• Title/Summary/Keyword: minimal curvature

Search Result 81, Processing Time 0.024 seconds

ON G-INVARIANT MINIMAL HYPERSURFACES WITH CONSTANT SCALAR CURVATURE IN S5

  • So, Jae-Up
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.2
    • /
    • pp.261-278
    • /
    • 2002
  • Let G = O(2) $\times$ O(2) $\times$O(2) and let M$^4$be closed G-invariant minimal hypersurface with constant scalar curvature in S$^{5}$ . If M$^4$has 2 distinct principal curvatures at some point, then S = 4. Moreover, if S > 4, then M$^4$does not have simple principal curvatures everywhere.

SOME REMARKS ON STABLE MINIMAL SURFACES IN THE CRITICAL POINT OF THE TOTAL SCALAR CURVATURE

  • Hwang, Seung-Su
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.587-595
    • /
    • 2008
  • It is well known that critical points of the total scalar curvature functional S on the space of all smooth Riemannian structures of volume 1 on a compact manifold M are exactly the Einstein metrics. When the domain of S is restricted to the space of constant scalar curvature metrics, there has been a conjecture that a critical point is isometric to a standard sphere. In this paper we investigate the relationship between the first Betti number and stable minimal surfaces, and study the analytic properties of stable minimal surfaces in M for n = 3.

STRUCTURE OF STABLE MINIMAL HYPERSURFACES IN A RIEMANNIAN MANIFOLD OF NONNEGATIVE RICCI CURVATURE

  • Kim, Jeong-Jin;Yun, Gabjin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.1201-1207
    • /
    • 2013
  • Let N be a complete Riemannian manifold with nonnegative Ricci curvature and let M be a complete noncompact oriented stable minimal hypersurface in N. We prove that if M has at least two ends and ${\int}_M{\mid}A{\mid}^2\;dv={\infty}$, then M admits a nonconstant harmonic function with finite Dirichlet integral, where A is the second fundamental form of M. We also show that the space of $L^2$ harmonic 1-forms on such a stable minimal hypersurface is not trivial. Our result is a generalization of one of main results in [12] because if N has nonnegative sectional curvature, then M admits no nonconstant harmonic functions with finite Dirichlet integral. And our result recovers a main theorem in [3] as a corollary.

MINIMAL AND CONSTANT MEAN CURVATURE SURFACES IN 𝕊3 FOLIATED BY CIRCLES

  • Park, Sung-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1539-1550
    • /
    • 2019
  • We classify minimal surfaces in ${\mathbb{S}}^3$ which are foliated by circles and ruled constant mean curvature (cmc) surfaces in ${\mathbb{S}}^3$. First we show that minimal surfaces in ${\mathbb{S}}^3$ which are foliated by circles are either ruled (that is, foliated by geodesics) or rotationally symmetric (that is, invariant under an isometric ${\mathbb{S}}^1$-action which fixes a geodesic). Secondly, we show that, locally, there is only one ruled cmc surface in ${\mathbb{S}}^3$ up to isometry for each nonnegative mean curvature. We give a parametrization of the ruled cmc surface in ${\mathbb{S}}^3$(cf. Theorem 3).

A CHARACTERIZATION OF MAXIMAL SURFACES IN TERMS OF THE GEODESIC CURVATURES

  • Eunjoo Lee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.67-74
    • /
    • 2024
  • Maximal surfaces have a prominent place in the field of differential geometry, captivating researchers with their intriguing properties. Bearing a direct analogy to the minimal surfaces in Euclidean space, investigating both their similarities and differences has long been an important issue. This paper is aimed to give a local characterization of maximal surfaces in 𝕃3 in terms of their geodesic curvatures, which is analogous to the minimal surface case presented in [8]. We present a classification of the maximal surfaces under some simple condition on the geodesic curvatures of the parameter curves in the line of curvature coordinates.

A THEOREM OF G-INVARIANT MINIMAL HYPERSURFACES WITH CONSTANT SCALAR CURVATURES IN Sn+1

  • So, Jae-Up
    • Honam Mathematical Journal
    • /
    • v.31 no.3
    • /
    • pp.381-398
    • /
    • 2009
  • Let $G\;=\;O(k){\times}O(k){\times}O(q)$ and let $M^n$ be a closed G-invariant minimal hypersurface with constant scalar curvature in $S^{n+1}$. Then we obtain a theorem: If $M^n$ has 2 distinct principal curvatures at some point p, then the square norm of the second fundamental form of $M^n$, S = n.