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COMPLETE MAXIMAL SPACE-LIKE
HYPERSURFACES IN AN ANTI-DE SITTER SPACE

SooN MEEN CHol,U-HANG Ki AND HE-JIN KIM

1. Introduction

It is well known that there exist no closed minimal surfaces in a
3-dimensional Euclidean space R®. Myers [4] generalized the result to
the case of the higher dimension and proved that there are no closed
minimal hypersurfaces in an open hemisphere The complete and non-
compact version concerning Myers’ theorem is recently considered by
Cheng [1] and the following theorem is provec.

THEOREM. Let M be a complete minimal hypersurface in an (m+1)-
dimensional sphere. If M is contained in the hemisphere and if the
volume of M is finite, then it is totally geodesic.

On the other hand, it is pointed out in a series of papers by Choquet,
Fisher and Marsden (2], Marsden and Tipler [3], Stumbles [5] and so
on that maximal space-like hypersurfaces or space-like hypersurfaces of
constant mean curvature in a Lorentzian space form play an important
role in relativity theory. Let R**? be an (m+2)-dimensional indefinite
Euclidean space with index 2 whose scalar product is defined by

m
<Ir,r>= Z(J"])Z - (_?rm+]}2 o (‘Tm+2)2-,
=1

where z = (z,,...,Tmy2) in R;"+2. Let HI"""H(C) be an (m+1)- di-
mensional anti-de Sitter space of constant curvature ¢ which is defined

by
‘ 1
H™ ' e)={z € R7*: < 2,2 >= = < 0}.
C
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The purpose of this note is to deal with the Myers type theorem in
an anti-de Sitter space and to prove the following

THEOREM. Let M be a complete maximal space-iike hypersurface
in an (m+1)-dimensional anti-de Sitter space H"'(¢). If the isometric
immersion f satisfies

< f,v><a

for some constant, where v is a unit time-like vector, then it is totally
geodesic.

2. Preliminaries

In this section we recall fundamental properties about space-like
submanifolds of an indefinite submanifold. Let M = M™ be an m-
dimensional space-like submanifold of an n-dimensional indefinite Rie-
mannian manifold N = N of index r > 0 and let N be the submanifold
of an [-dimensional indefinite Riemannian manifold 1. = L! of index
s > r. Let X and Y be any two vector fields tangent to M and let
VM and V¥ be the Levi-Civita connections of M and N, respectively.
Then the Gauss equation shows

(2.1) VIV = V¥Y + au(X,Y),

where « s is the second fundamental form of M in N. Let V% be the
Levi-Civita connection of L and an be the second fundamental form
of N in L. Then we have

(2.2) viy = VY 4+ an(X,Y),
for any vector fields tangent to N. From (2.1) and (2.2) we find
(2.3) VEY = VY + ay(X,Y) + an(X,Y)

for any vector fields X and Y tangent to M. Since M can be regarded
as the submanifold of L, the equation (2.3) shows that the second fun-
damental form o of M in L is given by

(2.4) a(X.Y) =am(X,Y)+ an(X,Y),
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where ay(X,Y) is tangent to N and an(X,Y) is normal to N. We
denote by h and hjs the mean curvature vector fields of M in L and
N, respectively. Then we have

(2.5) h = hy + hy(M),

where h (M) is the vector field normal to N given by
1 m
hy(M)=— i Ei),
V(M) =~ ;mw E)

where {E;,..., E,,} is the local field of orthoriormal frames adapted to
the Riemannian metric in M, which is called the relative mean curvature
vector field of M with respect to N and L. The submanifold M in N
(resp. in L) is said to be mazimal if hys (resp. h) vanishes identically.
From (2.5) we have

LEMMA 2.1. The space-like submanifold M in N is maximal if and
only if the mean curvature vector field h of A/ in L is normal to N.

LEMMA 2.2. The space-like submanifold M in L is maximal if and
only if M 1s maximal in N and the relative mean curvature vector field
hn(M) of M with respect to N and L vanishes identically.

The following generalized maximum principle due to Omori [5] and
Yau (7] will play an important role in this paper.

THEOREM 2.3. Let M be an m-dimensional complete Riemannian
manifold whose Ricci curvature is bounded from below. Let F be a
C*-function bounded from above on M, then for any £ > 0, there exists
a point p in M such that

F(p) + € > supF, lgradF|(p) < e, AF(p) <e.
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3. Space-like submanifolds

This section is concerned with the space-like submanifold in an in-
definite Euclidean space. Let R;n++1q+1 be an (m + g + 1)-dimensional
indefinite Euclidean space of index (¢ + 1) whose scalar product <, >
is given by

m m+q-+1
<ZT,y >:ziriyz‘— Z TaYa
=1 a=m+]1
: 1. _ : m+q+1
for any point z = (21,...,Tmiq+1) and y = (Y1, -+ Ymtq+1) D R

and let N = (H;"‘“’(c), h) be an (m + ¢q)-dimensional pseudohyperbolic
space of constant curvature ¢ with indefinite metric k. It is defined by

" 1
H;"'H’(C) = {.E € Rqr_':;qﬂ P a,xr >=—rt= el > 0}.

Let (M, g) be a space-like submanifold of H;”“"q(c). The submanifold
M is said to be full if there exist no totally geodesic hypersurfaces
H;’_‘jq’l(c) in H7"*9(c) which contain M. Then we first prove the
following

THEOREM 3.1. Let M be an m-dimensional complete space-like ma-
ximal submanifold of H**4(c). If the isometric immersion f satisfies

(3.1) < fiv>]<a

for some positive constant a, where v is a unit time-like vector, then M
is not full.

Proof. By an isometry on the indefinite Euclidean space R;’ﬁq“
the time-like vector v translates a vector €,42 = (0,...,0,1). For any

nonnegative constant b the subset bH;””W(({) of H;"'“I( ¢) is defined by
VHI9(e) = {2 € HPFe) : [omagn| < B).

Then the condition (3.1) is equivalent to the fact that M is contained
in aH;"+q(c).
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Since the pseudohyperbolic space NV = H;”‘*q(_c) 1s totally umbilic in
R;":iq“, the second fundamental form ax of H""4(c) in R;"_:qﬂ is

expressed as
(3.2) an(X.Y) = h(X,Y)EN

for any vector fields X and ¥ tangent to H;’"*q(c), where £ 1s called the
normal curvature vector field on H‘;"'*'q(c). To cach point p in H;”Jrq(c)
the corresponding position vector field is denoted by P. Then P/r is the
unit normal to H ;”‘*q(ci) outward away from tnae origin, and it follows
that the normal curvature vector field is given by

(3.3) v = ~P=_cP

r2

because the sign of the hypersurface N = H"*9(c¢) in R;n:lq“ is equal
to 1, that is, the coindex of NV is 1. Thus we have

(3.4) an(X,Y) = —ch(X,Y)/?

by (3.2) and (3.3). When M is regarded as the submanifold in R;nf]qﬂ-,
let « be the second fundamental form of M in R;"flqﬂ. By (24) a 1s
given by

o X.Y) = ap(X,Y) - ch(X.Y)P

for any vector fields X and Y tangent to M. This implies that the
mean curvature vector field hyy and h of M in H;"+q(c) and Rgflq+1

satisfy
(3.6) h=hy —cP.

On the other hand, since we can consider any point p in M as the one

in R;":l“l, we put p = (p;,Pa) = (pa), where the following convention

on the range of indices is used, unless otherwise stated :
1<AB, - <m+qg+1, 1<3,k--<m, m+l<a<m+qg+1l
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Then the position vector field P is expressed as P = ¥ pa8y4 in terms of
the local coordinate system {z 4}, where 94 = 8/8z 4. For any vector
field ¥ tangent to M we have

(3.7) Y, =Y.

In fact, we can consider Y, = (Yp4) as the Rgfl"“—vector field on M,
that is, the vector field on R;n_:iqﬂ along M. Then it coincides with the
vector field VL P because the ambient space is an indefinite Euclidean
space, where VL is the Levi-Civita connection on L :R;nflqﬂ. Thus
we get

XYp = Vi(Yp) = VLY.

Accordingly, by (3.7) the Laplacian A s of p on the space-like subman-
ifold M is given as

Amp=Y (ExExp— Vi Ep)
= (Vi Ex — VI E)
= Za(Ek,Ek)s

where {E}} is a local field of orthonormal frames adapted to the Rie-
mannian metric g on M. Thus we get

App = mh,
which together with (3.6) implies that
(3.8) Apyp =m(hy — cP)

From now on we assume that the space-like submanifold M is max-

imal in H**9(c) in R;":;”]. By (3.8) the (m + ¢ + 1)-component

Tm4q+1 for any point z = (z4) in M satisfies

(3.9) AMTmiyqr1 = ~CMTmigyt.
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Since the Ricci curvature of M is bounded from below by a constant
m(m — 1)c and the function f = Tp4g+1 18 Dounded from above by
the assumption, we can apply Generalized Maximal Principle to the
function f. For any sequence {s,} such that ¢, > 0 and ¢, — O(n —
oo), there exists a sequence {r,} of points in M such that

(3.10) f(xn)+eq > supf, | grad f|(zn) < €n, Af(zn) <éen.
By (3.9) and (3.10) we get
limyf(;rn) =supf <C

because ¢ is negative. On the other hand, since f is also bounded from
below, we can apply Theorem 2.3 to the function — f, it is similarly seen
that for the same sequence {¢,} such that e, > 0 and €, — 0(n — 00),
there exists a sequence {y,} of points in M such that

f(;y'n ) - E’n < 1nff’ )gradfl(y") < 5117 A.f(y") > —51’17

which implies
lim f(p,)=inff >0

Thus we get f = 0 on M, which yields shat M is contained in
the totally geodesic hypersurface H;"_Jqq_l(‘c) in H;”'“’('c) defined by
Tm4+q+1 = 0. It completes the proof.

Theorem in the introduction is easily verified from Theorem 3.1.
REMARK. An (m + ¢ + 1)-dimensional indefinite Euclidean space

m-+q-+1
R,

of index ¢ 4+ 1 can be first regarded as a product manifold of
my+1 mg41+1
R x o xRy \

where 3911 m, = m. With respect to the standard orthonormal basis

re=1

of R;T'lqﬂ a class of space-like submanifolds
H™ (ey) x - x H™4 (eg1q)
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of R;nﬁqﬁ is defined as the pythagorean product

Hml(Cl) X oo X qu+1(()q_+_1)

— {(.Tl,. - 7.’1,'q+1) 6 R;n+_§q+l = R;n1+1 Ko X R;n9+l+] .
1
’1'7‘]2 = > 0}
Cr
where r = 1,..., ¢ + 1. The mean curvature vector h of M is given by
1 &
3.12 h=— Cry) — €
(3.12) ~ ;(m Crly) — CT
at ¢ = (x1,...,2441) € M, which is parallel in the normal bundle of

M. This means that M is maximal if it satisfies n.c, = nc for any
index r by (8.12). It gives us that the assumption that M is contained
in (Ht%(c) is necessary.
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