DOI QR코드

DOI QR Code

A CHARACTERIZATION OF MAXIMAL SURFACES IN TERMS OF THE GEODESIC CURVATURES

  • Eunjoo Lee (Department of Mathematics Soongsil University)
  • Received : 2024.04.03
  • Accepted : 2024.05.08
  • Published : 2024.05.31

Abstract

Maximal surfaces have a prominent place in the field of differential geometry, captivating researchers with their intriguing properties. Bearing a direct analogy to the minimal surfaces in Euclidean space, investigating both their similarities and differences has long been an important issue. This paper is aimed to give a local characterization of maximal surfaces in 𝕃3 in terms of their geodesic curvatures, which is analogous to the minimal surface case presented in [8]. We present a classification of the maximal surfaces under some simple condition on the geodesic curvatures of the parameter curves in the line of curvature coordinates.

Keywords

References

  1. L. Alias, R. Chaves, P. Mira, Bjorling problem for maximal surfaces in Lorentz-Minkowski space, Math. Proc. Camb. Phil. Soc., 134 (2003), 289-316.  https://doi.org/10.1017/S0305004102006503
  2. A. I. Bobenko, U. Eitner, Painleve equations in the differential geometry of surfaces, Lecture notes in mathematics, 1753, Springer-Verlag, Berlin, 2000. 
  3. S.Y. Cheng, S.T. Yau, Maximal spacelike hypersurfaces in the Lorentz-Minkowski spaces, Ann. Math., 104, (1976), 407-419.  https://doi.org/10.2307/1970963
  4. J. Cho, Y. Ogata, Deformation and singularities of maximal surfaces with planar curvature lines, Beitr. Algebra. Geom., 59 (2018), 465-489.  https://doi.org/10.1007/s13366-018-0399-1
  5. I. Fernandez and F. Lopez, Periodic maximal surfaces in the Lorentz-Minkowski space 𝕃3, Math. Z., 256, no.3, (2007), 573-601.  https://doi.org/10.1007/s00209-006-0087-y
  6. O. Kobayashi, Maximal surfaces in the 3-dimensional Minkowski space 𝕃3, Tokyo J. Math., 6 (1983), 297-309. 
  7. Y. Kim, S. Yang, A family of maximal surfaces in Lorentz-Minkowski three-space, Proc. AMS., 134, no.11, (2006), 3379-3390.  https://doi.org/10.1090/S0002-9939-06-08543-1
  8. E. Lee, Uniqueness of families of minimal surfaces in ℝ3, J. Korean Math. Soc., 55 (2018), 1459-1468. 
  9. M. L. Leite, Surfaces with planar lines of curvature and orthogonal systems of cycles, J. of Math. Anal. and App., 421, Issue 2, (2015), 1254-1273.  https://doi.org/10.1016/j.jmaa.2014.07.047
  10. F. Lopez, R. Lopez and R. Souam, Maximal surfaces of Riemann type in Lorentz Minkowski space 𝕃3, Michigan Math. J., 47, (2000), 469-497. 
  11. J.C.C. Nitsche, Lectures on minimal surfaces, Cambridge University Press, New York, 1989. 
  12. M. Umehara, K. Yamada, Maximal surfaces with singularities in Minkowski space, Hokkaido Math. J., 35, Issue 1, (2006), 13-40.