DOI QR코드

DOI QR Code

A THEOREM OF G-INVARIANT MINIMAL HYPERSURFACES WITH CONSTANT SCALAR CURVATURES IN Sn+1

  • So, Jae-Up (Department of Mathematics and Institute of Pure and Applied Mathematics, Chonbuk National University)
  • Received : 2009.07.13
  • Accepted : 2009.09.14
  • Published : 2009.09.25

Abstract

Let $G\;=\;O(k){\times}O(k){\times}O(q)$ and let $M^n$ be a closed G-invariant minimal hypersurface with constant scalar curvature in $S^{n+1}$. Then we obtain a theorem: If $M^n$ has 2 distinct principal curvatures at some point p, then the square norm of the second fundamental form of $M^n$, S = n.

Keywords

References

  1. E. Cartan, Sur des families remarquables d'hypersurfaces isoparamaetriques dans les espaces spheriques, Math. Z. 45 (1939), 335-367. https://doi.org/10.1007/BF01580289
  2. S. Chang, On minimal hypersurfaces with constant scalar curvatures in $S^4$, J. Diff. Geom. 37 (1993), 523-534. https://doi.org/10.4310/jdg/1214453898
  3. S. S. Chern, M. do Canna &. S. Kobayasbi, Minimal submanifolds of a sphere with second fundamental form of constant length, Duke Math. J. 61 (1990), 195-206. https://doi.org/10.1215/S0012-7094-90-06109-5
  4. W. Y. Hsiang, On the construction of infinitely many congruence classes of imbedded closed minimal hypersurfaces in $S^n(1)$ for all n ${\geq}$ 3, Duke Math. J. 55 (1987), no. 2, 361-367. https://doi.org/10.1215/S0012-7094-87-05520-7
  5. H. B. Lawson, Local rigidity theorems for minimal hypersurfaces, Annals of Math. (2) 89 (1969), 187-191. https://doi.org/10.2307/1970816
  6. H. B. Park, J. H. Park & J. U. So, On scalar curvatures of G-invariant minimal hypersurfaces in $S^{n+1}$, Korean Ann. of Math. 17 (2000), 247-260.
  7. C. K. Peng &. C. L. Terng, Minimal hypersurface of spheres with constant scalar curvature, Annals of Math. Studies, No. 103, Princeton University Press, Princeton, NJ, (1983), 177-198.
  8. J. Simons, Minimal varieties in a Riemannian manifold, Ann. of Math. (2) 88 (1968), 62-105. https://doi.org/10.2307/1970556
  9. S. T. Yau, Problem section, Annals of Math. Studies, No. 102, Princeton University Press, Princeton, NJ, (1982), 693.
  10. H. Yang & Q. M. Cheng, Chern's conjecture on minimal hypersurfaces, Math. Z. 227 (1998), 377-390. https://doi.org/10.1007/PL00004382