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LIGHTLIKE HYPERSURFACES OF AN INDEFINITE

KAEHLER MANIFOLD WITH A SEMI-SYMMETRIC

NON-METRIC CONNECTION

Dae Ho Jin

Abstract. In this paper, we study three types of lightlike hypersurfaces,
which are called recurrent, Lie recurrent and Hopf lightlike hypersurfaces,
of an indefinite Kaehler manifold with a semi-symmetric non-metric con-
nection. We provide several new results on such three types of lightlike
hypersurfaces of an indefinite Kaehler manifold or an indefinite complex
space form, with a semi-symmetric non-metric connection.

1. Introduction

A linear connection ∇̄ on a semi-Riemannian manifold (M̄, ḡ) is called a
semi-symmetric non-metric connection if it and its torsion tensor T̄ satisfy

(∇̄X ḡ)(Y, Z) = −π(Y )ḡ(X,Z)− π(Z)ḡ(X,Y ),(1.1)

T̄ (X,Y ) = π(Y )X − π(X)Y,(1.2)

for any vector fields X, Y and Z on M̄ , where π is a 1-form associated with a
smooth vector field ζ, which is called the characteristic vector field, on M̄ by

π(X) = ḡ(X, ζ).

The notion of semi-symmetric non-metric connection on a Riemannian manifold
was introduced by Ageshe-Chafle [1, 2] and later studied by several authors.

The theory of lightlike hypersurfaces is an important topic of research in
differential geometry due to its application in mathematical physics, especially
in the general relativity. The study of such notion was initiated by Duggal and
Bejancu [4] and later studied by many authors [5, 6]. Recently Yasar et al. [15]
and Jin [8]∼[11] studied lightlike submanifolds of a semi-Riemannian manifold
with a semi-symmetric non-metric connection.
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Let ˜∇ be the Levi-Civita connection of a semi-Riemannian manifold (M̄, ḡ)
with respect to ḡ. We define a linear connection ∇̄ on M̄ given by

(1.3) ∇̄XY = ˜∇XY + π(Y )X

for any vector fields X and Y of M̄ . Then, by directed calculations from (1.3),
we see that ∇̄ is a semi-symmetric non-metric connection. Conversely if ∇̄ is
a semi-symmetric non-metric connection, then we can write

(1.4) ∇̄XY = ˜∇XY + ψ(X,Y ).

Substituting (1.4) into (1.1) and using the fact that ˜∇ is metric, we have

(1.5) ḡ(ψ(X,Y ), Z) + ḡ(ψ(X,Z), Y ) = π(Y )ḡ(X,Z) + π(Z)ḡ(X,Y ).

Also, from (1.4) and the fact that ˜∇ is torsion-free, it follows that

ψ(X,Y )− ψ(Y,X) = ∇̄XY − ∇̄YX − ˜∇XY + ˜∇YX

= ∇̄XY − ∇̄YX − [X,Y ]

= T̄ (X,Y ).

Thus, by using (1.2), we obtain

(1.6) ψ(X,Y )− ψ(Y,X) = π(Y )X − π(X)Y.

Exchanging X with Y and Y with X to (1.5), we have

ḡ(ψ(Y,X), Z) + ḡ(ψ(Y, Z), X) = π(X)ḡ(Y, Z) + π(Z)ḡ(X,Y ).

Subtracting this equation from (1.5) and using (1.6), we obtain

(1.7) ḡ(ψ(X,Z), Y ) = ḡ(ψ(Y, Z), X).

Again from (1.6) we get

ḡ(ψ(X,Y ), Z)− ḡ(ψ(Y,X), Z) = π(Y )ḡ(X,Z)− π(X)ḡ(Y, Z),

ḡ(ψ(X,Z), Y )− ḡ(ψ(Z,X), Y ) = π(Z)ḡ(X,Y )− π(X)ḡ(Z, Y ).

Adding these two equations and using (1.5), we have

ḡ(ψ(Y,X), Z) + ḡ(ψ(Z,X), Y ) = 2π(X)ḡ(Y, Z).

Using this equation, (1.7) and the fact that ḡ is non-degenerate, we obtain

ψ(X,Y ) = π(Y )X.

Thus ∇̄ satisfies (1.3). This result implies that a linear connection ∇̄ on M̄ is
semi-symmetric non-metric connection if and only if ∇̄ satisfies (1.3).

In this paper, we study lightlike hypersurfaces M of an indefinite Kaehler
manifold M̄ with a semi-symmetric non-metric connection ∇̄ given by (1.3).
We introduce three types of lightlike hypersurfaces, named by recurrent, Lie
recurrent and Hopf lightlike hypersurfaces, of an indefinite Kaehler manifold
and we provide several new results on such three types of lightlike hypersurfaces
of an indefinite Kaehler manifold with a semi-symmetric non-metric connection.
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2. Lightlike hypersurfaces

Let M̄ = (M̄, ḡ, J) be an indefinite Kaeler manifold, where ḡ is a semi-
Riemannian metric and J is an indefinite almost complex structure satisfying

(2.1) J2 = −I, ḡ(JX, JY ) = ḡ(X,Y ), (˜∇XJ)Y = 0,

for any vector field X and Y of M̄ , where ˜∇ is the Levi-Civita connection with
respect to the metric ḡ. Let ∇̄ be a semi-symmetric non-metric connection on
M̄ given by (1.3). Using (1.3) and (2.1)3, we see that

(2.2) (∇̄XJ)Y = π(JY )X − π(Y )JX.

Let (M, g) be a lightlike hypersurface of an indefinite Kaehler manifold M̄ .
Then the normal bundle TM⊥ is a subbundle of the tangent bundle TM , of
rank 1, and coincides with the radical distribution Rad(TM) = TM ∩ TM⊥.
A complementary vector bundle S(TM) of Rad(TM) in TM is non-degenerate
distribution on M , which is called a screen distribution on M [4], such that

TM = Rad(TM)⊕orth S(TM),

where ⊕orth denotes the orthogonal direct sum. We denote such a lightlike
hypersurface by M = (M, g, S(TM)). Denote by F (M) the algebra of smooth
functions on M and by Γ(E) the F (M) module of smooth sections of any
vector bundle E over M . Also denote by (2.1)i the i-th equation of the three
equations in (2.1). We use same notations for any others. For any null section
ξ of Rad(TM) on a coordinate neighborhood U ⊂M , there exists a unique null
section N of a unique lightlike vector bundle tr(TM) in S(TM)⊥ satisfying

ḡ(ξ,N) = 1, ḡ(N,N) = ḡ(N,X) = 0, ∀X ∈ Γ(S(TM)).

We call tr(TM) and N the transversal vector bundle and the null transversal

vector field of M with respect to the screen distribution S(TM), respectively.
Then the tangent bundle TM̄ of M̄ is decomposed as follow:

TM̄ = TM ⊕ tr(TM) = {Rad(TM)⊕ tr(TM)} ⊕orth S(TM).

In the sequel, let X, Y, Z andW be the vector fields onM , unless otherwise
specified. Let P be the projection morphism of TM on S(TM). Then the local
Gauss and Weingarten formulas of M and S(TM) are given by

∇̄XY = ∇XY +B(X,Y )N,(2.3)

∇̄XN = − A
N
X + τ(X)N ;(2.4)

∇XPY = ∇∗
XPY + C(X,PY )ξ,(2.5)

∇Xξ = − A∗
ξX − σ(X)ξ,(2.6)

respectively, where ∇ and ∇∗ are the induced linear connections on TM and
S(TM) respectively, B and C are the local second fundamental forms on TM
and S(TM) respectively, A

N
and A∗

ξ are the shape operators on TM and

S(TM) respectively and τ and σ are 1-forms on TM .
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The connection ∇ is a semi-symmetric non-metric connection and satisfies

(∇Xg)(Y, Z) = B(X,Y )η(Z) +B(X,Z)η(Y )(2.7)

− π(Y )g(X,Z)− π(Z)g(X,Y ),

T (X,Y ) = π(Y )X − π(X)Y,(2.8)

and B is symmetric on TM , where T is the torsion tensor with respect to the
induced connection ∇ on M and η is a 1-form on TM such that

η(X) = ḡ(X,N).

From the fact that B(X,Y ) = ḡ(∇̄XY, ξ), we know that B is independent
of the choice of the screen distribution S(TM) and satisfies

(2.9) B(X, ξ) = 0.

From (2.3), (2.6) and (2.9), we obtain

(2.10) ∇̄Xξ = −A∗
ξX − σ(X)ξ.

Now we set a = π(N) and b = π(ξ). Then the above two local second
fundamental forms B and C are related to their shape operators by

B(X,Y ) = g(A∗
ξX,Y ) + bg(X,Y ), ḡ(A∗

ξX,N) = 0,(2.11)

C(X,PY ) = g(A
N
X,PY ) + ag(X,PY ) + η(X)π(PY ),(2.12)

ḡ(A
N
X,N) = −aη(X), σ(X) = τ(X)− bη(X).

From (2.11), A∗
ξ is S(TM)-valued real self-adjoint and satisfies

(2.13) A∗
ξξ = 0.

Denote by R̄, R and R∗ the curvature tensors of the semi-symmetric non-
metric connection ∇̄ on M̄ , and the induced linear connections ∇ and ∇∗ on
M and S(TM) respectively. Using the Gauss-Weingarten formulas, we obtain
two Gauss equations for M and S(TM) such that

R̄(X,Y )Z = R(X,Y )Z +B(X,Z)A
N
Y −B(Y, Z)A

N
X(2.14)

+ {(∇XB)(Y, Z)− (∇Y B)(X,Z) + τ(X)B(Y, Z)

− τ(Y )B(X,Z) +B(T (X,Y ), Z)}N,

R(X,Y )PZ = R∗(X,Y )PZ + C(X,PZ)A∗
ξY − C(Y, PZ)A∗

ξX(2.15)

+ {(∇XC)(Y, PZ)− (∇Y C)(X,PZ)− σ(X)C(Y, PZ)

+ σ(Y )C(X,PZ) + C(T (X,Y ), PZ)}ξ.

The induced Ricci type tensor R(0, 2) of M is defined by

R(0, 2)(X,Y ) = trace{Z → R(Z,X)Y }.

In general, R(0, 2) is not symmetric. The Ricci type tensor R(0, 2) is called the
induced Ricci tensor [5] of M if it is symmetric. The symmetric R(0, 2) tensor
will be denoted by Ric. It is known that R(0, 2) is symmetric if and only if the
1-form τ is closed, i.e., dτ = 0 on TM [9, 13].
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3. Semi-symmetric non-metric connections

For a lightlike hypersurfaceM of an indefinite almost Hermitian manifold M̄ ,
it is known ([4, Section 6.2], [7]) that J(Rad(TM)) and J(tr(TM)) are vector
subbundles of S(TM), of rank 1 such that Rad(TM)∩J(Rad(TM)) = {0} and
Rad(TM) ∩ J(tr(TM)) = {0}. Hence J(Rad(TM)) ⊕ J(tr(TM)) is a vector
subbundle of S(TM), of rank 2. Thus there exist two non-degenerate almost
complex distributions Do and D on M with respect to J such that

S(TM) = J(Rad(TM))⊕ J(tr(TM))⊕orth Do,

D = {Rad(TM)⊕orth J(Rad(TM))} ⊕orth Do.

In this case, the decomposition form of TM is reduced to

(3.1) TM = D ⊕ J(tr(TM)).

Consider two local lightlike vector fields U and V such that

(3.2) U = −JN, V = −Jξ.

Denote by S the projection morphism of TM on D with respect to the decom-
position (3.1). Then any vector field X on M is expressed as follow:

X = SX + u(X)U,

where u and v are 1-forms locally defined on M by

(3.3) u(X) = g(X,V ), v(X) = g(X,U).

Using (3.2), the action JX of any X ∈ Γ(TM) by J is expressed as

(3.4) JX = FX + u(X)N,

where F is a tensor field of type (1, 1) globally defined on M by F = J ◦ S.
Applying J to (3.4) and using (2.1) and (3.2), we have

(3.5) F 2X = −X + u(X)U.

As u(U) = 1 and FU = 0, the set (F, u, U) defines an indefinite almost contact
structure on M and U is called the structure vector field of M .

In the following, let (M̄, ḡ) be an indefinite Kaehler manifold with a semi-
symmetric non-metric connection ∇̄ given by (1.3). Applying ∇̄X to (3.2),
(3.3) and (3.4) and using (2.2)∼(2.4), (2.10) (2.12) and (3.4), we have

B(X,U) = u(A
N
X) + au(X) = C(X,V )− η(X)π(V ),(3.6)

∇XU = F (A
N
X) + aFX + τ(X)U + π(U)X,(3.7)

∇XV = F (A∗
ξX) + bFX − σ(X)V + π(V )X,(3.8)

(∇XF )Y = u(Y )A
N
X −B(X,Y )U + π(JY )X − π(Y )FX,(3.9)

(∇Xu)Y = −u(Y )τ(X)− π(Y )u(X)−B(X,FY ).(3.10)
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4. Indefinite complex space forms

An indefinite complex space form, denoted by M̄(c), is a connected indefinite
Kaehler manifold of constant holomorphic sectional curvature c such that

R̄(X,Y )Z =
c

4
{ḡ(Y, Z)X − ḡ(X,Z)Y + ḡ(JY, Z)JX(4.1)

− ḡ(JX,Z)JY + 2ḡ(X, JY )JZ}

for any vector fields X, Y and Z of M̄ .
Comparing the tangential and transversal components of the two equations

(2.14) and (4.1), and using (2.8) and (3.4), we get

R(X,Y )Z = B(Y, Z)A
N
X −B(X,Z)A

N
Y(4.2)

+
c

4
{g(Y, Z)X − g(X,Z)Y + ḡ(JY, Z)FX

− ḡ(JX,Z)FY + 2ḡ(X, JY )FZ},

(∇XB)(Y, Z)− (∇Y B)(X,Z)(4.3)

+ {τ(X)− π(X)}B(Y, Z)− {τ(Y )− π(Y )}B(X,Z)

=
c

4
{u(X)g(FY,Z)− u(Y )g(FX,Z) + 2u(Z)ḡ(X, JY )}.

Taking the scalar product with N to (2.15) and then, substituting (4.2) into
the resulting equation and using (2.8), (2.12)2 and (3.4), we obtain

(∇XC)(Y, PZ)− (∇Y C)(X,PZ)(4.4)

− {σ(X) + π(X)}C(Y, PZ) + {σ(Y ) + π(Y )}C(X,PZ)

+ a{η(X)B(Y, PZ)− η(Y )B(X,PZ)}

=
c

4
{η(X)g(Y, PZ)− η(Y )g(X,PZ) + v(X)g(FY, PZ)

− v(Y )g(FX,PZ) + 2v(PZ)ḡ(X, JY )}.

Definition. A screen distribution S(TM) is said to be totally umbilical [4] if
there exists a smooth function γ on a coordinate neighborhood U such that

(4.5) C(X,PY ) = γg(X,PY ).

From (2.12)1, 2, we see that (4.5) is equivalent to

(4.6) A
N
X = (γ − a)PX − η(X)ζ.

Theorem 4.1. Let M be a lightlike hypersurface of an indefinite complex space

form M̄(c) with a semi-symmetric non-metric connection. If S(TM) is totally

umbilical, then c = 0 and the function γ satisfies the equations

γ(γ − a) = 0, γb = 0, Xγ − γτ(X) = 0.

Proof. From (3.6) and (4.5), we have

(4.7) B(X,U) = γu(X)− η(X)π(V ).
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Replacing X by ξ, V and U to this equation by turns, we obtain

(4.8) π(V ) = 0, B(V, U) = 0, B(U,U) = γ.

Applying ∇X to C(Y, PZ) = γg(Y, PZ) and using (2.7), we obtain

(∇XC)(Y, PZ) = (Xγ)g(Y, PZ)

+ γ{B(X,PZ)η(Y )−π(Y )g(X,PZ)−π(PZ)g(X,Y )}.

Substituting this equation and (4.5) into (4.4), we have

{Xγ − γσ(X)−
c

4
η(X)}g(Y, PZ)− {Y γ − γσ(Y )−

c

4
η(Y )}g(X,PZ)(4.9)

+ (γ − a){B(X,PZ)η(Y )−B(Y, PZ)η(X)}

=
c

4
{v(X)g(FY, PZ)− v(Y )g(FX,PZ) + 2v(PZ)ḡ(X, JY )}.

Replacing Y by ξ this equation and using (2.9), (3.2) and (3.3), we have

(γ − a)B(X,PY ) = {ξγ − γσ(ξ)−
c

4
}g(X,PY )

−
c

4
{v(X)u(PY ) + 2u(X)v(PY )}.

Taking X = U, PY = V and alternately, taking X = V, PY = U to this
equation and using (4.8)2 and the fact that B is symmetric, we have

ξγ − γσ(ξ) −
3

4
c = 0, ξγ − γσ(ξ) −

2

4
c = 0.

From the last three equations, we obtain c = 0, ξγ − γσ(ξ) = 0 and

(4.10) (γ − a)B(X,Y ) = 0.

Taking X = Y = U to (4.10) and using (4.8)3, we have

γ(γ − a) = 0.

Using (4.10) and the fact that c = 0, the equation (4.9) is reduced to

(4.11) {Xγ − γσ(X)}g(Y, PZ) = {Y γ − γσ(Y )}g(X,PZ).

Taking X = PX and Y = PY in (4.11) and taking into account that S(TM)
is a non-degenerate distribution, we obtain

{PXγ − γσ(PX)}PY = {PY γ − γσ(PY )}PX.

Now suppose there exists a vector field Xo ∈ Γ(TM) such that PXoγ −
γσ(PXo) 6= 0, then it follows that all vector fields from S(TM) are collinear
with PXo. This is a contradiction as rank(S(TM)) = m > 1. Thus we obtain

PXγ − γσ(PX) = 0.

Replacing Y by ξ to (4.11), we obtain

{ξγ − γσ(ξ)}g(X,Z) = 0.

Taking X = Z to this equation such that g(X,X) 6= 0, we obtain

ξγ − γσ(ξ) = 0.
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Consequently, we see that

(4.12) Xγ − γσ(X) = 0.

Applying ∇Y to (4.7) and using (2.12)3, (3.7), (3.10) and (4.12), we have

(∇XB)(Y, U) = −γ{bu(Y )η(X) + u(Y )τ(X) + π(Y )u(X) +B(X,FY )}

− B(Y, F (A
N
X))− aB(Y, FX)− π(U)B(X,Y ).

Substituting this into (4.3) such that Y = U and using (4.9), we obtain

γb{u(X)η(Y )− u(Y )η(X)} = B(Y, F (A
N
X))−B(X,F (A

N
Y )).

Taking X = U and Y = ξ to this equation and using (2.9), (4.7) and the fact
that u ◦ F = 0, we have γb = 0. From this result, (2.12)3 and (4.12), we get

Xγ − γτ(X) = 0.

This completes the proof of the theorem. �

Definition. A lightlike hypersurface M is said to be screen conformal [5] if
there exists a non-vanishing smooth function ϕ on U such that

(4.13) C(X,PY ) = ϕB(X,Y ).

Theorem 4.2. Let M be a lightlike hypersurface of an indefinite complex space

form M̄(c) with a semi-symmetric non-metric connection. If M is screen con-

formal, then c = 0.

Proof. Assume that M is screen conformal. Using (3.6) and (4.13), we obtain

B(X,U − ϕV ) = − η(X)π(V ).

Replacing X by ξ to this equation and using (2.9), we have π(V ) = 0. Put

(4.14) µ = U − ϕV.

Then µ is non-null vector field on S(TM) and satisfies

(4.15) B(X,µ) = 0.

Applying ∇X to C(Y, PZ) = ϕB(Y, PZ), we have

(∇XC)(Y, PZ) = (Xϕ)B(Y, PZ) + ϕ(∇XB)(Y, PZ).

Substituting this equation into (4.4) and using (4.3), we have

{Xϕ− ϕτ(X)− ϕσ(X) + aη(X)}B(Y, PZ)

− {Y ϕ− ϕτ(Y )− ϕσ(Y ) + aη(Y )}B(X,PZ)

=
c

4
{η(X)g(Y, PZ)− η(Y )g(X,PZ) + [v(X)− ϕu(X)]g(FY, PZ)

− [v(Y )− ϕu(Y )]g(FX,PZ) + 2[v(PZ)− ϕu(PZ)]ḡ(X, JY )}.

Taking Y = ξ and PZ = µ and using (3.2), (3.4), (4.14) and (4.15), we have
c

2
{v(X)− 3ϕu(X)} = 0.

Replacing X by V to this equation, we obtain c = 0. �
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Theorem 4.3. Let M be a lightlike hypersurface of an indefinite Kaehler man-

ifold M̄ with a semi-symmetric non-metric connection ∇. If one of V or U is

parallel with respect to ∇, then τ = 0 and R(0, 2) is a symmetric Ricci tensor

of M . Moreover, if M̄ = M̄(c), then c = 0 and M̄(c) is flat.

Proof. (1) If V is parallel with respect ∇, then, from (3.4) and (3.8), we have

J(A∗
ξX) + bJX − {u(A∗

ξX) + bu(X)}N − σ(X)V + π(V )X = 0.

Applying J to this and using (2.1), (2.11) and (3.2), we obtain

A∗
ξX + bX −B(X,V )U + σ(X)ξ − π(V )JX = 0.

Taking the scalar product with ξ and N by turns and using (2.12)3, we get

π(V )u(X) = 0, τ(X) = π(V )v(X).

Taking X = U to the first equation of the last two equations, we get π(V ) = 0.
Using this result, from the second equation we obtain τ = 0. As τ = 0, we see
that dτ = 0 and R(0, 2) is a symmetric induced Ricci tensor of M .

As π(V ) = 0 and σ = −bη, we obtain

A∗
ξX = B(X,V )U + bη(X)ξ − bX.

Taking the scalar product with U to this and using (2.11), we obtain

(4.16) B(X,U) = 0.

Applying ∇Y to this equation and using (3.7) and τ = 0, we have

(∇XB)(Y, U) = −B(Y, F (A
N
X))− aB(FX, Y )− π(U)B(X,Y ).

Substituting the last two equation into (4.3) such that Z = U , we have

B(X,F (A
N
Y )−B(Y, F (A

N
X)− a{B(FX, Y )−B(X,FY )}

=
c

4
{u(Y )η(X)− u(X)η(Y ) + 2ḡ(X, JY )}.

Taking X = U and Y = ξ to this and using (2.9) and (4.16), we get c = 0.
(2) If U is parallel with respect to ∇, then, from (3.4) and (3.7), we have

J(A
N
X) + aJX − {u(A

N
X) + au(X)}N + τ(X)U + π(U)X = 0.

Applying J to this equation and using (2.1) and (3.2), we obtain

A
N
X + aX − {u(A

N
X) + au(X)}U − τ(X)N − π(U)JX = 0.

Taking the scalar product with N and ξ by turns and using (2.12)2, we get

π(U)v(X) = 0, τ(X) = −π(U)u(X).

Taking X = V to the first equation, we get π(U) = 0. Thus, from the second
equation, we obtain τ = 0. Using this results and (3.6), we obtain

A
N
X = B(X,U)U − aX.

Taking the scalar product with U to this and using (2.12)1, we obtain

C(X,U) = 0.
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Applying ∇Y to this equation and using the fact that ∇Y U = 0, we have

(∇XC)(Y, U) = 0.

Substituting the last two equations into (4.4) with PZ = U , we have

a{η(X)B(Y, U)− η(Y )B(X,U)} =
c

2
{v(Y )η(X)− v(X)η(Y )}.

Replacing Y by ξ to this equation and using (2.9), we get

2aB(X,U) = cv(X).

If a = 0, then c = 0. Thus we set a 6= 0. Then the last equation is reduced to

(4.17) B(X,U) = βv(X), β = c/2a.

Applying ∇X to v(Y ) = g(X,U) and using (2.7) and the facts that π(U) = 0
and U is parallel with respect to ∇, we have

(4.18) (∇Xv)Y = βv(X)η(Y )− π(Y )v(X).

Applying ∇Y to (4.17) and using (4.18), we have

(∇XB)(Y, U) = (Xβ)v(Y ) + β2v(X)η(Y )− βπ(Y )v(X).

Substituting this and (4.17) into (4.3) and using τ = 0, we have

(Xβ)v(Y )− (Y β)v(X) + β2{v(X)η(Y )− v(Y )η(X)}

=
c

4
{u(Y )η(X)− u(X)η(Y ) + 2ḡ(X, JY )}.

Taking X = U and Y = ξ to this equation, we obtain c = 0. �

5. Recurrent, Lie recurrent and Hopf lightlike hypersurfaces

Definition. The structure tensor field F of M is said to be recurrent [12] if
there exists a 1-form ̟ on M such that

(∇XF )Y = ̟(X)FY.

A lightlike hypersurface M of an indefinite Kaehler manifold M̄ is called re-

current if it admits a recurrent structure tensor field F .

Theorem 5.1. Let M be a recurrent lightlike hypersurface of an indefinite

Kaehler manifold M̄ with a semi-symmetric non-metric connection. Then

(1) the characteristic vector field ζ on M̄ is tangent to M ,

(2) F is parallel with respect to the induced connection ∇ on M ,

(3) D and J(tr(TM)) are parallel distributions on M ,

(4) M is locally a product manifold C
U
× M ♯, where C

U
is a null curve

tangent to J(tr(TM)) and M ♯ is a leaf of the distribution D,

(5) if M̄ = M̄(c), then c = 0, i.e., M̄(c) is flat,

(6) if M̄ = M̄(c), then R(0, 2) is a symmetric induced Ricci tensor of M .
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Proof. (1) From the above definition and (3.9), we get

(5.1) ̟(X)FY = u(Y )A
N
X −B(X,Y )U + π(JY )X − π(Y )FX.

Replacing Y by ξ and using (2.9), (3.4) and the fact that Fξ = −V , we get

̟(X)V = π(V )X + bFX.

Taking the scalar product with N to this equation, we obtain

π(V )η(X) + bv(X) = 0.

Taking X = V and then X = ξ to this equation, we have

b = 0, π(V ) = 0.

As b = 0, the characteristic vector field ζ on M̄ is tangent to M .
(2) As b = 0 and π(V ) = 0, we see that ̟(X)V = 0. Taking the scalar

product with U to this result, we get ̟ = 0. It follows that ∇XF = 0.
Therefore, F is parallel with respect to the induced connection ∇ on M .

(3) Taking the scalar product with V to (5.1) such that ̟ = 0, we have

B(X,Y ) = u(Y )u(A
N
X) + π(JY )u(X).

Taking Y = V and Y = FZ, Z ∈ Γ(Do) to this equation by turns and using
the facts that b = 0, u(FZ) = 0 and FZ = JZ, we have

(5.2) B(X,V ) = 0, B(X,FZ) = −π(Z)u(X).

In general, by using (2.1), (2.6), (2.7), (2.11), (3.4) and (3.8), we derive

g(∇Xξ, V ) = −B(X,V ) + bu(X), g(∇XV, V ) = π(V )u(X),

g(∇XZ, V ) = π(Z)u(X) +B(X,FZ), ∀X ∈ Γ(TM), Z ∈ Γ(Do).

From these equations and (5.2), we see that

∇XY ∈ Γ(D), ∀X ∈ Γ(TM), ∀Y ∈ Γ(D).

It follows that D is a parallel distribution on M .
On the other hand, taking Y = U to (5.1), we get

(5.3) A
N
X = B(X,U)U − aX + π(U)FX.

Replacing X by V to this and using the fact that B(X,V ) = 0, we have

A
N
V = −aV + π(U)ξ.

Taking the scalar product with N and using (2.12)2, we have π(U) = 0. Ap-
plying F to (5.3) and using the facts that FU = 0 and π(U) = 0, we get

F (A
N
X) + aFX = 0.

Using the last equation and the fact that π(U) = 0, (3.7) is reduced to

(5.4) ∇XU = τ(X)U.

It follows that J(tr(TM)) is also a parallel distribution on M , i.e.,

∇XU ∈ Γ(J(tr(TM))), ∀X ∈ Γ(TM).
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(4) As D and J(tr(TM)) are parallel distributions satisfying (3.1), by the
decomposition theorem [3], M is locally a product manifold C

U
×M ♯, where

C
U
is a null curve tangent to J(tr(TM)) and M ♯ is a leaf of D.
(5) Taking the scalar product with U to (5.3) and using (2.12) and the fact

that π(U) = 0, we obtain

C(Y, U) = 0.

Applying ∇X to this equation and using (5.4), we have

(∇XC)(Y, U) = 0.

Replacing PZ by U to (4.4) and using the last two equations, we obtain

(5.5) a{η(X)B(Y, U)− η(Y )B(X,U)} =
c

2
{v(Y )η(X)− v(X)η(Y )}.

Taking X = ξ and Y = V and using (2.9) and (5.2)1, we have c = 0.
(6) As c = 0, taking Y = ξ to (5.5) and using (2.9), we obtain

(5.6) aB(X,U) = 0.

By directed calculations from (5.4), we obtain

R(X,Y )U = 2dτ(X,Y )U.

Comparing this equation with (4.2) such that Z = U , we have

2dτ(X,Y )U = B(Y, U)A
N
X −B(X,U)A

N
Y.

Taking the scalar product with V and using (3.6) and (5.6), we get dτ = 0.
Therefore, R(0, 2) is a symmetric induced Ricci tensor of M . �

Definition. The structure tensor field F of M is said to be Lie recurrent [12]
if there exists a 1-form ϑ on M such that

(L
X
F )Y = ϑ(X)FY,

where L
X

denotes the Lie derivative on M with respect to X , that is,

(L
X
F )Y = [X,FY ]− F [X,Y ].

The structure tensor field F is called Lie parallel if L
X
F = 0. A lightlike

hypersurface M of an indefinite Kaehler manifold M̄ is called Lie recurrent if
it admits a Lie recurrent structure tensor field F .

Theorem 5.2. Let M be a Lie recurrent lightlike hypersurface of an indefinite

Kaehler manifold M̄ with a semi-symmetric non-metric connection. Then

(1) F is Lie parallel,

(2) the 1-forms τ and σ satisfy τ = 0 and σ = −bη,
(3) R(0, 2) is a symmetric induced Ricci tensor of M ,

(4) if M̄ = M̄(c), then c = 0 and M̄(c) is flat.
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Proof. (1) Using the above definition, (2.8), (3.4) and (3.9), we get

(5.7) ϑ(X)FY = u(Y )A
N
X −B(X,Y )U + au(Y )X −∇FYX + F∇YX.

Taking Y = ξ to (5.7) and using (2.8) and the fact that Fξ = −V , we have

(5.8) −ϑ(X)V = ∇VX + F∇ξX.

Taking the scalar product with V to (5.8) and using g(FX, V ) = 0, we have

(5.9) u(∇VX) = g(∇VX,V ) = 0.

Replacing X by U to this equation and using (2.12)3 and (3.7), we obtain

(5.10) τ(V ) = σ(V ) = 0.

Replacing Y by V to (5.7) and using the fact that FV = ξ, we have

ϑ(X)ξ = −B(X,V )U −∇ξX + F∇VX.

Applying F to this equation and using (3.5) and (5.9), we obtain

ϑ(X)V = ∇VX + F∇ξX.

Comparing this equation with (5.8), we get ϑ = 0. Thus F is Lie parallel.
(2) Taking the scalar product with N to (5.7) and using (2.12)2, we have

(5.11) − ḡ(∇FYX,N) + ḡ(F∇YX,N) = 0.

Replacing X by ξ to (5.11) and using (2.6), (3.2) and (3.4), we have

g(A∗
ξX,U) = σ(FX).

From this equation, (2.11), (2.12)3 and the fact that v(X) = η(FX), we have

(5.12) B(X,U) = τ(FX).

Replacing X by U to this and using (3.6) and the fact that FU = 0, we get

(5.13) C(U, V ) = B(U,U) = 0.

Replacing X by V to (5.11) and using (2.11)2, (3.4), (3.5) and (3.8), we have

g(A∗
ξFY,U) + σ(Y ) = 0.

Using this equation, (2.11) and (2.12)3, we obtain

B(FY,U) = −τ(Y ).

Replacing Y by U to this and using the fact that FU = 0, we obtain

(5.14) τ(U) = σ(U) = 0.

Replacing X by U to (5.7) and using (3.5), (3.6), and (3.7), we get

(5.15) u(Y )A
N
U − F (A

N
FY )−A

N
Y − τ(FY )U = 0.

Taking the scalar product with V and using (2.12), (3.6) and (5.13), we get

B(X,U) = − τ(FX).

Comparing this with (5.12), we obtain τ(FX) = 0. Replacing X by FY to this
and using (3.6) and (5.14), we have τ = 0. From (2.12)3, we get σ = −bη.
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(3) As τ = 0, dτ = 0 and R(0, 2) is a symmetric induced Ricci tensor of M .
(4) As τ = 0, from (5.12) we obtain

(5.16) B(Y, U) = 0.

Applying ∇X to this equation and using (3.7), we have

(∇XB)(Y, U) = −B(Y, F (A
N
X))− aB(FX, Y )− π(U)B(X,Y ).

Substituting the last two equation into (4.3), we have

B(X,F (A
N
Y )−B(Y, F (A

N
X)− a{B(FX, Y )−B(X,FY )}

=
c

4
{u(Y )η(X)− u(X)η(Y ) + 2ḡ(X, JY )}.

Taking X = U and Y = ξ to this and using (2.9) and (5.16), we get c = 0. �

Definition. The structure vector field U on a lightlike hypersurface M of an
indefinite almost complex manifold M̄ is called principal [12], with respect to
the shape operator A∗

ξ , if there exists a smooth function α such that

(5.17) A∗
ξU = αU.

A lightlike hypersurface M of an indefinite almost complex manifold M̄ is
called a Hopf lightlike hypersurface [12] if it admits a principal structure vector
field U , with respect to the shape operator A∗

ξ .

Taking the scalar product with X to (5.17) and using (2.11), we get

(5.18) B(X,U) = βv(X),

where we set β = α+ b. From this equation and (3.6), we obtain

(5.19) u(A
N
X) = βv(X)− au(X).

Theorem 5.3. LetM be a Hopf lightlike hypersurfaces of an indefinite complex

space form M̄(c) with a semi-symmetric non-metric connection. Then c = 0.

Proof. Substituting (3.4) into ḡ(JX, Y ) + ḡ(X, JY ) = 0, we have

g(FX, Y ) + g(X,FY ) + u(X)η(Y ) + u(Y )η(X) = 0.

Applying ∇X to v(Y ) = g(X,U) and using (2.7), (2.12)2, (3.4), (3.7), (5.19)
and the last equation, we obtain

(5.20) (∇Xv)Y = v(Y )τ(X)− π(Y )v(X)− ag(X,FY )− g(A
N
X,FY ).

Applying ∇Y to (5.18) and using (3.7) and (5.20), we have

(∇XB)(Y, U) = (Xβ)v(Y )− βπ(Y )v(X)− βag(X,FY )− βg(A
N
X,FY )

− B(Y, F (A
N
X))− aB(FX, Y )− π(U)B(X,Y ).

Substituting this equation and (5.18) into (4.12), we have

(Xβ)v(Y )− (Y β)v(X) + β{v(Y )τ(X) − v(X)τ(Y )}

+ βa{g(FX, Y )− g(X,FY )}+ β{g(A
N
Y, FX)− g(A

N
X,FY )}

+B(X,F (A
N
Y ))−B(Y, F (A

N
X)) + a{B(X,FY )−B(Y, FX)}
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=
c

4
{u(Y )η(X)− u(X)η(Y ) + 2ḡ(X, JY )}.

Taking X = ξ and Y = U to this equation and using (2.9), (2.12)2, (3.4),
(5.18), (5.19) and the facts that FU = 0 and Fξ = −V , we obtain c = 0. �
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