• Title/Summary/Keyword: metric connection

Search Result 154, Processing Time 0.021 seconds

HALF LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAEHLER MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Jin, Dae Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.119-133
    • /
    • 2017
  • In this paper, we study half lightlike submanifolds of an indefinite Kaehler manifold with a semi-symmetric non-metric connection. First, we characterize the geometry of two types of half lightlike submanifolds of such an indefinite Kaehler manifold. Next, we investigate the geometry of half lightlike submanifolds of an indefinite complex space form with a semi-symmetric non-metric connection.

HYPERSURFACES OF ALMOST γ-PARACONTACT RIEMANNIAN MANIFOLD ENDOWED WITH A QUARTER SYMMETRIC METRIC CONNECTION

  • Ahmad, Mobin;Jun, Jae-Bok;Haseeb, Abdul
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.3
    • /
    • pp.477-487
    • /
    • 2009
  • We define a quarter symmetric metric connection in an almost r-paracontact Riemannian manifold and we consider invariant, noninvariant and anti-invariant hypersurfaces of an almost r-paracontact Riemannian manifold endowed with a quarter symmetric metric connection.

GEOMETRY OF HALF LIGHTLIKE SUBMANIFOLDS OF INDEFINITE KAEHLER MANIFOLDS WITH A QUARTER-SYMMETRIC METRIC CONNECTION

  • Gupta, Garima;Kumar, Rakesh
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.979-998
    • /
    • 2020
  • We study totally umbilical real half lightlike submanifolds of indefinite Kaehler manifolds with a quarter-symmetric metric connection. We obtain some conditions for a real half lightlike submanifold of an indefinite Kaehler manifold with a quarter-symmetric metric connection to be a product manifold. We derive the expression for induced Ricci type tensor 𝓡(0,2) and also obtain conditions for 𝓡(0,2) to be symmetric.

HYPERSURFACES OF ALMOST γ-PARACONTACT RIEMANNIAN MANIFOLD ENDOWED WITH SEMI-SYMMETRIC METRIC CONNECTION

  • Jun, Jae-Bok;Ahmad, Mobin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.895-903
    • /
    • 2009
  • We define a semi-symmetric metric connection in an almost $\gamma$-paracontact Riemannian manifold and we consider invariant, non-invariant and anti-invariant hypersurfaces of an almost $\gamma$-paracontact Riemannian manifold endowed with a semi-symmetric metric connection.

LIGHTLIKE HYPERSURFACES OF AN INDEFINITE KAEHLER MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Jin, Dae Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.101-115
    • /
    • 2017
  • In this paper, we study three types of lightlike hypersurfaces, which are called recurrent, Lie recurrent and Hopf lightlike hypersurfaces, of an indefinite Kaehler manifold with a semi-symmetric non-metric connection. We provide several new results on such three types of lightlike hypersurfaces of an indefinite Kaehler manifold or an indefinite complex space form, with a semi-symmetric non-metric connection.

GENERIC LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE TRANS-SASAKIAN MANIFOLD WITH A QUARTER-SYMMETRIC METRIC CONNECTION

  • Jin, Dae Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.1003-1022
    • /
    • 2017
  • The object of study in this paper is generic lightlike submanifolds of an indefinite trans-Sasakian manifold with a quarter-symmetric metric connection. We study the geometry of two types of generic light-like submanifolds, which are called recurrent and Lie recurrent generic lightlike submanifolds, of an indefinite trans-Sasakian manifold with a quarter-symmetric metric connection.

YANG-MILLS CONNECTIONS ON A COMPACT CONNECTED SEMISIMPLE LIE GROUP

  • Park, Joon-Sik
    • East Asian mathematical journal
    • /
    • v.26 no.1
    • /
    • pp.75-79
    • /
    • 2010
  • Let G be a compact connected semisimple Lie group, g the Lie algebra of G, g the canonical metric (the biinvariant Riemannian metric which is induced from the Killing form of g), and $\nabla$ be the Levi-Civita connection for the metric g. Then, we get the fact that the Levi-Civita connection $\nabla$ in the tangent bundle TG over (G, g) is a Yang-Mills connection.

ON SOME PROPERTIES OF SEMI-INVARIANT SUBMANIFOLDS OF A NEARLY TRANS-SASAKIAN MANIFOLD ADMITTING A QUARTER-SYMMETRIC NON-METRIC CONNECTION

  • Ahmad, Mobin;Jun, Jae-Bok;Siddiqi, Mohd Danish
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.1
    • /
    • pp.73-90
    • /
    • 2012
  • We define a quarter-symmetric non-metric connection in a nearly trans-Sasakian manifold and we consider semi-invariant submanifolds of a nearly trans-Sasakian manifold endowed with a quarter-symmetric non-metric connection. Moreover, we also obtain integrability conditions of the distributions on semi-invariant submanifolds.

CR-SUBMANIFOLDS OF A LORENTZIAN PARA-SASAKIAN MANIFOLD ENDOWED WITH A QUARTER SYMMETRIC METRIC CONNECTION

  • Ahmad, Mobin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.1
    • /
    • pp.25-32
    • /
    • 2012
  • We define a quarter symmetric metric connection in a Lorentzia para-Sasakian manifold and study CR-submanifolds of a Lorentzian para-Sasakian manifold endowed with a quarter symmetric metric connection. Moreover, we also obtain integrability conditions of the distributions on CR-submanifolds.

RIEMANNIAN MANIFOLDS WITH A SEMI-SYMMETRIC METRIC P-CONNECTION

  • Chaubey, Sudhakar Kr;Lee, Jae Won;Yadav, Sunil Kr
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.1113-1129
    • /
    • 2019
  • We define a class of semi-symmetric metric connection on a Riemannian manifold for which the conformal, the projective, the concircular, the quasi conformal and the m-projective curvature tensors are invariant. We also study the properties of semisymmetric, Ricci semisymmetric and Eisenhart problems for solving second order parallel symmetric and skew-symmetric tensors on the Riemannian manifolds equipped with a semi-symmetric metric P-connection.