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MINIMAL AND CONSTANT MEAN CURVATURE SURFACES

IN S3 FOLIATED BY CIRCLES

Sung-Ho Park

Abstract. We classify minimal surfaces in S3 which are foliated by cir-

cles and ruled constant mean curvature (cmc) surfaces in S3. First we
show that minimal surfaces in S3 which are foliated by circles are either

ruled (that is, foliated by geodesics) or rotationally symmetric (that is,

invariant under an isometric S1-action which fixes a geodesic). Secondly,
we show that, locally, there is only one ruled cmc surface in S3 up to isom-

etry for each nonnegative mean curvature. We give a parametrization of

the ruled cmc surface in S3 (cf. Theorem 3).

1. Introduction

In this paper, we classify minimal surfaces and surfaces of constant mean
curvature (cmc) in S3, which are foliated by circular arcs or circles. Let S3 be
embedded as the unit sphere in R4 centered at the origin. We say that a smooth
surface Σ in S3 is foliated by circular arcs or circles, if there is a smooth one
parameter family of 2-planes {Pt} in R4 such that, taking smoothly assigned
orthonormal frames {e1(t), e2(t)} in the 2-planes Pt, the expression

X(t, θ) = c(t) + r(t)(cos(θ)e1(t) + sin(θ)e2(t))

gives a nonsingular parameterization of Σ. We note that c(t) and r(t) are the
Euclidean center and radius of the circular arc on the plane c(t) + Pt.

A surface in S3 is said to be rotationally symmetric if it is invariant under
an isometric S1-action which fixes a geodesic. The smooth complete rotation-
ally symmetric surfaces of constant mean curvature are classified in [3]. In
particular, there are 5 qualitative types of rotationally symmetric cmc surfaces
analogous to the Delaunay surfaces in R3.

We first show that a minimal surface in S3 which is foliated by circular
arcs is either part of a ruled minimal surface, that is, each circular arc of
the foliation is part of a geodesic, or part of a rotationally symmetric minimal
surface. Recently, Kutev and Milousheva classified minimal surfaces in S3 which
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are foliated by circles [4]. They showed that there are two types of minimal
surfaces in S3 which are foliated by circles. The first type is ruled, and the
circles of the second type are principal lines. Our result shows that the second
type surfaces are rotationally symmetric.

Helicoid is the only nonplanar ruled minimal surface in R3 up to homothety
[1]. In S3, there is a one parameter family of ruled minimal surfaces [5]. On
the other hand, round cylinder is the only ruled cmc surface of given nonzero
constant mean curvature in R3. We show that there is only one ruled cmc
surface in S3 for each nonzero mean curvature, whose parametrization is given
in Theorem 3.

2. Minimal surfaces in S3 which are foliated by circles

In the following, S3 is embedded in R4 as the unit sphere centered at the
origin. Let ψ : M → S3 ⊂ R4 be an isometric immersion of a Riemann surface
M . Then ψ is a minimal immersion into S3 if and only if

∆ψ = −2ψ,(1)

where ∆ is the Laplace-Beltrami operator on M [5]. If (x1, x2) is a local
coordinates of M , then

∆ =
1
√
g

2∑
i,j=1

∂

∂xi

(
√
g gij

∂

∂xj

)
,

where
∑
gijdx

idxj is the metric of M ,
(
gij
)

= (gkl)
−1

and g = det (gij) . In

general, if ν is a unit normal vector field on M ⊂ S3, then the mean curvature
H of M with respect to ν is given by

H =
1

2
∆ψ · ν.

Let Σ be a smooth surface in S3 which is foliated by circular arcs. Let {Pt}
be the smooth one parameter family of 2-planes in R4 containing the circular
arcs of foliation of Σ. We recall the result of Frank and Giering [2]. It says
that the frames {e1(t), e2(t)} of Pt can be chosen in such a way, along with an
extension to an orthonormal frame {e1(t), e2(t), e3(t), e4(t)} of R4, that certain
Frenet type equations hold. We give a proof for the completeness.

Theorem A. Let {Pt} be a smooth one-parameter family of planes in R4

passing through the origin. There is a one-parameter family of orthonormal
frame {e1(t), e2(t), e3(t), e4(t)} of R4 such that e1(t) and e2(t) span Pt, and the
following equations hold

(2)


e1
e2
e3
e4


′

=


0
−β
−κ
0

β
0
0
−τ

κ
0
0
−η

0
τ
η
0




e1
e2
e3
e4

 ,
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where ′ = ∂/∂t and κ2 ≥ τ2.

Proof. Let {f1(t), f2(t)} be an orthonormal frame of {Pt} smooth in t. For
smooth f(t) =

∑
i=1,2 γi(t)fi(t) with γ1(t)2 + γ2(t)2 = 1, let

◦
f (t) = f ′(t)−

∑
i=1,2

〈f ′(t), fi(t)〉fi(t)(3)

the projection of f ′(t) onto P⊥t . For simplicity, we omit t in the following.
Clearly

◦
f1= f ′1 −

∑
j=1,2

〈f ′1, fj〉fj = f ′1 − 〈f ′1, f2〉f2,

and
◦
f2= f ′2 − 〈f ′2, f1〉f1.

We claim that there is an orthonormal frame {e1, e2} of Pt such that

‖ ◦e1 ‖2 ≥ ‖
◦
e2 ‖2 and 〈 ◦e1,

◦
e2〉 = 0.(4)

We have

◦
f= f ′ −

∑
i=1,2

〈f ′, fi〉fi =
∑
i=1,2

γi

f ′i − ∑
j=1,2

〈f ′i , fj〉fj

 =
∑
i=1,2

γi
◦
fi .

For each fixed t ∈ I, there exists a point (γ1(t), γ2(t)) ∈ S1 where

‖
◦
f(t)‖2 =

〈
◦
f (t),

◦
f (t)

〉
=

∑
i,j=1,2

γi(t)γj(t)

〈
◦
fi (t),

◦
f j (t)

〉
attains minimum.

For a fixed t0 ∈ I, we may assume that (0, 1) ∈ S1 is the minimum point

of ‖
◦
f(t0)‖2. Hence f2(t0) minimizes ‖

◦
f(t0)‖2. Since ‖

◦
f(t0)‖2 is quadratic in

γ1(t0) and γ2(t0), we have 〈
◦
f1 (t0),

◦
f2 (t0)〉 = 0 and (1, 0) ∈ S1 is the maximum

point of ‖
◦
f(t0)‖2. Therefore f1(t0) maximizes ‖

◦
f(t0)‖2, and

‖
◦
f(t0)‖2 = γ21(t0)‖

◦
f1(t0)‖2 + γ22(t0)‖

◦
f2(t0)‖2

with ‖
◦
f1(t0)‖2 ≥ ‖

◦
f2(t0)‖2 ≥ 0.

We define an orthonormal frame {e1(t), e2(t)} as follows. For each t, let
e1(t) and e2(t) be the unit vectors on Pt corresponding to the maximizer and

minimizer of ‖
◦
f(t)‖2 respectively. The above argument shows that e1(t) and

e2(t) are smooth in t with e1 ⊥ e2 and (4) holds. We define e3(t) and e4(t) by

‖ ◦e1 ‖e3 :=
◦
e1= e′1 − 〈e′1, e2〉e2, ‖

◦
e2 ‖e4 :=

◦
e2= e′2 − 〈e′2, e1〉e1.
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From (3) and (4), we have 〈ei, ej〉 = δij for 1 ≤ i, j ≤ 4. Hence

e′1 = 〈e′1, e2〉e2 + ‖ ◦e1 ‖e3,

e′2 = 〈e′2, e1〉e1 + ‖ ◦e2 ‖e4,

e′3 = −‖ ◦e1 ‖e1 + 〈e′3, e4〉e4,

e′4 = −‖ ◦e2 ‖e2 + 〈e′4, e3〉e3.
This completes the proof. �

Using the above orthonormal frame of R4, a circle-foliated surface Σ is
parametrized by

(5) X(t, θ) = c(t) + r(t)(cos θe1 + sin θe2).

We note that c(t) and r(t) are the Euclidean center and the Euclidean radius
of the circle of foliation on the plane c(t) + Pt, where

r2 + ‖c(t)‖2 = 1.

We define α1, . . . , α4 to satisfy

c′(t) =

4∑
i=1

αi(t)ei(t).

Let ci = 〈c(t), ei(t)〉 for i = 1, . . . , 4. Clearly, c1 = c2 = 0. The following are
straightforward.

Xt = (α1 + r′ cos θ − rβ sin θ)e1 + (α2 + r′ sin θ + rβ cos θ)e2

+ (α3 + rκ cos θ)e3 + (α4 + rτ sin θ)e4,

Xθ =− r sin θe1 + r cos θe2.

Let
h :
∧3 R4 → R4

be the canonical isomorphism. A normal vector N of X is perpendicular to
Xt, Xθ and X. Hence N is parallel to h(Xt ∧ Xθ ∧ X). Direct computation
shows that

h(Xt ∧Xθ ∧X) = r cos θ [c3(α4 + rτ sin θ)− c4(α3 + rκ cos θ)] e1

+ r sin θ [c3(α4 + rτ sin θ)− c4(α3 + rκ cos θ)] e2

+
[
rc4(r′ + α1 cos θ + α2 sin θ)− r2(α4 + rτ sin θ)

]
e3

−
[
rc3(r′ + α1 cos θ + α2 sin θ)− r2(α3 + rκ cos θ)

]
e4.

For the local classification of minimal surface foliated by circular arcs, it
suffices to assume that t is in an open interval I. We consider two cases: I)
c(t) 6= 0 except for finitely many t ∈ I, or II) c(t) ≡ 0 on I. If c(t) 6= 0, then
c(t) = c3 e3 + c4 e4 and, from (2), we have

c′(t) = c′3 e3 + c3(−κe1 + ηe4) + c′4 e4 + c4(−τe2 − ηe3).
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Hence

(6)
α1 = −κc3, α2 = −τc4,
α3 = c′3 − ηc4, α4 = c′4 + ηc3.

Let

N =
h(Xt ∧Xθ ∧X)

r [c3(α4 + rτ sin θ)− c4(α3 + rκ cos θ)]
,(7)

unless the denominator is 0. Note that ‖N‖ 6= 1.
If II) holds, then the circles of the foliation are geodesics and r = 1, ci =

αi = 0 for i = 1, . . . , 4. Then

h(Xt ∧Xθ ∧X) = −τ sin θ e3 + κ cos θ e4.

In this case, we let

N = −τ sin θ e3 + κ cos θ e4.(8)

For simplicity, we let

(9) N = ε cos θe1 + ε sin θe2 + γe3 + δe4,

where ε = 1 if c(t) 6= 0 and ε = 0 if II) holds.
B. Lawson classified ruled minimal surfaces in S3 (Proposition 7.2 of [5]).

Proposition 1. Every ruled minimal surface in S3 is an open submanifold of
one of the surfacesMα, given by

(10) T (x, y) = (cosαx cos y, sinαx cos y, cosx sin y, sinx sin y)

for some α ≥ 0.

We give a proof of the proposition later.
Let E, F and G be the coefficients of the first fundamental form of X:

E = |Xt|2 =

4∑
i=1

α2
i + r′

2
+ r2β2 + 2r′α1 cos θ + 2r′α2 sin θ

− 2rα1β sin θ + 2rα2β cos θ + 2rα3κ cos θ

+ r2κ2 cos2 θ + 2rα4τ sin θ + r2τ2 sin2 θ,

F = Xt ·Xθ = −rα1 sin θ + rα2 cos θ + r2β,

G = |Xθ|2 = r2.

Let

l = Xtt ·N, m = Xtθ ·N, n = Xθθ ·N,
where N is given by (7) or (8). Let

H := lG+ nE − 2mF.
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Direct computation shows that

(11) H =

r2



ε
[
α′1 cos θ + r′′ − α2β cos θ + α1β sin θ + α′2 sin θ − rβ2

−α3κ cos θ − rκ2 cos2 θ − α4τ sin θ − rτ2 sin2 θ
]

+γ

(
α′3 + 2r′κ cos θ + α1κ+ rκ′ cos θ
−rβκ sin θ − α4η − rτη sin θ

)
+δ

(
α′4 + 2r′τ sin θ + α2τ + rτ ′ sin θ
+rβτ cos θ + α3η + rκη cos θ

)


−ε r


∑4
i=1 α

2
i + r′

2
+ r2β2 + 2r′α1 cos θ + 2r′α2 sin θ

−2rα1β sin θ + 2rα2β cos θ + 2rα3κ cos θ
+r2κ2 cos2 θ + 2rα4τ sin θ + r2τ2 sin2 θ


−2(−εrβ − rγκ sin θ + rδτ cos θ)(−rα1 sin θ + rα2 cos θ + r2β).

Proof of Proposition 1. Let Σ be a ruled minimal surface in S3. Then c(t) ≡ 0
and r ≡ 1 in (5) and H = 0. Clearly, αi = 0 for i = 1, . . . , 4. From (8), we
have κ 6= 0. Let ε = 0, γ = −τ sin θ and δ = κ cos θ in (9). Substituting these
into (11), we have

(12) H = ηκ2 cos2 θ + ητ2 sin2 θ − (κ′τ − κτ ′) cos θ sin θ − βκτ.

Hence κ′τ − κτ ′ = 0, η
(
κ2 − τ2

)
= 0 and ητ2 − βκτ = 0. From κ′τ − κτ ′ = 0,

we have either i) τ = 0 and |κ| > 0 or ii) |κ| = a|τ | > 0 for some constant
a ≥ 1.

If i) holds, then η = 0. Hence e′4 = 0, and Σ lies in a 3-dimensional subspace.
Therefore Σ is part of a great sphere. If ii) holds with a > 1, then η = 0 and
β = 0. Upon a change of the variable t, we may assume that κ = 1. In (2), we
may let e1 = (cos t, sin t, 0, 0) and e2 = (0, 0, cos τt, sin τt). Letting α = τ , Σ is
parametrized by (10).

If ii) holds with a = 1, we may assume that κ = τ . From H = 0, we have
η − β = 0. Let φ satisfy φ′ = β. For

ẽ1 = cosφ e1 − sinφ e2, ẽ2 = sinφ e1 + cosφ e2,

ẽ3 = cosφ e3 − sinφ e4, ẽ4 = sinφ e3 + cosφ e4,

we have ẽ′1 = κ ẽ3, ẽ′2 = κ ẽ4, ẽ′3 = −κẽ1 and ẽ′4 = −κẽ2. By changing the
variable t, we may assume that κ = 1. Then Σ is the Clifford torus, which is
M1. �

3. Local classification

We first consider the local case. Suppose that Σ ⊂ S3 is foliated by circular
arcs and let e1, e2, e3 and e4 be as in Theorem A. We note that a great sphere
admits various foliations by circles.

Theorem 1. A minimal surface in S3 which is foliated by circular arcs is
locally either foliated by geodesic arcs, that is, part of a ruled minimal surface,
or part of a rotationally symmetric minimal surface, or part of a great sphere.
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Proof. Let Σ be a minimal surface in S3 which is foliated by circular arcs and
let (5) be a parametrization of Σ with e1 and e2 satisfying (2). Let I be an
interval for which Theorem A holds.

(I) First we assume that κ ≡ 0 on I. Then we have τ ≡ 0, and α1 ≡ 0 and
α2 ≡ 0 by (6). If β ≡ 0, then e1 and e2 are constant. This implies that the
plane Pt of Theorem A is fixed. Then the plane P⊥, spanned by e3 and e4, is
also fixed, and c(t) lies on P⊥. If c(t) ≡ 0, then Σ is a great circle, which is
impossible. Otherwise, the planes c(t) + Pt are parallel. We may assume that
η = 0. Then α1 = α2 = 0, α3 = c′3 and α4 = c′4. Let C(t) be the circular arc
of the foliation on Pt. Clearly C(t) lies on the hyperplane spanned by e1, e2
and c(t), and the spherical center of C(t) is on the geodesic P⊥ ∩S3. It follows
that each circular arc of Σ is part of circle invariant under the rotation of S3
fixing P⊥ ∩ S3. Hence Σ is part of a rotationally symmetric minimal surface.

If β 6= 0, then we define φ to satisfy φ′ = β. For

ẽ1 = cosφ e1 − sinφ e2, ẽ2 = sinφ e1 + cosφ e2,

we have ẽ′1 = ẽ′2 = 0. Since ẽ1 and ẽ2 also spans Pt, Pt is fixed and Σ is part
of a rotationally symmetric surface as above.

(II) Now we assume that κ 6= 0 on I. (If necessary, we replace I with a
subinterval to assume that κ 6= 0 on I.) (II-1) First assume that α1 ≡ 0 and
α2 ≡ 0 on I. From (6), we have two cases:

i) c3 ≡ 0 and c4 ≡ 0 on I,
ii) c3 ≡ 0 and c4 6= 0 on I.

In the first case, we have c(t) ≡ 0 on I. Hence the circular foliating Σ are
geodesic arcs and Σ is part of a ruled surface.

If the second case holds, then we have τ ≡ 0 on I from (6) and c(t) = c4 e4.
From Xt ·N = X ·N = 0, we have, in (9),

γ =
rα4 − c4r′

c4(α3 + rκ cos θ)
, δ = − r

c4
.

The trigonometric polynomial c4(α3 +rκ cos θ)H is of degree 3. The coefficient
of cos 3θ of c4(α3 + rκ cos θ)H is (1/2)r4c4κ

3. Since H ≡ 0, we have κ = 0.
This is a contradiction. Therefore if κ 6= 0, α1 ≡ 0 and α2 ≡ 0, then c(t) ≡ 0
and Σ is part of a ruled surface.

(II-2) Suppose that κ 6= 0, α1 6= 0 and α2 ≡ 0 on I. From (6), we have
c3 6= 0 and α2 = −τc4 ≡ 0. If τ ≡ 0, c4 ≡ 0 and α4 ≡ 0, then η ≡ 0 from
(6). It follows that e′4 = 0 and c(t) = c3 e3. Hence Σ lies in a 3-dimensional
subspace, and Σ is part of a great sphere.

If τ ≡ 0, c4 ≡ 0 and α4 6= 0. Then c3α4H is of degree 2. The coefficient
of cos 2θ of c3α4H is (1/2)r3κ2η from (6) and r2 + ‖c(t)‖2 = 1. Hence η = 0,
which contradicts α4 6= 0.
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Suppose now that c4 6= 0 and τ ≡ 0 or c4 ≡ 0 and τ 6= 0 on I. From
Xt ·N = X ·N = 0, we have

γ =
c4(r′ + α1 cos θ)− r(α4 + rτ sin θ)

c3(α4 + rτ sin θ)− c4(α3 + rκ cos θ)
,

δ = − c3(r′ + α1 cos θ)− r(α3 + rκ cos θ)

c3(α4 + rτ sin θ)− c4(α3 + rκ cos θ)
.

For the above γ and δ, the trigonometric polynomial

(c3(α4 + rτ sin θ)− c4(α3 + rκ cos θ))H
is of degree 3, and the coefficient of cos(3θ) is (1/2)r2c4κ

[
r2(κ2 − τ2) + α2

1

]
by

(6) and r2 + ‖c(t)‖2 = 1. Since κ2 ≥ τ2 and H ≡ 0, we have κ2 = τ2 and
α2
1 = 0, which is a contradiction.

(II-3) Now suppose that κ 6= 0, α1 ≡ 0 and α2 6= 0 on I. Then c3 ≡ 0,
τ 6= 0, c4 6= 0 and r2 + c24 = 1. From (6), we have α2 = −τc4, α3 = −ηc4 and
α4 = c′4. Then

γ =
r(α4 + rτ sin θ)− c4(r′ + α2 sin θ)

c4(α3 + rκ cos θ)
=
rα4 − r′c4 + τ sin θ

c4(α3 + rκ cos θ)
,

δ = − r

c4
.

The trigonometric polynomial c4(α3 + rκ cos θ)H is of degree 3, and the coeffi-
cient of cos 3θ is (1/2)r2c4κ(τ2− r2κ2). Therefore we have r2κ2 = τ2. We may
assume that τ = rκ. Direct computation shows that the coefficient of cos 2θ
of c4(α3 + rκ cos θ)H is (5/2)r2c24κ

2η. Hence we have η = 0, and α3 = 0 from
(6). Then the coefficient of sin 2θ of c4(α3 + rκ cos θ)H is (5/2)r2κ2r′. Hence
r′ = 0. Since rr′+ c4c

′
4 = 0 from r2 + c24 = 1, r and c4 are constant and α4 = 0.

It follows that the coefficients of cos θ is −3rc4τ
3. Therefore τ = 0, which is a

contradiction.
(II-4) Finally, suppose that κ 6= 0 and α1α2 6= 0 on I. From (7), we have

γ =
c4(r′ + α1 cos θ + α2 sin θ)− r(α4 + rτ sin θ)

c3(α4 + rτ sin θ)− c4(α3 + rκ cos θ)
,

δ = −c3(r′ + α1 cos θ + α2 sin θ)− r(α3 + rκ cos θ)

c3(α4 + rτ sin θ)− c4(α3 + rκ cos θ)
.

The trigonometric polynomial (c3(α4+rτ sin θ)−c4(α3+rκ cos θ))H is of degree
3, and the coefficients of cos 3θ and sin 3θ are

1

2
r2c4κ

[
r2(κ2 − τ2) + (α2

1 − α2
2) + 2c23τ

2
]

and

−1

2
r2c3τ

[
r2(κ2 − τ2) + (α2

1 − α2
2)− 2c24κ

2
]
,

which must be 0. Therefore, we have

c23τ
2 + c24κ

2 = 0.
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This contradicts α1α2 6= 0.
(III) Suppose that κ = 0 at an isolated point t0 ∈ I. The above result about

case (II) shows that c(t) ≡ 0 on I ′ \ {t0} for some subinterval I ′ of I. Hence Σ
is ruled. �

4. Global classification

Now we give the global classification. For the following lemma, we recall
some results about rotationally symmetric minimal surfaces in S3 from [3]. For
now, we use the stereographic projection of S3, that is, R3 equipped with the

metric ds2 = 4(dx2+dy2+dz2)
(1+x2+y2+z2)2 . For an immersed surface M ⊂ R3, let Ne be the

Euclidean unit normal of M . Let Hs be the mean curvature of M with respect
to ds2, and let He be the mean curvature of M with respect to the Euclidean
metric dx2 + dy2 + dz2 in the direction Ne. Then we have [3]

Hs =

(
1 + |X|2

)
2

He +X ·Ne,(13)

where X is the position vector of M and · denotes the Euclidean inner product.
Let Σ be a rotationally symmetric surface in S3, whose axis of rotational

symmetry is the great circle on the xy-plane centered at the origin O of R3.
Then the circles of Σ are perpendicular to the xy-plane and the great sphere
centered at O. Let Πθ be the plane containing the z-axis whose angle with the
xz-plane is θ.

Locally, we consider two cases: i) Σ ∩ Πθ = ∅ except for a fixed θ0, or ii)
Σ ∩ Πθ 6= ∅ for θ varying in some interval of [0, 2π). If i) holds, then we may
let θ0 = 0. Hence Σ lies on the plane Π0 locally.

When ii) holds and Σ ∩ Πθ 6= ∅, let Cθ and ρ be the Euclidean center and
radius of the circle Σ∩Πθ. For a point P ∈ Σ∩Πθ, let φ be the angle between

CθP and the ray
−−→
CθO. Then Σ is parametrized as follows:

X(θ, φ) = (
√

1 + ρ2 − ρ cosφ) (cos θ, sin θ, 0) + (0, 0, ρ sinφ).

Straightforward computations using (13) show that [3]

Hs =

√
ρ2 + 1(ρ(ρ2 + 1)ρ′′ − ρ′2 + ρ4 − 1)

2ρ(ρ′2 + ρ2 + 1)3/2
.

Lemma 1. Let Σ be a complete rotationally symmetric minimal surface in S3.
Then Σ is either a great sphere or foliated by non-geodesic circles.

Proof. We show that, if Σ is not a great sphere, then no circle of Σ is a geodesic.
Suppose that the above condition ii) holds. Then ρ satisfies

(14) ρ(ρ2 + 1)ρ′′ − ρ′2 + ρ4 − 1 = 0,

where ′ = d
dθ (cf. equation (25) of [3]). The solution of (14) is bounded and

periodic [3]. Therefore no circle of Σ is a great circle.
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The first integral of (14) is

ρ√
(ρ′2 + ρ2 + 1)(ρ2 + 1)

= c,

where c is a constant. Hence ρ′ is also bounded, and the graph of the polar
equation ρ = ρ(θ) on the xy-plane is transversal to each ray θ = constant. It
follows that Σ is transversal to each plane containing the circle of foliation.

If i) holds, then the corresponding circles of Σ foliates the xz-plane. From
the above argument, we see that the circles of Σ should stay in the xz-plane.
Hence Σ is a great sphere. �

In the following theorem, the parametrization X is allowed to be singular
at isolated t or θ as long as Σ is regular. As an example, one may consider the
foliation of S2 ⊂ R3 induced by the rotation of R3 about the z-axis.

Theorem 2. Let Σ be a complete minimal surface in S3 foliated by circles.
Then Σ is either ruled or rotationally symmetric, or a great sphere.

Proof. Let X(t, θ) be regular for t ∈ I and θ in some interval of [0, 2π). By
Theorem 1, open part Σo of Σ, where X(t, θ) is regular, is part of either i) a
ruled minimal surface, or ii) a rotationally symmetric minimal surface, or iii)
a great sphere with non-rotationally symmetric foliation.

Suppose that a circle C in the foliation of Σ is not a great circle. Clearly
circles close to C are not great circles either. By Theorem 1, either ii) or iii)
holds. If Σo is part of a rotationally symmetric minimal surface and not part
of a geodesic, then Σ is rotationally symmetric by Lemma 1.

If Σo is part of a rotationally symmetric minimal surface and part of a great
sphere or iii) holds, then all the circles of Σ should lie in the great sphere by
Lemma 1. Hence Σ is a great sphere. �

5. Ruled cmc surfaces in S3

Let ψ : M → S3 ⊂ R4 be an isometric immersion of a Riemann surface
M with constant mean curvature H with respect to some unit normal ν of
ψ(M) ⊂ S3. Then ψ satisfies

∆ψ = 2Hν − 2ψ.(15)

We use the results of §2 to classify ruled cmc surfaces in S3. Let Σ be a
surface in S3 which is foliated by geodesics and has nonzero constant mean
curvature H. Let (5) be a parametrization of Σ. Let ν = N/‖N‖. Since H of
(11) is computed with respect to N , the mean curvature H satisfies

2H(EG− F 2)‖N‖ = H.(16)

Theorem 3. Ruled surface of constant mean curvature H in S3 is an open
submanifold of

X(t, θ) = cos θe1 + sin θe2,
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where e1 and e2 are part of an orthonormal frame e1, . . . , e4 of R4 satisfying

(17)


e1
e2
e3
e4


′

=


0
0
−1
0

0
0
0
−1

1
0
0
−2H

0
1

2H
0




e1
e2
e3
e4

 .

Proof. Suppose that Σ is parametrized by (5). Since Σ is ruled, c(t) ≡ 0 and
r = 1. Then EG − F 2 = κ2 cos2 θ + τ2 sin2 θ with κ 6= 0. One may let ε = 0,
γ = −τ sin θ and δ = κ cos θ in (9). Hence ‖N‖2 = κ2 cos2 θ + τ2 sin2 θ. From
(11) and (16), we have

2H(EG− F 2)‖N‖ −H = 2H
(
κ2 cos2 θ + τ2 sin2 θ

) 3
2

−
(
ηκ2 cos2 θ + ητ2 sin2 θ + (−κ′τ + κτ ′) cos θ sin θ − βκτ

)
= 0.

Since this equation holds for all θ, we have κ2 = τ2 and

κ2 (2H|κ| − η + β) = 0.

We may assume that κ = τ > 0. Straightforward computation shows that

∆X =
1

κ

{
Xtt −

(
β

κ

)
t

Xθ − 2
β

κ
Xtθ +

κ2 + β2

κ
Xθθ

}
.

Since ν = N/‖N‖ = − sin θ e3 + cos θ e4 in (15), the coefficient of e1 of ∆X −
2Hν + 2X is

−β2 cos θ − κ2 cos θ − β′ sin θ +

(
β

κ

)′
sin θ +

β2

κ
cos θ + κ cos θ,

which is 0. From the coefficient of cos θ, it follows that κ = 1. Hence

η = 2H + β.

Let φ satisfy φ′ = β. For

ẽ1 = cosφ e1 − sinφ e2, ẽ2 = sinφ e1 + cosφ e2,

ẽ3 = cosφ e3 − sinφ e4, ẽ4 = sinφ e3 + cosφ e4,

we have

ẽ′1 = ẽ3, ẽ
′
2 = ẽ4, ẽ

′
3 = −ẽ1 + 2Hẽ4 and ẽ′4 = −ẽ2 − 2Hẽ3.

Then

X(t, θ) = cos θ ẽ1 + sin θ ẽ2

is the desired parametrization of a ruled cmc surface in S3 with mean curvature
H and ẽ1, ẽ2, ẽ3 and ẽ4 satisfy (17). �
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