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A PROPERTY ON G-INVARIANT
MINIMAL HYPERSURFACES WITH
CONSTANT SCALAR CURVATURES IN $°

JAE-UP So

Abstract. Let G = O(2) x O(2) x O(2) and let M4 be a closed
G-invariant minimal hypersurface with constant scalar curvature in

S5, In this paper, we prove a property on M4,

0. Introduction

Let M™ be a closed minimally immersed hypersurface in the unit
sphere S™*!, and h its second fundamental form. Denote by R and S its
scalar curvature and the square norm of h, respectively. It is well known
that S = n(n — 1) — R from the structure equations of both M™ and
Snt1l, In particular, S is constant if and only if M has constant scalar
curvature. In 1968, J. Simons (8] observed that if S < n everywhere and
S is constant, then S € {0, n}. Clearly, M™ is an equatorial sphere if
S =0. And when S = n, M™ is indeed a product of spheres, due to the
works of Chern, do Carmo, and Kobayashi [3] and Lawson [5].

We are concerned about the following conjecture posed by Chern [9].

Chern Conjecture For n-dimensional closed minimal hypersurfaces

in the unit sphere S™*! with constant scalar curvature, the values S of
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the squared norm of the second fundamental forms should be discrete.
C. K. Peng and C. L. Terng [7] proved

Theorem [Peng and Terng, 1983] Let M™ be a closed minimally
immersed hypersurface with constant scalar curvature in St If S > n,
then S > n+1/(12n).

S. Chang [2] proved the following theorem by showing that S = 3 if

S > 3 and M?3 has multiple principal curvatures at some point.

Theorem [Chang, 1993|A closed minimally immersed hypersurface
with constant scalar curvature in S* is either an equatorial 3-sphere, a
product of spheres, or a Cartan’s minimal hypersurface. In particular,
S=0,3oré6.

H. Yang and Q. M. Cheng [10] proved
Theorem [Yang and Cheng, 1998] Let M™ be a closed minimally

immersed hypersurface with constant scalar curvature in S**!. If S > n,
then S > n+n/3.

Let G ~ O(k) x O(k) x O(q) C O(2k + q) and set 2k + ¢ = n + 2.
Then W. Y. Hsiang (4] investigated G-invariant, minimal hypersurfaces,
M™ in S"*!, by studying their generating curves, M" /G, in the orbit
space S"t!/G. He showed that there exit infinitely many closed minimal

hypersurfaces in S™*?! for all n > 2, by proving the following theorem

Theorem [Hsiang, 1987] For each dimension n > 2, there exist infin-
itely many, mutually noncongruent closed G-invariant minimal hyper-
surfaces in S™*1, where G ~ O(k) x O(k) x O(q) and k =2 or 3.

We studied G-invariant minimal hypersurfaces , in stead of minimal
ones, with constant scalar curvature in S°. In this paper, we shall prove

the following theorem:

Theorem. Let G ~ O(2) x O(2) x O(2) and let M* be a closed G-
invariant minimal hypersurface with constant scalar curvature in S°. If

S > 4, then M* does not have 3 distinct principal curvatures anywhere.
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1. Preliminaries

Let M™ be a manifold of dimension n immersed in a Riemannian
manifold N™*+! of dimension n + 1. Let V and (, ) be the connection
and metric tensor respectively of N*t! and let R be the curvature tensor
with respect to the connection V on N*+1. Choose a local orthonormal
frame field ey, ...,en41 in N™F! such that after restriction to M™, the
e1,...,e, are tangent to M™. Denote the dual coframe by {w,4}. Here
we will always use 4,7, k, ..., for indices running over {1,2,...,n} and
A,B,C,...,over {1,2,...,n+1}.

As usual, the second fundamental form h and the mean curvature H of
M™ in N™*! are respectively defined by

h(v,w) = (Vyw, eng1) and H =Y h(e;, €;).

M™ is said to be minimal if H vanishes identically. And the scalar
curvature R of N**! is defined by

R=" (R(ea, ep)en, ea).
A,B

Then the structure equations of N**! are given by

dwy = ZWAB Awp, wap+wpa =0,
B

1
dwap =) wac Awcp — 3 > Kapcpwe Awp,
c c,D

where Kapcp = (R(ea, e)ep, ec). When N™*! is the unit sphere
S™*1 we have

Kagcp =04acdBp — 4D bBC-

Next, we restrict all tensors to M™. First of all, w,4+1 = 0 on M™. Then

Zw(n+l)i Aw; =dwpyy = 0.
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By Cartan’s lemma, we can write
Win+1)i = — Z hijw;.
J
Here,
hij = —wWmnt1)i(e;) = —(Ve,ens1, €) = (Ves€is €ns1) = hlej, €;) = h(es, e5).
Second, from

dw; = Zwi]‘ ANwj, Wij +wj; = 0,
J
1
dw,-]- = zl:wil ANwy — 5 IZRiﬂmwl A W,
m

we find the curvature tensor of M™ is
(1.1) Rijim = Kijim + hit hjm — him hyj1.

If M™ is a piece of minimally immersed hypersurface in the unit sphere

S™t1 and R is the scalar curvature of M™, then we have
(1.2) R=n(n-1)-S5,

where § = 3, - hZ; is the square norm of h.
Given a symmetric 2-tensor T' = Zi’ j T;j w;w; on M™, we also define
its covariant derivatives, denoted by VT',V2T and V3T, etc. with

components T;; k, T;j x and T5; kip , Tespectively, as follows:
(13)) Tyjpwr =dTij + Y Toywes + Y _ Tiswsj,
k s s
Z Tijrwr = dTi, + Z Tsjk wWsi + Z Tisxwsj + Z Tij,s Wk,
! s s s
Z Tijkipwp = dTij k1 + Z Tkt wsi + Z Tis k1 Wsj

r 8 8
+ E Tij,s1 Wsk + E Tij ks Wsl-
S 8
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In general, the resulting tensors are no longer symmetric, and the rule

to switch sub-index obeys the Ricci formula as follows:

(14) i — Tigae = _, Toj Roikt + > Tis Rejkis
8 8
Tistp — Tikpt = 9 Toj ks Reitp + ) Tiak Rajip + > " Tijs Rokipy
s ) 8
T%j,klpm = Lijklmp = Z Tsj,kl Rsipm
L)

+ Z Tis,kl stpm + Z Tij,sl Rskpm + ZTij,ks Rslpm-
s s s

For the sake of simplicity, we always omit the comma (, ) between indices
in the special case T = Zi,j hi; wiw; with N+ = sntl,

Since Y p K(n+1)icpwc Awp = 0 on M™ when N**! = §7F1 we
find

d Zhijwj = Zhﬂwl A Wi
J gl

Therefore,

Z hijl w Nwj = z (dhij + Z h[j wii + Z hii wlj> ANwj = 0;
gl J l {

i.e., hij is symmetric in all indices.

Moreover, in the case that M™ is minimal, we have

(15) > hiu =Y b
. z

=> {hlilj + ) (hmiRmijt + hlmRmijl)} = (n—1)hy;
l m

+ Z {=hmihmibij + him (Omjdu — Omibij + Amjha — hmihij)}

I,m

= nh,-j - Z hlmhmlhij = (n — S)h”
I,m
It follows that
1
(1.6) 5AS=(n— S)S+ ) Ry

i!j,l
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2. G-invariant Hypersurface in S°

For G ~ O(2) x O(2) x O(2), RS splits into the orthogonal direct sum
of irreducible invariant subspaces, namely

RE~R*’0oR*0R? = {(X,Y, 2)}

where X, Y, Z are two generic 2-vectors. Here if we set z = |X|, y =
|Y| and z = |Z|, then the orbit space R®/G can be parametrized by
(z,y, 2); x, y, z € R, and the orbital distance metric is given by ds? =
dz? + dy? + dz*®. By restricting the above G-action to the unit sphere
S5 C RS, it is easy to see that

SS/G:{(x,y,z) : x2+y2+z2=1;m, y, z >0}

which is isometric to a spherical triangle of S%(1) with 7 /2 as its three

angles. The orbit labeled by (z,y, z) is exactly S'(z) x S'(y) x S'(z).
To investigate those G-invariant minimal hypersurfaces, M*, in S° we

study their generating curves, y(s) = M*%/G, in the orbit space S°/G.

To prove our theorem, we need two Lemmas which was proved in (8].

Lemma 2.1. Let M* be a G-invariant hypersurface in S°. Then
there is a local orthonormal frame field ey, ..., es in S° such that after

restriction to M*, the e1,. .., e, are tangent to M* and h;; = 0 if i # j.

Lemma 2.2. Let M* be a G-invariant hypersurface in S° and let
{ea} be a local orthonormal frame field in S5 as in Lemma 2.1. Then,

(a) all h;j; = 0 except when {3, j,1} is a permutation of either {i,4,n},

(b) all hiji; = 0 except when {i,j,k,l} is a permutation of either
{i,4,4,3}-

Under such frame field as Lemma 2.1, we have

(21)  en(hi) = hik — 3 heiwai(ex) — Y hiswsi(ex) = k-
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Hence, in the case M* is minimal, by differentiating >k bk =0 we
have

(2.2) 0= (ej €; — Veje,-) (Z hkk) = Z hkkz’j-
k k

Moreover, we have

(2.3) ek Z hy |l =2 Z hijex(hij) = 2 Z hijhijk.
i,j 1,3 4,J

Hence, in the case S is constant, by differentiating Z h2 = § twice,

we have

(24) O0={(erex — Veer) Z R% | = (hijhire + higihiji)-

1)]

3. G-invariant Minimal Hypersurface in S°

Throughout the following two sections , we assume that G ~ O(2) x
O(2) x O(2) and M* is a closed G-invariant minimal hypersurface with
constant scalar curvature in S°. Let {e4} be a local orthonormal frame
field in S5 as in Lemma 2.1. Then by differentiating Y ;hii =0 and
3=, h% = S with respect to e4 respectively, we have

(3.1) hi1a + ha2a + h3zs + haaa =0,
(3.2) hirhi1a + hozhoza + hazhass + haghass = 0.

By differentiating (3.1) and (3.2) with respect to e4 respectively, we
have

(3.3) h1144 + h2244 + h33as + hagaq = 0,
(3.4) Z hithiisa + Y hly =0,
i i
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since

ea(hiia) = hyiaa — Z{hsm wsi(€a) + hisa weil€a) + hiis wsa(ea)} = hisa.

8

Since e4(hiiaa) = hiaaq in the same way, by differentiating (3.3) and

(3.4) with respect to e4 respectively, we also have

(3.5) hi11444 + hoogaa + h33aaa + haga4a =0,
(3.6) > hiihiisaa + 3 hiiahiiaa = 0.
i i

(From (1.5), we also have
(3.7) i1 + hiszz + hisss + hisaa = (4 — S)his.
And, (1.6) and Lemma 2.2 imply

1
EAS =4-5)S+ Zh?jl =(4- S)S+3th?i4 + R3ss.
i, i#4
Since § is constant, we have
(3.8) 3> hZy+hiy =S(S-4).
i#4

Now, by differentiating it once and twice with respect to e4 respectively,

we have
(3.9) 3 Z hiia hiisq + hasa haaaa =0,
i4
(3.10) 3 Z Riia Piiaaq + haaq hagaas +3 Z hiag + higs = 0.
i#4 i#4

Here, if ¢ # 4, we know
(3.11)
hiia = his = €i(hia) + Y _ hoawei(es) + hiswsa(es) = (haa — i) was(es)

8



A property on G-invariant Minimal Hypersurfaces 149
and
(3.12) hiiii = ei(hiis) + Z{hsiiwsi(ei) + hisiwsi(ei) + hiiswsi(e:)
s
= 3hiiq wai(e:).
Moreover, if 7, j # 4 and ¢ # j, then

(3.13) hiizj = ej(hiis) + O _{Psijwsi(€s) + hisjwsi(es) + hiisws;(€;)

8

= hijqwaj(e;)-
And, if i # 4, then hyqq; = 0 by Lemma 2.2. Hence, we have

(3.14) haasii = €;(haaai) + Z{hs44iws4(ei) + hasaiwsa(€i)

+ hagsiwsa(€i) + haaaswsi(€i)}

= (h4444 — 3h44ii)w4i(ei)'
And, since

34(h4i4i) = 64(h44ii) = R44iig — Z{hs4iiws4(e4) + h4siiws4(€4)

8

+ hagsiwsi(€4) + haaiswsi(ea)}

= h44iia
and 64(h44i4) =0= 64(h444i), we have

hiigas = ea(haiis) = es{haiai + (hii = haa) (1 + hishaa)}
= hagiia + (Riia — haaa)(1 + Rishaa) + (his — haa)(hiishas + hiihaas)
= hagigi + hidi Rigia + haii Rigia + hasaRaiia
+ (hiia — hasa)(1 + hishag) + (his — haa)(hiishag + hiihaas)
= e;(haaia) + higiawia(e;) + haiia wia(ei) + hasag wai(e:) + haaii wia(es)
+ higi Rigia + haii Risia + haaa Radia
+ (hiia — haaa)(1 + hishaa) + (hii — haa)(hiishas + hiihaas)
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= higia wis(€:) + haiia wia(€:) + hagaq waies) + hygis wia(e;)
+ higiRigia + hasiRigia + haaa Rasia
+ (hisa — haaa)(1 + hishaa) + (his — haa)(hiiahas + hishaas)
= (h4aaa — Ragii — 2hiia4) wai(€i) + 2Ri54 Rigia + hyaa Raiia
+ (hiia — haaa)(1 + hishaa) + (hii — haa)(hsishas + hishaas).

Here, from (1.1) if ¢ # 4 then
Rigia = Kiaia + hithag =14 hishas  and  Ryjiq = —1 — haghy;.
Hence, if i # 4 then

(315) hii444 == (3 + 4hiih44 - hZ4)hii4 - (2 + 3hiih44 — h?i)h444
+ (haaaa — hagis — 2hiiaa)wai(es).

Now, to prove our Theorem we need the following two lemmas which

are from [8 ].

Lemma 3.1.Suppose h;; = hyy = X at some point p fori =1, 2 or
3. Then,

123t 4402

(3.16) §= w1

Lemma 3.2. If S > 4 and ¢ = 1, 2,3, then for all i, hggy # hy

anywhere.,

4. Proof of the Theorem

Throughout this section, {e4} is such a local frame field in S° as in

Lemma 2.1.

Theorem 4.1. If S > 4, then M* does not have 3 distinct principal

curvatures anywhere.
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Proof. Suppose that M* has 3 distinct principal curvatures at some
point, say, p. Let h;; = A;. Then by Lemma 3.2, without loss of gen-
erality we may assume that A\; = Ay = A and A, A3, A4 are distinct at
p. From now on, we evaluate all calculations at p. Then (3.1) and (3.2)
imply
(4.1) { hi14 + ha2q4 + hazs + hysq = 0,

. Ahi1s + Ahaog + A3 hazg + Ag hyaq = 0.

Since S > 4, by using (3.8) and (4.1) we see that hy14 7 0 or hagg # 0.
Hence, without loss of generality we can put hi14 = bhooy for some b.
Thus, (4.1) becomes

{ (1 +0) haoa + h3zs + haaa = 0,
(1 +b)Aho2a + A3 haza + Mg hygq = 0.
Hence, from (3.11) and (4.2) we have

(4.2)

(43) h114 = ()\4 - )\) w41 (61) = (/\4 - /\3) ab,
haog = (Mg — A waz(e2) = (Mg — A3) a,
haza = (A4 — A3) waa(es) = (A — Ag) a (1 +b),

for some nonzero real number a, since S > 4.

Since h;j; is symmetric in all indices, (1.4) implies
(4.4) hazi1 — h11ss = (A3 = A)(1 + A3 A) = hazaz — hazas.

By the way, (3.13) and (4.3) imply
(4.5)
hasin — hi133 = hazawai(e1) — h11a was(es)

=(A=A)ae(1+0)32ab— (A — Ag) b2t a (1 +b)
= (As — A)a2b(1 +b),
hasas — hoozs = hazsa waz(ez) — hooawas(es) = (A3 — A)a®(1 + b).

Hence, from (4.4) and (4.5) we get

(4.6) (M3 —A)a®b(1+b) =3 —=A) (1 +A3)) = (As — Na?(1 +b)
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and so,
(4.7) b=-1 or b=1

Therefore, to prove Lemma 4.2 we only need to show that b # —1 and

b# 1.

Case 1. In the case b = —1: We compute 6hi14h11444 in Step 1
and Step 2 respectively by using different ways, and show that in Step 3
they are not equal mutually. Now, (4.6) implies (A3 — A)(1 + Az A) =0,

i.e.,

-1 1
(4.8) )\960, )\3=— and )\42—-——2)\.
A A
Hence,
2
(4.9) S=2/\2+A§+)\Z=6z\2+7\5—4.
;From (4.3) and (4.2), we have
(4.10)
hiia = —hags, h3zs = haas =0, wai(er) = —waz(e2) and wyz(esz) = 0.

Hence, from (3.8) and (4.10) we have
(4.11) 6h3,, = S(S —4).
Let hi14wq1(e1) = c. Then, by using (4.3) and (4.8) we have

Pha B2
A=A 1-3)\%

(4.12) e(M— N =h3, andso c=
Moreover, by using (3.12), (3.13), (3.3), (3.7) and (4.10) we also have

(4.13) hy111 =3¢, hiioz =—¢, hiza =0, hiaa=(4-5)
hosi1 = —¢, hosoa =3¢, haoaz =0, hoas = (4 5)A—2c,
hasin =0, haza2 =0,  haaz =0, hasas=( )
haari = —2¢, haaoz = —2¢, haazz =0, hagaa = (4= S)Ay +4c.
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Step 1. First we compute 6hj14h11444 by using one way. ;From
(3.14), (3.15) and (4.10), we have

(4.14) hass33 =0, h3zgas — haaqzz =0 and s0, hgzqeq =0.

Now, hyi144 = hoogq from (4.13). Hence, from (3.5), (3.6), (4.10) and
(4.14)

hi1444 + ho2444 + hagq44 = 0,
(4.15)

Ah11444 + Ah22444 + Aghasaas = 0.

Hence, we have

(4.16) h114a4 = —h2444 and hageqs = 0.
Hence, from (3.10) and (4.16) we have

(4.17) 6h11ah1144a = —6h3 44 — 3h3304 — Pigaa-

Step 2. Second we compute 6hi14h11444 by using another way. By
using (3.14), (3.15) and (4.10) we also have

(4.18)
6h114h11444 = 6(3 + 4hy1hag — h2)R3 14 — 6(2 + 3hy1has — h%))h11ahass

+6(hagaa — haa11 — 2h1144)h114 war(€1)

= 6(h4444 — h4q11 — 2h1144)c + 6(3 +4A g — /\Z)h%u

Step 3. Now we show that they computed in Step 1 and Step 2 re-
spectively, are not equal mutually. Suppose (4.18) = (4.17). Then the
equality gives
(4.19)
6(Passa—haan1 —2h1144) cHB(3+4A Xg=A)RT 4 = —6hT144—3h350s—hisas-
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By using (4.11) and (4.13), (4.19) becomes
6[(4 — S)Ag +4c— (—2¢) — 2{(4 — S)A — 2¢c}]c

+ (344X — AD)S(S - 4)
= —6{(4 - S)A —2c}? —3{(4 = S)A3}* — {(4 — S)A4 + 4c}>..

By using the fact that S —4 # 0,

(4.20) (S — 4)(6X% +3X3 + A2) + (36X — 14Ay)c

100c?
S—4
Let A2 = t. Then, from (4.8) and (4.9) we have

+5(3+ 420 — 2D +

W 6)2+ 302+ 02 =6X2+3% + (-2 =252t +4
' A2 —4X )y (-2’ —ax(L-20) =549t 6.

And, from (4.9) and (4.12) we also have

— 2 _ _ _ B
(4.22) {S =6t+2-4, (S-Ht=2Bt-1)(t-1)

_ hi, _ S(S-4)) ) = S(S=4)t
C =xIXT e3> T Ba-s-

By using (4.21) and (4.22), the above (4.20) becomes

(4.23) (11082 + 9128 — 720)t = 855 + 605 — 144.

Therefore, from (4.9) and (4.23) we have a system of equations:

S=6t+2—4,
(4.24)

(—1108% + 9125 — 720)t = 8552 + 605 — 144.
To find such pairs of numbers S, t that satisfy the above system (4.24)

of equations, let us eliminate S from a system of equations. Then we

obtain a equation
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(4.25)  f(t) = 990t° — 1923t* + 1262¢> — 142¢* — 200t + 85 = 0.

Since S > 4, we have

2
6t+?"‘4>4

and so,0<t<1/3ort>1.
For all ¢ such that 0 <t < 1/3,

£(t) = 990t° — 1923t + 12623 — 142¢% — 200t + 85
= 110(9t? — 6t + 1)t> — 1263t* + 1152t — 142¢> — 200¢ + 85
= 110(3t — 1)%3 + 421(1 — 3t)t3 + 16(1 — 9t*) + 67(1 — 3t)
+ 73183 + 22 +t+2> 0.

Moreover, for all t such that ¢ > 1

F(t) = 990t° — 1923t* + 1262t — 142t — 200t + 85
= 962(t2 — 2t + 1)t3 + 100(t2 — 2t + 1) + 28t> + t* + 300t> — 242¢% — 15
= 962(t — 1)%t3 + 100(t — 1)? + 242(t3 — £2) + 15(t* - 1)
+28t% + t* + 43t* > 0.

Hence, f(t) > 0 for all ¢ such that 0 <t < 1/3 or t > 1. That is, there
is no root of the equation (4.25). It follows that b # —1.

Case 2. Inthecaseb=1: We also compute hi144 in Step 1 and
Step 2 respectively by using different ways, and show that in Step 3 they
are not equal mutually. By using (4.6), we have

(4.26) 14 A3\ =2a%

Case 2 — 1. Suppose that A = 0. Then, it follows from (4.26) that

1
(4.27) a? = 5 =X £0 and S=2)3.
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(From (4.3), we have

(4.28) hi14 = hozs = ~h33s = —hasq = —2aX3 # 0,

wa(e1) = waz(e2) = 2a, wys(es) = —a.
Together with (3.12) and (3.13), (4.28) implies

(4.29) hi111 = 6ahi1s, hi122 = 2ahi1s, hi13z = —ahiig,

hao11 = 2aho24, hooap = 6ahaas, hogzz = —ahaoy.

Step 1. First we compute hj144 by using one way. ;From (3.7) and
(4.29) we have

(4.30)
hi144 = (4 — S)A — h1111 — h1122 — hnizas = —Ta hyyg = 14a%X3 = T)s.

Step 2. Second we compute hjjse by using another way. Since
hi1aa = ha2aa, (3.3), (3.4), (3.9) and (4.28) give a system of equations:
2h1144 +  h3zaa + haaaa =0,

(4.31) h3zaa — hasea = —8As,

6hy1144 — 3h3zaa — haaas = 0.

Hence, we obtain

4
(4.32) hi144 = _5}‘3'

Step 3. Now we show that they computed in Step 1 and Step 2 re-
spectively, are not equal mutually. Suppose (4.30) = (4.32). Then the
equality gives

TAsg = —g/\3 and so, A3 =0.

But, since A3 # 0, it follows that A # 0.
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Case 2 — 2. Suppose that A # 0. Then, from (4.25) we have

2_1 _ 2
2a/\ ’ /\4:1 /\2a _ o)

(4.33) A3 =

and

2 _ 2
434) S=222+ X2 +22=6)2+2 20 1 —4(1 — 24?).
3 4 /\

(From (4.3), we have

(4.35)
{ hi14 = hoas = (A — A3) a, haza = 2(A — Ag) @, hags =2(A3 — A)a,
wa1(e1) = waz(ex) = 330 a, was(es) = 2,\);;_'\,\“5 a.

Hence, (3.8), (4.34) and (4.35) imply
(4.36) S(S —4) = (16X2 + 102 + 1822 — 1223 A4 — 24X Ay — 823 ) a®.

Let A2 =t and 2a2 —1 = u . Then by using (4.33) and (4.34) we have

2

u -U 2u
. A = — = — - — —_— .
(4 37) 3 /\, /\4 by 2)\, S 6t + t + 4u
And, by using (4.36) and (4.37) we have

(4.38) S(S —4) = (68t + 20-’“1; + 56u) (u + 1).

By eliminating S from (4.37) and (4.38), we have
(4.39) u® — tu® — (462 + Tt)u® — (563 + 18t%)u + (9t* — 23t%) = 0.

Step 1. First we compute hj144 by using one way. jFrom (3.12), (3.13)
and (4.35),
40— A3)? ,

(440)  hiaa= (@ - S)A— 22723 42 4 903, — A)a?
M=\
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and

(4.41) hogas = (4 — S)A — hoog{wai(e1) + 3waz(ez) + waz(es)} = h1144-

Step 2. Second we compute hjy44 by using another way.
Since hy144 = h2244, (3.3), (3.4) and (3.9) imply a system of equations:

(4.42)
2h114a  +  h3ssa +  hyges =0,

2Ah1144 + Ashasgs + Aghagss = "(2h%14 + h§34 + hi44),
6h114 h1144 + 3h334 h3zas + hagq hagas = 0.

Here, since A3 + Ay = —2], (4.35) gives
2h3 4 + 334 + higy = 85 a%.

Using (4.35) and (4.36), from the system (4.42) of equations we also

compute

3200 = 3))

(443) h1144 = 54

Step 3. Now, by using (4.39) we show that they computed in Step 1
and Step 2 respectively, are not equal mutually. Suppose (4.43) =
(4.40). Then, we have

3200 — 3\)

4(hg — A3)?

2 4 2(\g — N)a?.
)\4_/\ a’ + ()\4 )a

By using (4.37), from (4.44) we obtain

(4.45) 5u® + (14t + 7)u® + (28t% + 26t)u> + (4¢3 + 124t — 10t)u?
— (93t* — 222t° — 4t?)u — (54t° — 69¢t* — 38t%) = 0.
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Therefore, from (4.39) and (4.45) we obtain a system of equations:

(4.46)
ut — tu® — (4t + Tt)u? — (5¢3 + 18t%)u + (9t* — 23t3) = 0,

5ud + (14t + T)u® + (28t2 + 26t)u’ + (4¢3 + 12482 — 10t)u?
—(93t* — 222t3 — 4¢%)u — (54t5 — 69t* — 38t3) = 0.

To find such pairs of numbers ¢, u that satisfy the above system (4.46)

of equations, let us eliminate u. Since ¢ > 0, From (4.46), we have

Su{tu’ + (4% + Tt)u? 4 (5t 4 18t%)u — (9t* — 23t3)}
+ (14t + T){tu® + (4% + Tt)u? + (583 + 18t?)u — (9t* — 23t%)}
+ (28t + 26t)u® + (413 4 1244 — 10t)u?

— (93t* — 222t% — 4t?)u — (545 — 69t — 38t3) = 0.

(4.47)  5t{tud + (4t + Tt)u® + (56 + 18t%)u — (9t* — 23t%)}
+ 5uf{(4t? + Tt)u? + (5¢3 + 18t%)u — (9t* — 23t3)}
+ (14t + 7){tu® + (42 + Tt)u® + (53 + 18t%)u — (9t* — 23t3)}
+ (28t% + 26t)u’ + (413 + 124t — 10t)u?
— (93t* — 222t% — 4t?)u — (54t° — 69t* — 38t3) = 0.

Since t > 0, (4.47) + t implies

(4.48) (67t 4 68)u® + (105t + 375¢ + 39)u?
+ (—43t3 + 7T14¢% + 130t)u — (225¢* — 443t3 — 199¢%) = 0.

{(4.48) x u} and (4.46) imply

(67t + 68){tud + (4% + Tt)u’® + (5t3 + 18t2)u — (9t* — 23t3)}
+ (105¢% + 375t + 39)u® + (—43t3 + 714¢% + 130t)u>
— (225t* — 4433 — 199¢%)u = 0.
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(4.49) (17262 + 443t + 39)u® + (225¢% + 1455¢% + 606t)u’
+ (110t* + 1989¢% + 1423t%)u — (603t5 — 929t* — 1564t%) = 0.

{(4.48) x (172t + 443t + 39) — (4.49) x (67t + 68)} + 3 yields

(4.50) (995t* — 590t° + 12462t —~ 3102t + 507)u’
= (4922t + 12328t* — 35464t + 3776t — 1690t)u
— 5678 + 14906t° — 17914t + 306t> — 2587¢%.

For all t > 0, we have

995¢* — 590t + 12462t> — 3102t + 507
= 295(t — 1)%t2 + 507(4t — 1) + 700t* + 4055t* + 954¢ > 0.

Hence, multiplying (4.48) by 995t* + - .- 4 507 we obtain

(67t + 68)(995t* — 590t° + 12462t — 3102t + 507)u’

+ (1052 + 375¢ + 39)(995¢* — 590¢% + 12462t — 3102t + 507)u’

4 (—43t3 + 714t + 130£)(995t* — 590t> + 12462t* — 3102t + 507)u

_ (225t* — 443t® — 199¢%)(995t* — 590t° + 12462t — 3102t + 507) = 0.

And using (4.50) we obtain

(4.51) (67t + 68)u{(4922t> + 12328t* — 35464t + 3776t> — 1690t)u
— 567t8 + 149065 — 17914t* + 306t> — 2587t}
+ (105¢2 + 375t + 39){(4922t° + 12328¢* — 35464t> + 3776¢> — 1690t)u
— 567t5 + 14906t5 — 17914¢* 4 306t> — 2587¢%}
+ (—43t% + 7142 + 130t)(995t* — 590t3 + 12462t> — 3102t + 507)u
— (225¢% — 443t3 — 199¢%)(995¢* — 590t + 12462¢% — 3102t + 507) = 0.



A property on G-invariant Minimal Hypersurfaces 161

And dividing (4.51) by 2t(67t + 68) we obtain

(4.52)  (2461t* + 6164t> — 17732t% + 1888t — 845)u®
+ (3254t° + 32788t* — 3270413 — 1620t% — 5174t)u
+ (—2115t% + 16520t5 — 10652t* + 10788t> — 9933t2) = 0.

To eliminating u? from (4.50) and (4.52), multiply (4.52) by 995¢* +
-+ + 507. Then, we obtain

(2461t* + 61643 — 17732t2 + 1888t — 845)(995t* — 590¢°
4 12462t — 3102t + 507)u>

+ (3254t + 32788t* — 3270413 — 1620t? — 5174t)(995t* — 5903
+ 12462t — 3102t + 507)u

+ (—2115t% + 16520t° — 10652t* + 10788t3 — 9933t2)(995t* — 590t°
+ 12462t* — 3102t + 507) = 0.

And using (4.50) we obtain

(2461t* + 6164t% — 17732t% + 1888t — 845){(4922t° + 12328t* — 35464¢1>
+ 3776t% — 1690t)u — 567t% 4 14906t5 — 17914t* + 3063 — 25872}
+ (32545 4 32788t* — 32704¢% — 1620t? — 5174t)(995t* — 590t°
+ 12462t% — 3102t + 507)u
+ (—2115t° + 16520t° — 10652t* 4 10788t> — 9933t%)(995t* — 5903
+ 12462t% — 3102t + 507) = 0.

And dividing the above equation by 4t(67t + 68) we obtain

(4.53)
(57279t7 + 282846t° — 697135t° + 698506t* — 129559t3 — 692942
+ 36855t — 4394)u
= (13059t — 203082t% + 164525¢° + 376306t* — 906107t°
+ 494522t% — 124805t + 10478)t.
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In the same way as above, multiplying both sides of (4.50) by 57279t"+
-+ —4394 and using (4.53) we obtain an equation. And dividing both
sides of the equality by 995t* + - .- 4+ 507 we have

(4.54)
(13059t7 — 2030825 + 164525t + 376306t* — 9061073
+ 494522t% — 124805t 4 10478)u
= (31959t7 — 126930t° + 959993t — 2470086t* 4 2650385¢°
— 1084542t + 226831t — 12506)t.

Last, using (4.53) and (4.54) we obtain an equation in which u is
eliminated and dividing both sides of the equation by 32(995¢* + --- +

507) we also obtain

(4.55)
5213710 + 253062t° — 2033508t2 + 5141910t” — 7134618t°
+ 6230014t° — 3591608t* + 1378538t> — 343231¢2 4 50684t — 3380
= (t — 1)2(3t — 1)%(5793t® 4 43566t> — 123930t* + 139498¢3
— 79719t% + 23644t — 3380) = 0.

;From (4.53), (4.54) and (4.36), we see that if t = 1 or §, thenu = —1
and § = 4. But since S > 4, we know ¢ # 1 and t # % Hence, from
(4.55) we have an equation

(4.56)
5793t5 + 43566t° — 123930t* + 139498t3 — 79719¢% + 23644t — 3380 = 0.

Let f(t) = 5793t%+43566t5 —123930t* + 139498t3 —79719¢% 423644t —
3380. Then, we have

F'(t) = 34758t° 4 217830t — 495720t + 418494¢% — 159438t + 23644,
F(t) = 6(28965t + 145220t> — 247860¢> + 139498t — 26573),

£(t) = 6(115860t + 435660t% — 495720t + 139498)
= 6(28965¢ + 131172)(2t — 1) + 6(26832t* + 3t + 8326) > 0.
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Since f"'(t) > 0 for all t > 0, f” is increasing. And since f”(0) < 0,
there is only one real number o (5/12 < a < 1/2) such that f”(a) = 0.
That is, f’ has only one local minimum at a. For the o

f'(@) = 34758a° + 217830a* — 49572003 + 41849402 — 159438c: + 23644

= (%a - 1) (289650 + 145220a° — 247860a° + 1394980 — 26573)

2 3
+ 72531a* — 53068a2 + 32362 + 11947 — 2929 + goﬁ +za

2
= 725310 — 53068a> + 323602 + 11947a — 2929 + gaz + —g-a

> (80590 — 524a — 886)(3c — 1) + (2a + 11) (e — 1)?
+ 71750 — 2054
>0

since 8059a° — 524a ~ 886 > 0 and 7175a — 2054 > 0. Hence f'(t) > 0
for all £ > 0, and so f is increasing. It implies that the equation (4.56)
has only one root 8 (= 0.654) between 2 and 2, since f(8) <0 and
f(%) > 0. For the root t = 3, from (4.53) and (4.54) we compute that
u ~ —1.118. But, since a is nonzero in (4.3), u = 2a%2 — 1 > —1.
Therefore there is no pair t, u satisfying the system (4.46) of equations
such that t > 0, t # %, t # 1 and u > —1. That is, it follows that b # 1,

which completes the proof of our theorem. O
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