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STRUCTURE OF STABLE MINIMAL HYPERSURFACES IN

A RIEMANNIAN MANIFOLD OF NONNEGATIVE RICCI

CURVATURE

Jeong-Jin Kim and Gabjin Yun

Abstract. Let N be a complete Riemannian manifold with nonnegative
Ricci curvature and let M be a complete noncompact oriented stable
minimal hypersurface in N . We prove that if M has at least two ends
and

∫
M

|A|2 dv = ∞, then M admits a nonconstant harmonic function
with finite Dirichlet integral, where A is the second fundamental form of
M . We also show that the space of L2 harmonic 1-forms on such a stable
minimal hypersurface is not trivial. Our result is a generalization of one
of main results in [12] because if N has nonnegative sectional curvature,
then M admits no nonconstant harmonic functions with finite Dirichlet
integral. And our result recovers a main theorem in [3] as a corollary.

1. Introduction

The classical Bernstein theorem asserts that an entire minimal graph in R
3

must be planar. This theorem was subsequently generalized to higher dimen-
sions by several authors, cf. [1], [5], [9], [17]. It is now known [2], [17] that an
entire n-dimensional minimal graph in R

n+1 must be given by a linear function
over Rn providing that n ≤ 7 and for n ≥ 8 there are nonlinear entire minimal
graphs in R

n+1. Since minimal graphs are area minimizing, one can consider a
generalization of the Bernstein problem to a larger class of submanifolds given
by the stable minimal hypersurfaces in R

n+1.
DoCarmo and Peng [6] proved that a complete stable minimally immersed

hypersurface in R
3 must be planar. And, Fischer-Colbrie and Schoen [8] showed

independently that a complete stable minimally immersed hypersurface M in
a complete 3-dimensional manifold N with nonnegative scalar curvature must
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be either conformally a plane R
2 or conformally a cylinder S1 × R. For the

special case when N is R3, they also proved that M must be planar.
Furthermore, using curvature estimates of minimal hypersurfaces described

as in [14], DoCarmo and Peng [7] showed that if M is an oriented stable com-
plete minimal hypersurface in R

n+1 such that
∫
M

|A|2 dvg < ∞, then M is a
hyperplane. In case of symmetric spaces, the second author [19] proved that
M is an oriented stable complete minimal hypersurface in a locally symmetric
space of nonnegative Ricci curvature such that

∫
M

|A|2 dvg <∞, then M must
be totally geodesic.

On the other hand, Cao, Shen and Zhu [3] proved a topological property
for stable minimal hypersurfaces in Euclidean space. Namely, they proved that
a complete oriented stable minimal hypersurface Mn in R

n+1 must have only
one end. In [12], Li and Wang generalized this result. They showed that if
M is a complete stable minimal hypersurface in a complete manifolds N with
nonnegative sectional curvature, then either M has only one end, or M splits
into Σ×R with product metric, and in the second caseM is totally geodesic in
N . We generalize this result to the case thatN has nonnegative Ricci curvature.
Our approach is to use the theory of harmonic functions with finite energy and
L2 harmonic differential forms together with non-parabolicity of Riemannian
manifolds. The existence or non-existence of L2 harmonic differential forms
are related to the structure of oriented minimal hypersurfaces in a Riemannian
manifold. For instance, Miyaoka proved [13] that if M is an oriented stable
minimal hypersurface in a Riemannian manifold N with nonnegative sectional
curvature, then there are no non-trivial L2 harmonic one forms on M . In case
of minimal hypersurfaces, it is well known [15], [20] that if the total scalar
curvature of M is sufficiently small, then there are no non-trivial L2 harmonic
one forms on M . On the other hand, parabolicity or non-parabolicity of a
Riemannian manifolds is deeply related with the number of ends of a given
Riemannian manifold, cf. [11].

2. Parabolicity and stability

From now on, we assume that Nn+1 is a complete Riemannian manifold of
dimension n + 1 otherwise stated. We say that a minimally immersed hyper-
surface M into N is stable if the second derivative of the area functional is
nonnegative for any compactly supported normal variation. This is equivalent
[4] that for any function ϕ ∈ C1

0 (M),
∫

M

|∇ϕ|2 − (|A|2 +Ric(ν, ν))ϕ2 ≥ 0,(2.1)

where A denotes the second fundamental form ofM , ν is an unit normal vector
field on M , and Ric is the Ricci curvature of N .

We start with a well-known result due to Fischer-Colbrie and Schoen and
an easy observation from it.
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Lemma 2.1 ([8]). Let M be a complete noncompact stable minimal hypersur-

face in N . Then there exists a globally defined positive function u > 0 on M

satisfying

∆u+ (|A|2 +Ric(ν, ν))u = 0.

We say that a Riemannian manifoldM is non-parabolic if it admits a positive
Green function. Otherwise we say that it is parabolic. It is well-known that a
Riemannian manifoldM is non-parabolic if and only if it admits a non-constant
positive superharmonic function on it.

It is also well-known [10], [18] that a non-parabolic Riemannian manifold
satisfies ∫

∞

1

t

vol(Bp(t))
dt <∞,

where Bp(t) is a geodesic ball in M of radius t centered at a point p. In
particular, a non-parabolic manifold has an infinite volume. For parabolicity
or Green functions, one can refer [11] and references are therein.

An easy observation about parabolicity for minimal hypersurfaces is the
following.

Lemma 2.2. Let M be a complete noncompact stable minimal hypersurface in

a complete Riemannian manifold N with Ric ≥ 0. Then M is non-parabolic or

totally geodesic.

Proof. Suppose M is parabolic. It follows from Lemma 2.1 that there exists a
positive function u satisfying

∆u+ (|A|2 +Ric(ν, ν))u = 0.

In particular, u is superharmonic since Ric ≥ 0. Since M is parabolic, u must
be constant and so

(|A|2 +Ric(ν, ν))u = 0.

This implies A = 0 and Ric(ν, ν) = 0. �

3. Ricci curvature and structure of ends

For a complete oriented stable minimal submanifold M in a complete Rie-
mannian manifoldN , the integral of the square norm of the second fundamental
form A on M ,

∫
M

|A|2 dv, plays an important role in the structure of M . For

instance, if M is an oriented, complete, stable minimal hypersurface in R
n+1

such that
∫
M

|A|2 dv <∞, then M is a totally geodesic and so is a hyperplane
[7], [14]. Here dv denotes the volume form of the induced metric on M and we
will abbreviate it from now if there is no ambiguity.

The following theorem shows that if M is a complete stable minimally im-
mersed hypersurface in a complete Riemannian manifold N with nonnegative
Ricci curvature and if

∫
M

|A|2 dv = ∞, then M has only one end, or M admits
a nonconstant harmonic function with finite energy. Using the similar way as
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in [3] if replacing a Sobolev inequality by the stability condition, we can prove
this result.

Theorem 3.1. Let Mn be a noncompact complete oriented stable minimal

hypersurface in Nn+1 with nonnegative Ricci curvature. If M has at least

two ends and satisfies
∫
M

|A|2 = ∞, then M admits a non-constant harmonic

function with finite Dirichlet integral.

Proof. Suppose M has at least two ends and
∫
M

|A|2 = ∞. Let {Di} be an
exhaustion of M of smooth boundary and let

M −Di =

m∑

j=1

E
(i)
j .

Let ui be the solution of

∆ui = 0 on Di

and the boundary conditions

ui|∂E(i)
1

= 1, u|
∂E

(i)
k

= 0 (k ≥ 2).(3.1)

By maximum principle, 0 ≤ ui ≤ 1 and
∫

Di

|∇ui|
2 ≤

∫

Dj

|∇uj|
2 (j ≤ i).

Thus ui converges to a harmonic function u satisfying

0 ≤ u ≤ 1,

∫

M

|∇u|2 ≤ C1

for some constant C1 > 0. We claim that u is not constant. Note that
∫

Di

(|A|2 +Ric(ν, ν))(ui(1− ui))
2 ≤

∫

Di

|∇(ui(1 − ui))|
2

≤ 9

∫

Di

|∇ui|
2 ≤ 9C1.(3.2)

Thus if u is constant, then by (3.2), u = 0 or u = 1 since
∫
M

|A|2 = ∞ and

Ric(ν, ν) ≥ 0. We may assume u = 1 by replacing u by 1− u if necessary.

Now for a fixed i0, since
∫
M

|A|2 = ∞, there exists an end, say E
(i0)
l , such

that ∫

E
(i0)

l

|A|2 = ∞.(3.3)

We may assume l 6= 1 by changing the boundary conditions in (3.1) if necessary.
Choose a smooth function ψ, for the fixed i0, satisfying

ψ =

{
1 on E

(i0)
l

0 on E
(i0)
k (k 6= l)
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and

|∇ψ| ≤ C2, 0 ≤ ψ ≤ 1

for some constant C2 > 0 independent of i and ui. Note that |∇ψ| vanishes
outside a compact set. Moreover, since ui|∂E(i)

1
= 1 and ui|∂E(i)

k

= 1 for k ≥ 2,

and l 6= 1, the function φi = uiψ vanishes on ∂Di. Thus the stability condition
(2.1) shows that

∫

Di

(|A|2 +Ric(ν, ν))φ2i ≤

∫

Di

|∇φi|
2

≤ 2

∫

Di

(|∇ui|
2 + |∇ψ|2) ≤ C3,

where C3 is a positive constant independent of i and ui. Thus∫

E
(i0)

l
∩Di

(|A|2 +Ric(ν, ν))u2i ≤ C

and by letting i→ ∞, we obtain
∫

E
(i0)

l

|A|2 ≤ C̃,

which contradicts (3.3). Consequently, the limit function u of ui is a noncon-
stant harmonic function with finite Dirichlet integral. �

Remark 3.2. The condition
∫
M

|A|2 = ∞ is necessary. For instance, let M =

Sn−1×R ⊂ Sn−1×R
2 so thatM is a totally geodesic hypersurface in Sn−1×R

2.
It is well-known that M = Sn−1 × R has no nonconstant harmonic function
with finite Dirichlet integral. It follows from this fact together with Lemma 2.2
that if M = Sn−1 × R is a stable minimal hypersurface in any Riemannian
manifold N of nonnegative Ricci curvature, then M must be totally geodesic.

Note that the total differential of a nonconstant harmonic function defined
on a noncompact complete Riemannian manifold is a nontrivial harmonic one-
form. A differential form ω on a Riemannian manifoldM is called L2 harmonic
if it satisfies

∆ω = (dδ + δd)ω = 0, and

∫

M

ω ∧ ∗ω =

∫

M

|ω|2 dv <∞,

where ∗ denotes the Hodge star operator and dv is the volume form onM . The
space of harmonic differential forms on a noncompact Riemannian manifold
does not satisfy the Poincaré duality in general. But the space of L2 harmonic
forms dose satisfy the Poincaré duality. That is, the space of L2 harmonic p-
forms is isomorphic to the space of L2 harmonic (n−p)-forms, where dim(M) =
n.

Note that if u is a nonconstant harmonic function with finite Dirichlet in-
tegral, then the total differential, du, is a nontrivial L2 harmonic one-form on
M . Thus non-existence of L2 harmonic one forms implies the non-existence of
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non-constant harmonic functions with finite Dirichlet integral. From this fact
together with Theorem 3.1, we have the following theorem.

Theorem 3.3. Let Mn be a noncompact complete oriented stable minimal

hypersurface in Nn+1 with nonnegative Ricci curvature. If M has at least two

ends and
∫
M

|A|2 = ∞, then both the space of L2 harmonic one-forms and the

space of L2 harmonic (n− 1)-forms are non-trivial.

As mentioned above, ifM is a complete oriented stable minimal hypersurface
into a complete Riemannian manifold N and the sectional curvature of N, KN ,
is nonnegative, then M does not admit nontrivial L2 harmonic one-forms.

Theorem 3.4 ([13]). Let M be a complete, oriented, stable minimal hypersur-

face into a complete Riemannian manifold N . If the sectional curvature of N

is nonnegative, then M does not admit nontrivial L2 harmonic one-forms.

Theorem 3.1 together with Theorem 3.4 implies the following corollary which
is a main result in [3]. We would like to mention that in [3], they assumed
n ≥ 3 because of the exponent of the Sobolev inequality. However our proof
for Theorem 3.1 or Theorem 3.3 does not use the Sobolev inequality and so we
can extend their result to n ≥ 2. We would remark that when n = 2, DoCarmo
and Peng [6], and Fischer-Colbrie and Schoen [8] proved independently that a
complete stable minimal surface in R

3 is a plane.

Corollary 3.5. If M is a complete stable minimal hypersurface in R
n+1 with

n ≥ 2, then M must have only one end.

Proof. If M is a complete stable minimal hypersurface in R
n+1, then M has

only one end or
∫
M

|A|2 < ∞ by Theorem 3.1. If
∫
M

|A|2 < ∞, then M must
be planar by [7] and so M has only one end in this case, too. �

Finally, in [16], Shen and Zhu studied the topology or rigidity of a stable
minimal hypersurface of the product type Σ × R in a complete Riemannian
manifold N , where Σ is a compact smooth manifold. Related to this result, we
obtain the following result from our main result.

Corollary 3.6. Let Σ be a compact smooth manifold and let M = Σn−1 × R

be a stable minimal hypersurface in a complete Riemannian manifold Nn+1

with nonnegative Ricci curvature. If
∫
M

|A|2 = ∞, then the spaces of both L2

harmonic 1-forms and L2 harmonic (n− 1)-forms on M are non-trivial.
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