2} : \langle x, x \rangle = \frac{1}{c} < 0 \right\}.$$

Received November 2, 1992.

Supported by TGRC-KOSEF.

The purpose of this note is to deal with the Myers type theorem in an anti-de Sitter space and to prove the following

THEOREM. Let M be a complete maximal space-like hypersurface in an (m+1)-dimensional anti-de Sitter space $H_1^{m+1}(c)$. If the isometric immersion f satisfies

$$\langle f, v \rangle \leq a$$

for some constant, where v is a unit time-like vector, then it is totally geodesic.

2. Preliminaries

In this section we recall fundamental properties about space-like submanifolds of an indefinite submanifold. Let $M=M^m$ be an m-dimensional space-like submanifold of an n-dimensional indefinite Riemannian manifold $N=N_r^n$ of index r>0 and let N be the submanifold of an l-dimensional indefinite Riemannian manifold $L=L_s^l$ of index $s\geq r$. Let X and Y be any two vector fields tangent to M and let ∇^M and ∇^N be the Levi-Civita connections of M and N, respectively. Then the Gauss equation shows

(2.1)
$$\nabla_X^N Y = \nabla_X^M Y + \alpha_M(X, Y),$$

where α_M is the second fundamental form of M in N. Let ∇^L be the Levi-Civita connection of L and α_N be the second fundamental form of N in L. Then we have

(2.2)
$$\nabla_X^L Y = \nabla_X^N Y + \alpha_N(X, Y),$$

for any vector fields tangent to N. From (2.1) and (2.2) we find

(2.3)
$$\nabla_X^L Y = \nabla_X^M Y + \alpha_M(X, Y) + \alpha_N(X, Y)$$

for any vector fields X and Y tangent to M. Since M can be regarded as the submanifold of L, the equation (2.3) shows that the second fundamental form α of M in L is given by

(2.4)
$$\alpha(X,Y) = \alpha_M(X,Y) + \alpha_N(X,Y),$$

Complete maximal space-like hypersurfaces in an anti-de Sitter space

where $\alpha_M(X,Y)$ is tangent to N and $\alpha_N(X,Y)$ is normal to N. We denote by \mathbf{h} and \mathbf{h}_M the mean curvature vector fields of M in L and N, respectively. Then we have

$$\mathbf{h} = \mathbf{h}_M + \mathbf{h}_N(M),$$

where $\mathbf{h}_N(M)$ is the vector field normal to N given by

$$\mathbf{h}_N(M) = \frac{1}{m} \sum_{i=1}^m \alpha_N(E_i, E_i),$$

where $\{E_1, \ldots, E_m\}$ is the local field of orthonormal frames adapted to the Riemannian metric in M, which is called the *relative mean curvature* vector field of M with respect to N and L. The submanifold M in N (resp. in L) is said to be maximal if \mathbf{h}_M (resp. \mathbf{h}) vanishes identically. From (2.5) we have

LEMMA 2.1. The space-like submanifold M in N is maximal if and only if the mean curvature vector field \mathbf{h} of M in L is normal to N.

LEMMA 2.2. The space-like submanifold M in L is maximal if and only if M is maximal in N and the relative mean curvature vector field $\mathbf{h}_N(M)$ of M with respect to N and L vanishes identically.

The following generalized maximum principle due to Omori [5] and Yau [7] will play an important role in this paper.

THEOREM 2.3. Let M be an m-dimensional complete Riemannian manifold whose Ricci curvature is bounded from below. Let F be a C^2 -function bounded from above on M, then for any $\varepsilon > 0$, there exists a point p in M such that

$$F(p) + \varepsilon > \sup F$$
, $|\operatorname{grad} F|(p) < \varepsilon$, $\triangle F(p) < \varepsilon$.

3. Space-like submanifolds

This section is concerned with the space-like submanifold in an indefinite Euclidean space. Let \mathbf{R}_{q+1}^{m+q+1} be an (m+q+1)-dimensional indefinite Euclidean space of index (q+1) whose scalar product <, > is given by

$$< x, y > = \sum_{i=1}^{m} x_i y_i - \sum_{\alpha=m+1}^{m+q+1} x_{\alpha} y_{\alpha}$$

for any point $x = (x_1, \ldots, x_{m+q+1})$ and $y = (y_1, \ldots, y_{m+q+1})$ in \mathbf{R}_{q+1}^{m+q+1} and let $N = (H_q^{m+q}(c), h)$ be an (m+q)-dimensional pseudohyperbolic space of constant curvature c with indefinite metric h. It is defined by

$$H_q^{m+q}(c) = \bigg\{ x \in R_{q+1}^{m+q+1} : < x, x> = -r^2 = \frac{1}{c}, r>0 \bigg\}.$$

Let (M, g) be a space-like submanifold of $H_q^{m+q}(c)$. The submanifold M is said to be full if there exist no totally geodesic hypersurfaces $H_{q-1}^{m+q-1}(c)$ in $H_q^{m+q}(c)$ which contain M. Then we first prove the following

THEOREM 3.1. Let M be an m-dimensional complete space-like maximal submanifold of $H_q^{m+q}(c)$. If the isometric immersion f satisfies

$$(3.1) \qquad |\langle f, v \rangle| \le a$$

for some positive constant a, where v is a unit time-like vector, then M is not full.

Proof. By an isometry on the indefinite Euclidean space \mathbf{R}_{q+1}^{m+q+1} the time-like vector v translates a vector $e_{m+2} = (0, \dots, 0, 1)$. For any nonnegative constant b the subset ${}_bH_q^{m+q}(c)$ of $H_q^{m+q}(c)$ is defined by

$$_{b}H_{q}^{m+q}(c) = \left\{ x \in H_{q}^{m+q}(c) : |x_{m+q+1}| \le b \right\}.$$

Then the condition (3.1) is equivalent to the fact that M is contained in ${}_{a}H_{a}^{m+q}(c)$.

Complete maximal space-like hypersurfaces in an anti-de Sitter space

Since the pseudohyperbolic space $N=H_q^{m+q}(c)$ is totally umbilic in \mathbf{R}_{q+1}^{m+q+1} , the second fundamental form α_N of $H_q^{m+q}(c)$ in \mathbf{R}_{q+1}^{m+q+1} is expressed as

(3.2)
$$\alpha_N(X,Y) = h(X,Y)\xi_N$$

for any vector fields X and Y tangent to $H_q^{m+q}(c)$, where ξ_N is called the normal curvature vector field on $H_q^{m+q}(c)$. To each point p in $H_q^{m+q}(c)$ the corresponding position vector field is denoted by P. Then P/r is the unit normal to $H_q^{m+q}(c)$ outward away from the origin, and it follows that the normal curvature vector field is given by

(3.3)
$$\xi_N = \frac{1}{r^2} P = -cP$$

because the sign of the hypersurface $N = H_q^{m+q}(c)$ in \mathbf{R}_{q+1}^{m+q+1} is equal to 1, that is, the coindex of N is 1. Thus we have

(3.4)
$$\alpha_N(X,Y) = -ch(X,Y)P$$

by (3.2) and (3.3). When M is regarded as the submanifold in \mathbf{R}_{q+1}^{m+q+1} , let α be the second fundamental form of M in \mathbf{R}_{q+1}^{m+q+1} . By (2.4) α is given by

$$\alpha(X,Y) = \alpha_M(X,Y) - ch(X,Y)P$$

for any vector fields X and Y tangent to M. This implies that the mean curvature vector field \mathbf{h}_M and \mathbf{h} of M in $H_q^{m+q}(c)$ and \mathbf{R}_{q+1}^{m+q+1} satisfy

$$\mathbf{h} = \mathbf{h}_M - cP.$$

On the other hand, since we can consider any point p in M as the one in \mathbf{R}_{q+1}^{m+q+1} , we put $p = (p_i, p_\alpha) = (p_A)$, where the following convention on the range of indices is used, unless otherwise stated:

$$1 \le A, B, \dots \le m+q+1, \quad 1 \le j, k, \dots \le m, \quad m+1 \le \alpha \le m+q+1.$$

Then the position vector field P is expressed as $P = \sum p_A \partial_A$ in terms of the local coordinate system $\{x_A\}$, where $\partial_A = \partial/\partial x_A$. For any vector field Y tangent to M we have

$$(3.7) Y_p = Y.$$

In fact, we can consider $Y_p = (Y_{PA})$ as the \mathbf{R}_{q+1}^{m+q+1} -vector field on M, that is, the vector field on \mathbf{R}_{q+1}^{m+q+1} along M. Then it coincides with the vector field $\nabla_Y^L P$ because the ambient space is an indefinite Euclidean space, where ∇^L is the Levi-Civita connection on $L = \mathbf{R}_{q+1}^{m+q+1}$. Thus we get

$$XY_P = \nabla_X^L(Y_P) = \nabla_X^L Y.$$

Accordingly, by (3.7) the Laplacian \triangle_M of p on the space-like submanifold M is given as

$$\Delta_{M}p = \sum (E_{k}E_{k}p - \nabla_{E_{k}}^{M}E_{k}p)$$

$$= \sum (\nabla_{E_{k}}^{L}E_{k} - \nabla_{E_{k}}^{M}E_{k})$$

$$= \sum \alpha(E_{k}, E_{k}),$$

where $\{E_k\}$ is a local field of orthonormal frames adapted to the Riemannian metric g on M. Thus we get

$$\triangle_{M}p=m\mathbf{h},$$

which together with (3.6) implies that

$$(3.8) \qquad \qquad \triangle_M p = m(\mathbf{h}_M - cP)$$

From now on we assume that the space-like submanifold M is maximal in $H_q^{m+q}(c)$ in \mathbf{R}_{q+1}^{m+q+1} . By (3.8) the (m+q+1)-component x_{m+q+1} for any point $x=(x_A)$ in M satisfies

$$(3.9) \qquad \qquad \triangle_M x_{m+q+1} = -cm x_{m+q+1}.$$

Complete maximal space-like hypersurfaces in an anti-de Sitter space

Since the Ricci curvature of M is bounded from below by a constant m(m-1)c and the function $f=x_{m+q+1}$ is bounded from above by the assumption, we can apply Generalized Maximal Principle to the function f. For any sequence $\{\varepsilon_n\}$ such that $\varepsilon_n > 0$ and $\varepsilon_n \to 0$ $(n \to \infty)$, there exists a sequence $\{x_n\}$ of points in M such that

(3.10)
$$f(x_n) + \varepsilon_n > \sup f$$
, $|\operatorname{grad} f|(x_n) < \varepsilon_n$, $\triangle f(x_n) < \varepsilon_n$.

By (3.9) and (3.10) we get

$$\lim_{n \to \infty} f(x_n) = \sup f \le 0$$

because c is negative. On the other hand, since f is also bounded from below, we can apply Theorem 2.3 to the function -f, it is similarly seen that for the same sequence $\{\varepsilon_n\}$ such that $\varepsilon_n > 0$ and $\varepsilon_n \to 0 (n \to \infty)$, there exists a sequence $\{y_n\}$ of points in M such that

$$f(y_n) - \varepsilon_n < \inf f, \qquad |\operatorname{grad} f|(y_n) < \varepsilon_n, \qquad \triangle f(y_n) > -\varepsilon_n,$$

which implies

$$\lim_{n\to\infty} f(p_n) = \inf f \ge 0.$$

Thus we get $f \equiv 0$ on M, which yields that M is contained in the totally geodesic hypersurface $H_{q-1}^{m+q-1}(c)$ in $H_q^{m+q}(c)$ defined by $x_{m+q+1} = 0$. It completes the proof.

Theorem in the introduction is easily verified from Theorem 3.1.

REMARK. An (m+q+1)-dimensional indefinite Euclidean space \mathbf{R}_{q+1}^{m+q+1} of index q+1 can be first regarded as a product manifold of

$$\mathbf{R}_1^{m_1+1}\times\cdots\times\mathbf{R}_1^{m_{q+1}+1},$$

where $\sum_{r=1}^{q+1} m_r = m$. With respect to the standard orthonormal basis of \mathbf{R}_{q+1}^{m+q+1} a class of space-like submanifolds

$$H^{m_1}(c_1) \times \cdots \times H^{m_{q+1}}(c_{q+1})$$

of \mathbf{R}_{q+1}^{m+q+1} is defined as the pythagorean product

$$H^{m_1}(c_1) \times \cdots \times H^{m_{q+1}}(c_{q+1})$$

$$= \left\{ (x_1, \dots, x_{q+1}) \in \mathbf{R}_{q+1}^{m+q+1} = \mathbf{R}_1^{m_1+1} \times \cdots \times \mathbf{R}_1^{m_{q+1}+1} : |x_r|^2 = -\frac{1}{c_r} > 0 \right\},$$

where $r = 1, \ldots, q + 1$. The mean curvature vector **h** of M is given by

(3.12)
$$\mathbf{h} = \frac{1}{m} \sum_{r=1}^{q+1} (m_r c_r x_r) - cx$$

at $x = (x_1, \ldots, x_{q+1}) \in M$, which is parallel in the normal bundle of M. This means that M is maximal if it satisfies $n_r c_r = nc$ for any index r by (3.12). It gives us that the assumption that M is contained in ${}_{a}H_{q}^{m+q}(c)$ is necessary.

References

- 1. Q.M.Cheng, Complete hypersurfaces minimally immersed in a unit sphere, Mem. Fac. Sci. Kyushu Univ. 43 (1989), 7-13.
- Y.Choquet, A.E.Fisher and J.E.Marsden, in "J.Ehlers, editor, Proc. of the Enrico Fermi Summer School, Italian Physical Society" North-Holland (1979), 396-456, Maximal hypersurfaces and positively of mass.
- 3. J.Marsden and F.Tipler, Maximal hypersurfaces and foliations of constant mean curvature in general relativity, Bull.Amer.Phys.Soc. 23 (1978), p.84.
- S.B.Myers, Curvature closed hypersurfaces and nonexistence of closed minimal hypersurfaces, Trans. of Amer. Math. Soc. 71 (1951), 211-217.
- H.Omori, Isometric immersions of Riemannian manifolds, J.Math. soc. Japan 19 (1967), 205-214.
- S.Stumbles, Hypersurfaces of constant mean extrinsic curvature, Ann. of Physics 133 (1981), 28-56.
- S.T.Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure and Appl. Math. 28 (1975), 201-208.

Institute of Mathematics, University of Tsukuba, Ibaraki 305, Japan

DEPARTMENT OF MATHEMATICS, KYUNGPOOK NATIONAL UNIVERSITY, TAEGU 701-702, KOREA